
vov

Name
vov — Emulate a Von-Neumann Machine

Synopsis

vov [-h] [-i] [-m size] [-q] [-t secs] [-v] [-V] [program_file]

Description
vov (Vov’s ObsessiveVon-Neumann) is a tool that emulates the behavior of a Von-Neumann machine. It is basi-
cally an interpreter, which reads files in the form of memory assignments and executes the encoded instructions.
Thevov’s instructions make you able to perform simple arithmetic data manipulation. It is a very useful tool to
see if your programs work and how.

I am a strong believer in Open Source, so I encourage you to send feedback, updates, patches et cetera. Do not
hesitate to inform me of typos or plain old error. If my English sounds somewhat wooden, please realize that I’m
not a native speaker. Feel free to send suggestions.

Options

-h

List all options, with brief explanations.

-i

Run in interactive mode; this option will be ignored if you specify aprogram_file in the command line.
When-i is in effect,vov starts with a bootstrap program that read opcodes from the input device (usually
your keyboard), store them in RAM and, when you type thehalt instruction, run your code.

Note: The bootstrap program is located at the end of the machine’s RAM, therefore it don’t ask you the
starting offset where to place your code (it assumes 0), and you are free to write your code without count
the "offset slide" (i.e. when jump). The bootstrap code uses 13 words of memory; it’s possible to make it
more small without insert a "want to survive" feature that don’t allow you to overwrite the bootstrap code
(when -i is in effect you don’t have all RAM available).

-m size

Limit the maximum memory used byvov to size bytes. If you don’t set this option explicitly the default
value will be used (2000000 bytes). This option may have no effects on your system.

-q

Run in quiet mode; do not print the introductory and copyright messages. These messages are also suppressed
in batch mode.

1

vov

-t secs

Limit the maximum cpu time used byvov to secs seconds. If you don’t set this option explicitly the default
value will be used (2 seconds). This option may have no effects on your system.

-v

Run in verbose mode; this will print lots of useful information on the output device saying what the machine
is actually doing; useful for debugging purposes.

-V

Print version information and then exit.

The Machine
Von-Neumann machine is a computer system organization actually realized and operated in a Princeton Uni-
versity Project, under control of the mathematician John Von-Neumann. The machine is realized through the
interconnection of four complex devices: memory, control unit, input and output.

1. The memory device called RAM (Random Access Memory) realizes the storage of an array of integer num-
bers. Both the array size (the number of words) and the maximum storable value in each word are given at
building or assembling time. As a virtual machine, it supports two basic instructions: storesx in word y,
fetches the value previously stored iny.

2. The control unit realizes the functioning of the machine with a sequential working mode using thePC (a.k.a.
Program Counter) register using the following algorithm:

• Initialization: store the value 0 in thePC register.

• Fetch: get the value held in RAM[PC] and store it in a third register calledIR (a.k.a. Instruction Register),
then incrementsPC by 1.

• Decode: compare the value held inIR with the symbols table to find out which instruction is encoded to
that number.

• Execution: execute the instruction encoded by the value held inIR; at the end go back to fetch unless it
was thehalt instruction.

Applying this simple algorithm, the control unit is able to execute sequential programs made of instructions
coded in numeric form in RAM words starting from offset 0. That is, RAM[0] holds the encoding of the
first instruction of the program, RAM[1] the second and so on.As we can see, the control unit fetches and
decodes instructions only basing itself on the value storedin thePC, and it cannot know if the value in theIR
was inserted in RAM[PC] to be used as code or data. It is the programmer who must make sure that the word
from which the value is fetched actually holds the encoded instruction he wants to be executed at the point. A
program which first inserts a datum in a memory word and then interprets that word as an instruction is said
self modifying (like a bootstrap program).

3. The input device gives to the user the ability to interact with the machine (for example through a numeric
keyboard) to enter an integer value, one at a time.

