1y
mmmm SCONS

Build your software, better.

SCons2.4.1

User Guide

Steven Knight and the SCons Development Team

version 2.4.1
Copyright © 2004 - 2015 The SCons Foundation
Publication date 2004 - 2015

SCons User's Guide Copyright (c) 2004, 2005, 2006, 2007 Steven Knight

Table of Contents

P AR ..t ettt iX
L. SCONS PIINCIPIES ..ttt ettt e et e ettt e et e e b e e e e ab e e e enaa s iX

2. A Caveat About This GUIJE'S COMPIEIENESScieiiiieiiit et iX

3. ACKNOWIEAGEIMENES ...ttt ettt ettt e et et e e et et e e et et a e e e rb e e e enaa s X

R O o = ST TP X

1. Building and INSEAIIING SCONScceutiiiiiii et ettt e et e et e e e et e e e era e eeens 1
L1 INSEATING PYLNON ..o ettt e et et e e e 1

1.2. Installing SCons From Pre-Built PaCKagESveiiiiiiieeiii e 2
1.2.1. Installing SCons on Red Hat (and Other RPM-based) Linux Systemscccevviveviiiinnerennnnn. 2

1.2.2. Installing SCons on Debian LiNUX SYSIEIMSuiiiiiiiieiiii e 2

1.2.3. Installing SCons 0N WINAOWS SYSLEIMSuieiiiiieieiii ettt 2

1.3. Building and Installing SCOoNS 0N ANY SYSLEIMuuiiiiiiei et 3
1.3.1. Building and Installing Multiple Versions of SCons Side-by-Sideccooveviiiiiiiiiiieeinneennn. 3

1.3.2. Installing SCoNS iN Other LOCALIONSciveiiieiiiiiieee et eees 3

1.3.3. Building and Installing SCons Without Administrative Privilegescoocoiiiiiiiiinciinnnnnn. 4

2. SIMPLE BUIIAS ...ttt et ettt e et et e et et e e e e eaans 5
2.1. Building SImple C / Ct PrOOramScieiii ettt e et eeena s 5

2.2. BUIlAING OBJECE FIIES ...ttt 6

2.3, SIMPIE JAVA BUILAS ...t 6

2.4. Cleaning Up ATLEr @ BUITHoiiiiieie ettt e e e e e e e 7

2.5. The SCONST T UCT FlE i et e e e 8
25.1. SConstruct Files Are PythOn SCrPLSccuuuuiiiiiiieiiii e 8

2.5.2. SCons Functions Are Order-INdependentooeiieiiieiiiiiieee e 8

2.6. Making the SCons Output Less VErDOSEcoouuiiiiiii e 9

3. Less Simple Things to DO With BUITASuiiiiii e 10
3.1. Specifying the Name of the Target (OULPUL) Filecoouuiiiiiii e 10

3.2. Compiling MUItIPIE SOUICE FlESceeiiieiei e 11

3.3. Making alist of fileSWIth G 0Diiiiiii e 11

3.4. Specifying Single Files VS, ListS Of FIlESc.uuiiiiiiiiei e 12

3.5. Making Lists Of FileS EaSier 10 REAMociiiiiiiiiiii e e 13

3.6, KEYWOIT ATGUIMIENTSieett ettt e ettt ettt e ettt et e ettt e e et et e et e e e et et e e e e ab e e e e nbn e e eenanns 13

3.7. Compiling MUIIPIE PrOGraMSieeii ettt ettt et e e e e e e 14

3.8. Sharing Source Files Between MUItiple Programsoieiiiieiiiine et 14

4. Building and Linking With LIDIaITESc.uuuiiiiiiiiei e 16
A1, BUIlAING LIBrariEs . ..ottt e 16
4.1.1. Building Libraries From Source Code or Object Filesc.ovviiiiiiiiiiiiiiieeceeieeeee 17

4.1.2. Building Static Libraries Explicitly: the St at i cLi brary Builderc..ocooviiiiiinnnnnnn. 17

4.1.3. Building Shared (DLL) Libraries: the Shar edLi brary Builderccooiviiiiiiinieiinnnnnn. 17

4.2, LinKing WIth LIDIaIESoceiii et ettt e et e e ena e e 18

4.3. Finding Libraries: the $L1 BPATH Construction Variablecooviiiiiiiiiiiiiieeeeeeeii e 19

N oo (S @ o 1= ot £ S ST TTOUP PR PRR 20
5.1. Builder Methods Return ListS of Target NOUESuiiiiiiniiiiiii e 20

5.2. Explicitly Creating File and Directory NOUESiiiiiiiieiiii et 21

5.3. Printing NOAE FlE NBMESuiiiiiiiiee e 21

5.4. Using aNode's FiIle NamMe @S @ SHNGceevruiieiiii et e e 22

5.5. Get Bui | dPat h: Getting the Path From a Node Or StHNgvveiiiiiiieiiiiicieec e 22

B. DEPENUENCIESeeetieeeiit ettt ettt ettt e ettt oo et e b e ettt e et e e b e et et e e e et b e et en e e aerb e aeee 24
6.1. Deciding When an Input File Has Changed: the Deci der FUNCiONccovviiiiiiiiinieiiiinneeen, 24
6.1.1. Using MD5 Signatures to Decide if aFile Has Changedocoovviiieiiiiiiiiiiiiincc, 25

6.1.2. Using Time Stamps to Decide If aFile Has Changedccoooeviiiiiiiiiiiii e 26

6.1.3. Deciding If aFile Has Changed Using Both MD Signatures and Time Stampscceeee... 27

~

'—‘—' SCONS iii

6.1.4. Writing Your Own Custom Deci der FUNCLONcciiiiiiiiiiii e 27

6.1.5. Mixing Different Ways of Deciding If aFile HasChangedccooveiiiiiiiiiiniceeeen, 29
6.2. Older Functions for Deciding When an Input File Has Changedc.ccooviiiiiiiii i, 30
6.2.1. The Sour ceSi gnat Ur €S FUNCLIONcoiiuiiiiiiicie e e 30
6.2.2. The Tar get Si gnat ur €S FUNCLONcoiiiiiiiiici e e 30
6.3. Implicit Dependencies: The $CPPPATH Construction Variableccooevviiiiiiiiiiiiciieecieees 31
6.4. Caching ImpliCit DEPENAENCIEScvvniiii e e e e e e e e e et e e et eea e eaes 32
6.4.1. The--inplicit-deps-changed Optionc.ccciiiiiiiiiiiii i 33
6.4.2. The--inplicit-deps-unchanged Optioncccoeeeiiiiiiiiiiie e 33
6.5. Explicit Dependencies: the Depends FUNCHONcooiuiiiiiiieii e e 34
6.6. Dependencies From External Files: the Par seDepends FUNCLONcccocoiviiiiiiiiin i, 35
6.7. Ignoring Dependencies: the | gnor e FUNCHIONcovviiiiiii e 36
6.8. Order-Only Dependencies; the Requi I €S FUNCLIONcoooviiiiiiiiiii e 37
6.9. The Al WaySBUI | d FUNCHIONiiiiiii e e e e e e e e e et e e ea e eeas 39
A 0177100011001 PP 40
7.1. Using Values From the External ENVIFONMENTccouuiiiiiiiiiii e e e e e 41
7.2. CONSIIUCEION ENVIFONIMENTSiiiieieieiiis st e et e et e et e et r e et s e e e et e e e eata s e e eaanaeeenens 41
7.2.1. Creating aConstructi on Envi ronnent : the Envi r onnment Function...................... 41
7.2.2. Fetching Values FromaConstructi on Envi ronmentccoooiiiiiiiniiiineciineeiines 42
7.2.3. Expanding Vaues FromaConst ruct i on Envi r onnent : thesubst Method.............. 43
7.2.4. Handling Problems With Value EXPanSiONieeiuiiiiiiieiiiieei e e et e e e e e 43
7.2.5. Controlling the Default Const ruct i on Envi ronment : the Def aul t Envi r onnent
1 o PP 44
7.2.6. Multiple Const ructi on EnVi FONIMENES .o 45