4. The output device gives to the machine the ability to printa readable format of an integer value at a time.

In this Von-Neumann’s machine implementation, we have a RAMwith 1000 words (each word is a 32-bit signed
integer) and each word can be indexed by a number between 0 and999. We use the notation RAM[0] to identify
the first RAM word. The control unit is realized in such a way that it can execute (directly or commanding other
parts of the machine) a set of 9 basic instructions. Each instruction may be encoded by a single number between
0 and 8, no matter how complex the operation is. Some instructions are uniquely determined by the number,

2

vov

while other need to know one more parameter (thex value for the memory offset) to find out the second operand.
Instructions which need to know explicitly an operand must be coded with the explicit operand. A Von-Neumann’s
machine doesn’t officially handle negative numbers therefore in this implementation such a thing as RAM[x]=-y
(with y > 0) gives an error. By the way it is actually possible invov to use negative numbers with a trick: simply
using the subtraction and an auxiliary word. It makes thus sense to have programs (or functions) that calculate the
absolute value of a number (seescripts/ directory), and the like.

Instructions Set
A very simple way to obtain a numeric code for instructions isto list them in a sorted list, and to use the order
numbers of the list to find the instructions, therefore a simple algorithm to obtain the numeric encoding of all the
instructions, including those having an operand, is to multiply by 1000 the order number of the instruction and
sum the possible operand (always between to 0 and 999, due to RAM size).

• 0: sum of two integers. It adds the value contained in the accumulator with the value stored in RAM[y]; the
result is stored in the accumulator. The first operand is lost.

• 1: difference of two integers. It subtracts the value kept in RAM[y] to the value stored in the accumulator; the
result is stored in itself. The first operand is lost.

• 2: read of an integer number from the input device. The read value is stored in the accumulator. The previously
stored value is lost.

• 3: write of an integer value on the output device. The value stored in the accumulator is copied on the output
device. No value is lost.

• 4: stores the number held in the accumulator also in RAM[y]. Previous content of RAM[y] is lost; content of
the accumulator is kept.

• 5: copies the value held in RAM[y] in the accumulator. Previous content of the accumulator islost. Content of
RAM[y] is kept.

• 6: usually called aprogram jump, as it inserts an interruption in the linear RAM scan: it makes the next
instruction fetched from RAM[y] instead of the next instruction in RAM after the jump instruction.

• 7: checks the value stored in the accumulator. If this value is0, jump asinstruction 6, otherwise don’t do
anything (a.k.a.conditional jump).

• 8: halts the machine.

vov program
You can run avov program from a file as you would any other shell script, perl(1) program, python(1) program
or ruby(1) program. You can simply runvov giving the script name as an argument; if no script name was given
and-i isn’t in effect, the standard input will be used.

A vov program must be written using the following syntax:

RAM[x] = yz;

wherex is an address in the machine’s RAM,y is an instruction opcode andz is the argument to the opcode (if
the instruction require one, otherwise 0 should be used). Comments starts with the character# and go on up to the
end of line. Blanks are ignored except inside tokens, and case is not important.

3

vov

Sincevov is actually a full-blown interpreter, you can use the Unix "shebang" notation as the first line of the
program file (if your system supports it, you can avoid hard-coding the path tovov in the shebang line by using
#!/usr/bin/env vov, which will search your path forvov and then execute it). If you make this source file executable
(using, for instance,chmod +x myprog.vnm), Unix lets you run the file as a program. You can do something similar
under Microsoft Windows using file associations.

Examples
Here you can find some examples on how to invokevov:

Example 1. Run a script in verbose mode

$ vov -v foo.vnm

Example 2. Run in verbose and interactive mode

$ vov -iv

Example 3. Read the program from the standard input being verbose but don’t show any banner

$ vov -vq

Confirmed Platforms
vov should compile (and run) on any platform (it is nearly entireANSI C) with any version of gcc(1); by the way
there is a list of confirmed platforms. If you get it working onother platforms, please contact me.

GNU/Linux

• Slackware 8.1

• Slackware 10.2

• Slackware 11.0

• KUbuntu 5.10 (breezy)

• KUbuntu 6.06 (dapper)

• Ubuntu 6.10 (edgy)

BSD

• FreeBSD 6.0-RELEASE

4

vov

• NetBSD 2.1

• OpenBSD 3.8

Others

• MS-DOS Version 3.30 (DJGPP)

• MS-DOS Version 5.00 (DJGPP)

• MS-DOS Version 6.00 (DJGPP)

• MS-DOS Version 6.20 (DJGPP)

• MS-DOS Version 6.22 (DJGPP)

• FreeCom version 0.82 pl 3 XMS_Swap [Dec 10 2003 06:49:21] (DJGPP)

• Microsoft Windows 98 (MSVC for Win32)

• Microsoft Windows XP (MSVC for Win32 - DJGPP)

• Microsoft Windows Vista (MSVC for Win32 - DJGPP)

Vov Internals
Here you can read some information about howvov works internally.