7.2.7. Making Copies of Constructi on Environnents:thed one Method 46
7.2.8. Replacing Values: the Repl ace Methodc.oiiiiiiiiiii e 47
7.2.9. Setting Values Only If They're Not Already Defined: the Set Def aul t Method 48
7.2.10. Appending to the End of Values: the Append Methodccocoiiiiiiiiiii i 48
7.2.11. Appending Unique Values. the AppendUni que Methodccoooiiiiiiiiiiiencs 49
7.2.12. Appending to the Beginning of Values: the Pr epend Methodccoooiiiiiiiiniiinnnnnnn. 49
7.2.13. Prepending Unique Values. the Pr ependUni que Methodccoooviiiiiiiiniiieeciins 50
7.3. Controlling the Execution Environment for Issued Commandscccovevvieiiiiieiiineiiiecneeeieeaen, 50
7.3.1. Propagating PATH From the External ENVIironmentcccooovieiiiiiiiiiieeie e e, 51
7.3.2. Adding to PATH Values in the Execution ENVIronmentc.ccoveviiiiiiiiieiii e, 51
8. Automatically Putting Command-line Options into their Construction Variablescccoocviiiiiiiiiieennnnn, 53
8.1. Merging Options into the Environment: the Mer geFl ags Functionccccooiveiiiiin e, 53
8.2. Separating Compile Arguments into their Variables: the Par seFl ags Function 54
8.3. Finding Installed Library Information: the Par seConfi g Functioncccccoiviiiiiiii e, 56
9. Controlling BUilA OULPULuuiiiiieiii i e e e e e e e e e e e e et e e et e e et e e et s e esaeeetn e eannaaannaees 58
9.1. Providing Build Help: the Hel p FUNCHIONoiiiiii e 58
9.2. Controlling How SCons Prints Build Commands: the $* COVMSTR Variables............ccceevveviviinienennn, 59
9.3. Providing Build Progress Output: the Pr ogr €SS FUNCHIONcccovuiiiiiiiiiiiciineee e e 61
9.4. Printing Detailed Build Status: the Get Bui | dFai | ures FUNCtionccoceiveviiiiiiniciieeciees 62
10. Controlling a Build From the Command LiNeiiiiiiiiiiiiii e e 65
10.1. Command-Ling OPLIONSciuuiiiiieiiiie e e e e e e e e e e e e e e e et e e et e e et s e e et e e an e e et e e ranaeeanaas 65
10.1.1. Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS Environ-
MENE VaADIE ..o e et 65
10.1.2. Getting Values Set by Command-Line Options: the Get Qpt i on Function 66
10.1.3. Setting Values of Command-Line Options: the Set Opt i on Functioncccoccovneeee. 66
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Options..............ccccccevnneeee. 67
10.1.5. Adding Custom Command-Line Options: the AddQpt i on Functionccceeeeenneennnn. 68
10.2. Command-Line vari abl e=val ue Build VariableSccoiiiiiiiiiiiiiiii e 69
10.2.1. Controlling Command-Line Build Variablescccoeiiiiiiiii e 71
10.2.2. Providing Help for Command-Line Build Variablescc.cccoeiiiiiiiiii e 71

Iy
=== SCONS iv

10.2.3. Reading Build Variables From a Fileccccouiiiiiiiiii e 72

10.2.4. Pre-Defined Build Variable FUNCHIONSooeviiiiiiii e 73
10.2.5. Adding Multiple Command-Line Build Variablesat ONnCecooevvviiiiiiiiiiiieciiieeeee, 78
10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVar i abl es Func-
1o o O P 79
10.3. ComMMANG-LIiNE TaIGELS ... civtnieiiie ittt e e e e e e e e e e et e e et e e e et e e et e e et e e erneeannaees 80
10.3.1. Fetching Command-Line Targets: the COVMAND LI NE_TARGETS Variable..................... 80
10.3.2. Controlling the Default Targets: the Def aul t FUNCLONcocovvieiiiiiiiiince e, 80
10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUl LD _TARGETS Vari-
BBl et 83
11. Installing Files in Other Directories: thel nst al | BUildercc.oviiiiiiiiii e 85
11.1. Installing Multiple FIleS N @ DIFECIOIYcvuiiiiiiiii et e e e e e et e e e e e aens 86
11.2. Installing a File Under a DIifferent NaMEcouuiiiiiiiiiii e e e e 86
11.3. Installing Multiple Files Under Different NameScc.uiiiiiiiiiiici e 87
12. Platform-Independent File System Manipulationcooeuiiiiiiiiiii e e e e 88
12.1. Copying Files or Directories. The COPY FaCIOrYccouuiiiiiiiiii i 88
12.2. Deleting Files or Directories: The Del €t € FaClOryocvvuiiiiiieiiie e 89
12.3. Moving (Renaming) Files or Directories: The Move FaCtoryccocoiveiiiiiiiiiiiiiecic e, 90
12.4. Updating the Modification Time of aFile: The Touch FaCtorycccoveeiiiiiiiiiiiie e, 20
12.5. Creating a Directory: The MKAi I FaCtOrycouiiiiiieiii e 91
12.6. Changing File or Directory Permissions. The Chimod Factoryccoveviiiiiiiiiiicii e, 91
12.7. Executing an action immediately: the Execut @ FUNCLIONcciiiiiiiiiiin e, 92
13. Controlling REMOVEl OF TaIGELSuivvueiiiieiii et e e e e e e e e e e e e et e e et e et e e et e e eanaeeanees 93
13.1. Preventing target removal during build: the Pr eci ous FUNCLONcccoveviiiiiiiiiiii e, 93
13.2. Preventing target removal during clean: the NoCl ean FUNCtioNnccoeeviiiiiiiiiiii e, 93
13.3. Removing additional files during clean: the Cl @an FUNCLiONccoeevviiiiii i, 94
14, HIerarChiCal BUIASoeeeiicei e e e e et e e e et e e e eran e 95
7 T] E=Y o T o) A 1 = 95
14.2. Path Names Are Relative to the SCONSCri Pt DIrECLONYuveviuiiiiiiiiiiieeie e 96
14.3. Top-Level Path Names in Subsidiary SConscri pt FIleS......ccooviiiiiiiiii e 96
14.4. ADSOIULE Path NBIMESuiiiiiii e e et e et e e e et e e e e aaa s 97
14.5. Sharing Environments (and Other Variables) Between SConscri pt Files.......ccoooeviiiiiiiiiinnennnn. 97
14.5.1. EXPOrting VariablEScouuiiiiiiii e 98
14.5.2. IMporting VariablESc.u. i e 98
14.5.3. Returning Values From an SConscri pt Filecooooiii i, 99
15. Separating Source and BUild DITECIOINESc.uuiiiiiiiii e e e e e e e e e et e e e e eaes 101
15.1. Specifying a Variant Directory Tree as Part of an SConscri pt Callccooveviiiiiiiinnne, 101
15.2. Why SCons Duplicates Source Filesin aVariant Directory Tre€coevvvveviiiieiiiieiiiieciieeeeieeenn, 102
15.3. Telling SCons to Not Duplicate Source Filesin the Variant Directory Treeccocvvevevvvevinneennnnn. 102
15.4. The Vari ant Di 1 FUNCHIONiiiii et e e et e e e aeeeaeens 103
155. Using Vari ant Di r Withan SConscript File ..o 103
15.6. Using A 0b With Vari @nt Di I'couniii e e e e e e e e 104
Y - = U T o PO PPPRN 105
17. Internationalization and localization With QELEEXTcc.uiiiiiiiii i e 107
T = = = o 8 11 == 107
S T 0T o) L= o] = A 107
18. Wrting YOUr OWN BUILAEY'Soiiiiii et e e e e e e e e e e eaes 113
18.1. Writing Builders That Execute External COmMMAaNSco.uieiiieiiiiieiiiieciiieein e eei e e eeeens 113
18.2. Attaching aBuilder toaConstructi on Envi ronmentccocooveiiiiiiii i 113
18.3. Letting SCons Handle The File SUFfIXEScouuiiiiiii e 115
18.4. Builders That Execute Python FUNCLIONScouuiiiiiiiiii e e e e e 115
18.5. Builders That Create Actions USINg @ GENET @t OFivvvuciiiiciiii e e e e e e e 116
18.6. Builders That Modify the Target or Source ListsUsingan Em tterccoooeviiiiiiniiiiiiciiieeennnn, 117
18.7. Where To Put Your Custom Builders and TOOISoveiiuiiiiiiiiieeciis e 118

~

'—‘-' SCONS v

19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

Not Writing a Builder: the Command BUIlAErocooiiiiiiiiii e 121
Pseudo-Builders: the AdAMEthod fUNCLIONiiiiiiiiii e 123
LAY R g To TS o= T P 125
21.1. A SImple Scanner EXAMPIEoouniii e 125
21.2. Adding a search path to ascanner: Fi NndPat hDi I'Scoooviiiiiiiiiiic e, 126
Building From Code REPOSITONIEScivuiiiiiieiiii e e e e e e e e e e e e et e e e e e et e e e aaeeaanaees 128
22.1. The RePOSIi t OrY MENOiiiiiii e e e e e e e aens 128
22.2. Finding source fileS iN FEPOSITOMESc.uuiii i e e e e e e e s e e e e aaeees 128
22.3. Finding #i ncl ude fileSin rEPOSITONES ... ccvuuiiii e e e e 129
22.3.1. Limitations on #i ncl ude filesin repoSItoriesevvvieiiiiieie e 130