Flow Control

• This is the general flow control in avov session:

read-stdin --- parse-statement --- add-opcode --- boot --- run --- halt
/ |

read-script _/ interactive-mode

Whenvov reads a script from a file (stdin is a file) each statement is parsed; if there is any parser error,
vov will die immediately, otherwise the givenopcodeis set on the specifiedoffset. These simple steps are
executed for each statement in your script until the end of file is reached. At this point the RAM is set and
the machine can boot executing your program until thehalt instruction is reached or an error occurred.

Using theinteractive modewe don’t need to parse at all; thebootstrap programis automatically loaded in
the RAM and the machine can boot executing it. Thebootstrap programread your program instructions
(numeric encoded) fromstdinand place them in RAM starting from offset 0 until thehalt instruction is
read. At this point thebootstrap programdo a jump to the offset 0 and starts execute your program until
thehalt instruction is reached or an error occurred. See the-i option for more details.

Memory Management

• The cheapest and easiest way to implement the RAM of the Von-Neumann machine is a flat static array
(looking at the definition) of thousands (signed) integers.If you also want to implement a little sanity

5

vov

check to keep track of untouched RAM words (i.e. just a flag setto 1 when we write on a word therefore
we will no read from uninitialized memory) then the cheapestand easiest way to implement the machine
RAM become a flat static array of thousands structures containing two integers. We could declare the flag
for untouched RAM words aschar or asbit-field but if we want to write a portable code we can’t use
some gcc(1)-ism like__attribute__((packed)); therefore the size of a single structure is always the same
due to padding bytes (8 bytes on my system using gcc(1)). The resulting machine RAM (8000 bytes on
my system using gcc(1)) is, then, all allocated on the program’s stack; even if you don’t care that this
can cause problems on some (old/embedded) systems, you should note that this waste a lot of memory
because an averagevov program don’t use more than 50 RAM words. On the average case,then, the flat
array waste a lot of memory even if it is fast (the access time do not depends on the RAM size but it takes
O(1) time in all cases).

For this reason,vov implements the Von-Neumann machine RAM with a dynamic-allocated structure.
One easy and fast data structure we can implement is anAVL tree(only lookup and insertion) ordered by
RAM offsets containing a 32-bit signed integer (the opcode). Now the access time depends on the RAM
size but it takes O(log N) time in both the average and worst cases; sincevov only have 1000 RAM words
on the worst case this should be fast enough.

Note: Using this implementation we automatically have the little sanity check as described before: if, during
a memory read, the lookup function do not find the requested node then we are trying to access an
uninitialized memory word. This is "for free" without the need of any extra flag. During a store operation
if the lookup function do not find the requested node (offset) then we simply need to add it to the RAM
(add a node to the AVL tree) or, if the lookup function found it, simply update the opcode. That’s should
be easy enough.

Thus all required memory goes into the heap instead of the program’s stack therefore should be no problem
even in some (old/embedded) systems. All sounds good but there is another problem: one malloc(3) for
each RAM word (one tree node) is, in general, slow.

We could use a big buffer (from now calledhunk) and play with pointers arithmetic allocating memory
only the first time we need it, then keep feeding the hunk untilthere is no more bytes left on it (or the
requested size do not fit). At this point we could realloc(3) the hunk (doubling the size) and go ahead
but the realloc(3) man page says that itreturns a pointer to the newly allocated memory, [...] and may be
different from ptr.

Warning
For this reason we can’t use realloc(3) to extend our hunk size or we may risk to lost all
our pointers to already allocated tree nodes.

vov uses a FIFO linked list of hunks and when one hunk is full (or the requested size do not fit) it allocates
a new one, instead of realloc(3)-ing the old one. This ensurethat no pointers will be lost. To minimize
the overhead, the hunks list is a double-linked FIFO list with two pointers: one to the first and one to
the last hunk: therefore, when we need to insert a new hunk (onthe end of the queue), we don’t need
to scan the entire list. Thus, to keep minimizing the malloc(3)s,vov allocates memory only one time per
hunk using the first bytes to hold the hunk structure (a list cell) and the left bytes as free space available
for the tree nodes (RAM words) instead of allocating the listcell and then the hunk: it should be faster,
and less memory should be wasted in rounding up chunk sizes (as many implementations do). This also
ensure only one malloc(3) per hunk where all required bytes are in a sequence of consecutive addresses
in the virtual address space therefore it should not waste space because it maintains memory in ways that
minimize fragmentation (holes in contiguous chunks of memory that are not used by the program) and this
also helps minimize page and cache misses during program execution because chunks of memory that are
typically used together are allocated near each other.