22.4. Finding the SConst ruct filein rePOSITONESuiiuii i e 131
22.5. Finding derived fileS in FEPOSITOMIESiuue i e e e e 131
22.6. Guaranteeing local CoPIes OF FIlESuu.iiii e 131
Multi-Platform Configuration (Autoconf FUNCEIONEIITY)evveiiiiiiiii e 133
PG T @ o] o) Ao 10 O @0]) = A= P 133
23.2. Checking for the Existence of Header Fil€Sco.uiiiiiiiii e 134
23.3. Checking for the Availability of @ FUNCHIONccuuiiiiiiii e 134
23.4. Checking for the Availability of aLibrarycooooiiiiiii 134
23.5. Checking for the Availability of at ypedef ..o 135
23.6. Checking the SIZ€ Of @ JalalYPE ...vuuiivn et e e e e e e e e e e eeen 135
23.7. Checking for the Presence of @ program ... oo iee e e e e e eens 136
23.8. Adding Your OWn CUStOM ChECKScivueiiiieiiii e e e e e e e e e e eaeas 136
23.9. Not Configuring When Cleaning TargelSeieuniiiiieiiiieeie e e e e e e e e e et e e e aens 138
(0ol o 1 oo I S 011 | = 139
24.1. Specifying the Shared Cache DITECIONYccuuiiiiiiiii e e e e e e aen 139
24.2. Keeping Build OULPUL CONSISEENTiiveiiiiiciii e e e e e e e e e e e e e e et e e eaneees 140
24.3. Not Using the Shared Cache for SpeCifiCc FIl€Socovuiiiiiiii e, 140
24.4. Disabling the Shared CaCheiiiiiiiii e 141
24.5. Populating a Shared Cache With Already-Built FIleScccooeiiiiiii e 141
24.6. Minimizing Cache Contention: the - - r andomOPLIONc.veviiiiiiiii e 142

F Y = S = = £ 144
= V7= =1] o PP 146
26.1. Building Java Class Files: the Java BUIlAErcooiiiiiiiiiii e 146
26.2. How SCons Handles Java DEPENOENCIESccuuiiiii e e e e e e 146
26.3. Building Java Archive (. j ar) Files: the Jar BuUilderccocoiiiiiiiiiii e, 147
26.4. Building C Header and Stub Files: the JavaHBuUIldercoooiiiiiiiiii e, 148
26.5. Building RMI Stub and Skeleton Class Files: the RM CBUIldErocoviiiiiiiiiiciceee, 149
MiSCEIlaNEOUS FUNCHONAIITYcovniiii e e e e e e e et e e e e aaeeeens 150
27.1. Verifying the Python Version: the Ensur ePyt honVer si on Functionccoooeiivevinenn. 150
27.2. Verifying the SCons Version: the Ensur eSConsVer si on Functionccceeeviievineevineenn, 150
27.3. Explicitly Terminating SCons While Reading SConscr i pt Files: the Exi t Function 151
27.4. Searching for Files: the Fi ndFi | @ FUNCLONooiiiiiii e 151
27.5. Handling Nested Lists: the Fl at t €n FUNCHONooiiiiiiiiii e e, 153
27.6. Finding the Invocation Directory: the Get LaunchDi r FUNCLiONccocoiiiviiiiiii e, 154
I o8 o] = 7o o) (] oo PSP 156
28.1. Why is That Target Being Rebuilt? the - - debug=expl ai n Optionccoocviveiiiiviiinciieeen, 156
28.2. What's in That Construction Environment? the Dunp Methodcccccooiiiiiiiiiii e 158
28.3. What Dependencies Does SCons Know About?the--tree Optionc.cccovveviiieiiiieiiineeiieeenn, 162
28.4. How is SCons Constructing the Command Lines It Executes? the - - debug=pr esub Option 168
28.5. Where is SCons Searching for Libraries? the - - debug=fi ndl i bs Optionccocevnnn. 168
28.6. Where is SCons Blowing Up? the - - debug=st acktrace Optioncccoeeevvieiiiiierinnennnn. 169
28.7. How is SCons Making Its Decisions? the - - t asknmast ertrace Optionccccccoeveviieeinnn, 169
28.8. Watch SCons prepare targets for building: the - - debug=pr epare Optionccceeevvnnn. 171
28.9. Why is afile disappearing? the --debug=duplicate Optioncccoevviiiiiiiiiiii e 171

Iy
=== SCONS vi

L = 010 L= PP 228
(O I To £ PRRP 253
D. Functions and Environment MEINOGScouuiiiiiiiiiiii e e e ens 267
| o =g To [T 0o R @0 T g N I S T 301

Iy
=== SCONS vii

List of Examples

E.1. Wildcard globbing to create alist of filenamesoooviiiiiiii e 301
E.2. Filename extension SUDSHITULIONccouuuiiiiiiiiii ettt e e 301
E.3. Appending a path prefix to alist of filleNamMEeScoouuiiiiiii e 301
E.4. Substituting a path prefix With another 0N ..o e 301
E.5. Filtering a filename list to exclude/retain only a specific set of eXtensionscocviviiiiiiineeiiiin e, 301
E.6. The "backtick function": run a shell command and capture the QUIPULccouuieiiiiiiiiiiiiiieceiieeees 301
E.7. Generating source code: how code can be generated and used by SCONSoeviiiiiiiiiiiiiieiiii e, 302
~

'—‘—' SCONS viii

SCons Principles

Preface

Thank you for taking the time to read about SCons. SCons is a next-generation software construction tool, or make
tool--that is, a software utility for building software (or other files) and keeping built software up-to-date whenever
the underlying input files change.

Themost distinctivething about SConsisthat itsconfiguration filesare actually scripts, written in the Python program-
ming language. Thisisin contrast to most alternative build tools, which typically invent a new language to configure
the build. SCons still has alearning curve, of course, because you have to know what functions to call to set up your
build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. Thisis
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles

There are afew overriding principles we try to live up to in designing and implementing SCons:

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance alittle.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SConstriesto do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In anutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. A Caveat About This Guide's Completeness

One word of warning as you read through this Guide: Like too much Open Source software out there, the SCons
documentation isn't always kept up-to-date with the available features. In other words, there's a lot that SCons can
do that isn't yet covered in this User's Guide. (Come to think of it, that also describes a lot of proprietary software,
doesn't it?)

Although this User's Guide isn't as complete as we'd like it to be, our development process does emphasize making
surethat the SCons man pageiskept up-to-date with new features. So if you'retrying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
pageto seeif theinformation is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

Iy
=== SCONS iX

Acknowledgements

3. Acknowledgements

SCons would not exist without a lot of help from a lot of people, many of whom may not even be aware that they
helped or served asinspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Constool which Bob first rel eased to the world back around 1996. Bob'swork on Cons classic provided the underlying
architecture and model of specifying a build configuration using areal scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time peopl e have contributed over the past few years. The "coreteam™ of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons avastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph'swork on the Configureinfrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Special thanks to David Snopek for contributing his underlying "Autoscons' code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that heinitially released it under the GPL and SCons s released under aless-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with arobust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons
implementation, but for the interface itself.

4, Contact

The best way to contact people involved with SCons, including the author, is through the SCons mailing lists.
If you want to ask general questions about how to use SCons send email to scons- user s@cons. or g.
If you want to contact the SCons development community directly, send email to scons- dev@cons. or g.

If you want to receive announcements about SCons, jointhelow-volumeannounce@cons. ti gri s. or g mailing
list.

Iy
=== SCONS X

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons on your system, and building SCons if you
don't have a pre-built package available (or ssimply prefer the flexibility of building it yourself). Before that, however,
this chapter will also describe the basic steps involved in installing Python on your system, in case that is necessary.
Fortunately, both SCons and Python are very easy to install on almost any system, and Python already comesinstalled
on many systems.

1.1. Installing Python

Because SCons is written in Python, you must obviously have Python installed on your system to use SCons. Before
you try to install Python, you should check to see if Python is already available on your system by typing pyt hon -
V (capital 'V') or pyt hon --ver si on at your system's command-line prompt.

$ python -V
Pyt hon 2.5.1

And on a Windows system with Python installed:

C.\>python -V
Pyt hon 2.5.1

If Pythonisnot installed onyour system, you will seean error message stating something like " command not found” (on
UNIX or Linux) or "'python’ is not recognized as an internal or external command, operable progam or batch file" (on
Windows). In that case, you need to install Python before you can install SCons.

The standard location for information about downloading and installing Python is http://www.python.org/downl oad/.
See that page for information about how to download and install Python on your system.

SConswill work with any 2.x version of Python from 2.7 on; 3.0 and later are not yet supported. If you need to install
Python and have a choice, we recommend using the most recent 2.x Python version available. Newer Pythons have
significant improvements that help speed up the performance of SCons.

http://www.python.org/download/

Installing SCons From Pre-Built Packages

1.2. Installing SCons From Pre-Built Packages

SCons comes pre-packaged for installation on a number of systems, including Linux and Windows systems. Y ou do
not need to read this entire section, you should need to read only the section appropriate to the type of system you're
running on.

1.2.1. Installing SCons on Red Hat (and Other RPM-
based) Linux Systems

SCons comes in RPM (Red Hat Package Manager) format, pre-built and ready to install on Red Hat Linux, Fedora,
or any other Linux distribution that uses RPM. Y our distribution may already have an SCons RPM built specifical-
ly for it; many do, including SUSE, Mandrake and Fedora. You can check for the availability of an SCons RPM
on your distribution’'s download servers, or by consulting an RPM search site like http://www.rpmfind.net/ or http://
rpm.pbone.net/.