6

vov

Note: vov , internally, uses malloc(3) only for the RAM words (tree nodes), therefore things are simple:
since the nodes are homogeneous data (same size) if a hunk doesn’t fit for an allocation

then doesn’t fit even for the next one. Therefore when we need to allocate a new RAM word
(tree node) we don’t need (again) to scan the entire list but we can just check the last hunk (we have
a pointer to it) for available bytes: that has practically no overhead. We don’t need any best-fit, first-fit,
et cetera algorithm implementations keeping the code (more fast and) KISS (Keep It Simple, Stupid).
This is very important because security holes can’t show up in features that don’t exist©.

For all reasons explained before (as minimize page and cachemisses during program execution), hunk
size is set to the size of system memory page. Size of memory page is architecture and operating system
dependent. You can set it using the configure script. By default memory page size is set to 4096 bytes.
This should ensure that no memory will be left unused; on my (32-bit) system, where a memory page is
4096 bytes, compiling the code using gcc(1), the size of a list cell is 16 bytes and size of a tree node is
20 bytes therefore one hunk can hold up to 204 memory words filling itself perfectly. On a 64-bit system,
where a memory page is 4096 bytes, compiling the code using gcc(1), both the size of a list cell and a tree
node are 32 bytes therefore one hunk can hold up to 127 memory words filling itself perfectly. Thus, on
all cases, allocating one hunk is enough for almost allvov programs (just one malloc(3) for an average
vov session).

Input/Output

• I’ve mostly given up on the standard C library. Many of its facilities, particularly stdio, seem designed to
encourage bugs©; thus premier causes for bloat are stdio and the printf family of functions. Sincevov was
written even to be small, it don’t use any of these functions.vov’s input/output routines are stolen (and
modified) from libowfat a GPL version of the djb library code.Since I don’t want any external and non
standard dependencies and I modified the used routines I don’t link vov against libowfat directly.

Parser

• The parser is realized using flex(1) and bison(1). I made somelittle changes to the scanner generated by
flex(1) because I don’t want to use any stdio facilities (as printf, FILE *. et cetera) keeping the code small
and not bug-prone (see the Input/Output section). If you have any problem to apply my patch after you
regenerated the scanner, please note that I used an old version of flex(1) (2.5.4a) because it works for me
and thus more recently versions of flex(1) insert some code (as the functionclearerr that accepts a FILE *
as parameter) that I can’t modify.

Note: I also rewrote the yy_fatal_error routine because the generated version has some memory and
descriptor leaks. The default function do not close the parsed FILE * (descriptor leak) and do not
destroy the yy_current_buffer (memory leak).

7

vov

Resource exhaustion

• vov don’t want to eat all your shared resources as memory and cpu time (the only shared resources that
vov will actually use). I believe that include separate code in every application to impose configurable
artificial limits on every dynamically allocated data is a wrong solution to make a secure program (you
can always fail putting an artificial limit on a dynamically allocated data) therefore I userlimits on systems
that support it.

Note: These limits are only for your convenience; you can’t override system defined limits. If an user on a
system sets a limit greater than the relative system limit then the system limit will be used.

If you think that arbitrary memory allocation up to rlimits or physical limits is a bug, please wait a second:
systems that allows users to allocate any amount of memory are vulnerable before they are runningvov
because they aren’t well managed systems and can be damaged by memory exhaustion attacks, whether or
not they are runningvov. Probably, on these systems,vov is the last problem of the system administrator.
By the way, on UNIX like systems, we have therlimits facilities.

COPYING
Copyright © 2001-2008 Davide Scola <davide (dot) scola (at) gmail (dot) com>

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim
copying, provided that the entire resulting derived work isdistributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above
conditions for modified versions, except that this permission notice may be included in translations approved by
the Free Software Foundation instead of in the original English.

8