If your distribution supports installation via yum, you should be able to install SCons by running:
yuminstall scons

If your Linux distribution does not aready have a specific SCons RPM file, you can download and install from the
generic RPM provided by the SCons project. Thiswill install the SCons script(s) in/ usr / bi n, and the SConslibrary
modulesin/ usr/ i b/ scons.

Toinstall from the command line, simply download the appropriate . r pmfile, and then run:
rpm - Wh scons-2. 4. 1-1. noarch. rpm

Or, you can use agraphical RPM package manager. Seeyour package manager application's documentation for specific
instructions about how to use it to install a downloaded RPM.

1.2.2. Installing SCons on Debian Linux Systems

Debian Linux systems use a different package management format that also makesit very easy to install SCons.

If your system is connected to the Internet, you can install the latest official Debian package by running:

apt-get install scons

1.2.3. Installing SCons on Windows Systems

SCons provides a Windows installer that makes installation extremely easy. Download the
scons-2. 4. 1. wi n32. exe file from the SCons download page at http://www.scons.org/download.php. Then all
you need to do is execute the file (usually by clicking onitsicon in Windows Explorer). These will take you through
asmall sequence of windows that will install SCons on your system.

Iy
=== SCONS 2

http://www.rpmfind.net/
http://rpm.pbone.net/
http://rpm.pbone.net/
http://www.scons.org/download.php

Building and Installing SCons on Any System

1.3. Building and Installing SCons on Any Sys-
tem

If apre-built SCons package is not available for your system, then you can still easily build and install SCons using
the native Python di st ut i | s package.

Thefirst step isto download either thescons- 2. 4. 1. tar. gz orscons- 2. 4. 1. zi p, which are available from
the SCons download page at http://www.scons.org/downl oad.html.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create adirectory called scons- 2. 4. 1, usualy in your local directory. Then change your working directory to that
directory and install SCons by executing the following commands:

cd scons-2.4.1
python setup.py install

This will build SCons, install the scons script in the python which is used to run the setup.py's scripts directory
(/usr/1local /binorC: \Python25\ Scri pts), and will install the SCons build engine in the corresponding
library directory for the python used (/ usr /1 ocal / 1i b/ scons or C. \ Pyt hon25\ scons). Because these are
system directories, you may need root (on Linux or UNIX) or Administrator (on Windows) privilegesto install SCons
like this.

1.3.1. Building and Installing Multiple Versions of SCons
Side-by-Side

The SConsset up. py script has some extensionsthat support easy installation of multiple versions of SConsin side-

by-side locations. This makes it easier to download and experiment with different versions of SCons before moving
your official build processto a new version, for example.

Toinstall SConsin aversion-specific location, add the - - ver si on- | i b option when you call set up. py:
python setup.py install --version-lib

This will install the SCons build engineinthe / usr/1i b/ scons-2. 4.1 or C.\ Pyt hon25\ scons-2.4.1
directory, for example.

If youusethe- - ver si on-1i b option the first time you install SCons, you do not need to specify it each time you
install anew version. The SConsset up. py script will detect the version-specific directory name(s) and assume you
want to install all versionsin version-specific directories. Y ou can override that assumption in the future by explicitly
specifying the - - st andal one- 1 i b option.

1.3.2. Installing SCons in Other Locations

You can install SConsin locations other than the default by specifying the - - pr ef i x= option:

python setup.py install --prefix=/opt/scons

Iy
=== SCONS 3

http://www.scons.org/download.html

Building and Installing SCons Without Administrative
Privileges

Thiswould install the scons scriptin/ opt / scons/ bi n and the build enginein/ opt / scons/ | i b/ scons,

Note that you can specify both the - - pr ef i x=and the - - ver si on- | i b options at the same type, in which case
set up. py will install the build engine in a version-specific directory relative to the specified prefix. Adding - -
ver si on- | i b tothe above example would install the build enginein/ opt/ scons/ 1 i b/ scons-2. 4. 1.

1.3.3. Building and Installing SCons Without Administra-
tive Privileges

If you don't havetheright privilegesto install SConsin asystem location, smply usethe- - pr ef i x=optiontoinstall
it in alocation of your choosing. For example, to install SCons in appropriate locations relative to the user's $HOVE
directory, the scons script in $SHOVE/ bi n and the build enginein $SHOVE/ | i b/ scons, simply type:

$ python setup.py install --prefix=$HOVE

You may, of course, specify any other location you prefer, and may use the - - ver si on- 1 i b option if you would
liketo install version-specific directories relative to the specified prefix.

This can also be used to experiment with a newer version of SCons than the oneinstalled in your system locations. Of
course, the location in which you install the newer version of the scons script ($HOVE/ bi n in the above example)
must be configured in your PATH variable before the directory containing the system-installed version of thescons
script.

Iy
=== SCONS 4

2 Simple Builds

In thischapter, you will see several examplesof very simple build configurations using SCons, which will demonstrate
how easy it is to use SCons to build programs from several different programming languages on different types of
systems.

2.1. Building Simple C / C++ Programs

Here's the famous "Hello, World!" programin C:

i nt
mai n()
{
printf("Hello, world!\n");
}

And here's how to build it using SCons. Enter the following into afile named SConst r uct :

Program(' hel |l 0. c")

This minimal configuration file gives SCons two pieces of information: what you want to build (an executable pro-
gram), and the input file from which you want it built (the hel | o. c file). Pr ogr amisabuilder_method, a Python
call that tells SCons that you want to build an executable program.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

On aWindows system with the Microsoft Visual C++ compiler, you'll see something like:

Building Object Files

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

First, notice that you only need to specify the name of the source file, and that SCons correctly deduces the names of
the object and executable files to be built from the base of the source file name.

Second, notice that the same input SConst r uct file, without any changes, generates the correct output file names
on both systems: hel | 0. 0 and hel | 0 on POSIX systems, hel | 0. obj and hel | 0. exe on Windows systems.
Thisisasimple example of how SCons makes it extremely easy to write portable software builds.

(Note that we won't provide duplicate side-by-side POSIX and Windows output for al of the examplesin this guide;
just keep in mind that, unless otherwise specified, any of the examples should work equally well on both types of
systems.)

2.2. Building Object Files

The Pr ogr ambuilder method is only one of many builder methods that SCons provides to build different types of
files. Another isthe Obj ect builder method, which tells SCons to build an object file from the specified sourcefile:

oject (' hello.c")

Now when you runthe scons command to build the program, it will build just thehel | 0. o object file on aPOSIX
system:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

scons: done buil ding targets.

Andjustthehel | 0. obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
scons: done buil ding targets.

2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Pr ogr amand Obj ect builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the. j ava fileslive:

Iy
=== SCONS 6

Cleaning Up After aBuild

Java(' cl asses', 'src')

If the sr ¢ directory containsasingle hel | o. j ava file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

javac -d classes -sourcepath src src/hello.java
scons: done buil ding targets.

WEe'll cover Javabuildsin more detail, including building Java archive (. j ar) and other types of file, in Chapter 26,
Java Builds.

2.4. Cleaning Up After a Build

When using SCons, it is unnecessary to add special commands or target names to clean up after a build. Instead, you
simply usethe - ¢ or - - ¢l ean option when you invoke SCons, and SCons removes the appropriate built files. So if
we build our example above and then invoke scons - ¢ afterwards, the output on POSIX looks like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

% scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cleaning targets ..

Renoved hell o. o

Rermoved hel | o

scons: done cl eani ng targets.

And the output on Windows looks like:

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
link /nologo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.
C.\>scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved hel | o. obj

Rermoved hel | 0. exe

Iy
=== SCONS 7

The SConst r uct File

scons: done cl eani ng targets.

Notice that SCons changes its output to tell you that it is Cl eaning targets ... and done cl eaning
targets.

2.5. The SConst ruct File

If you're used to build systemslike Make you've already figured out that the SConst r uct fileisthe SConsequivalent
of aMakefi | e. Thatis, the SConst r uct fileistheinput file that SCons reads to control the build.

2.5.1. SConst ruct Files Are Python Scripts

Thereis, however, an important difference between an SConst r uct fileand aMakefi | e: the SConst ruct file
is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python isvery easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConst r uct fileusing
Python's commenting convention; that is, everything between a'# and the end of the line will be ignored:

Arrange to build the "hell o" program
Progran(' hello.c') # "hello.c" is the source file.

You'l see throughout the remainder of this Guide that being able to use the power of areal scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Functions Are Order-Independent

One important way in which the SConst r uct file is not exactly like a normal Python script, and is more like a
Makef i | e, isthat the order in which the SCons functions are called in the SConst r uct file does not affect the
order in which SCons actually builds the programs and object files you want it to build. In other words, when you
call the Pr ogr ambuilder (or any other builder method), you're not telling SCons to build the program at the instant
the builder method is called. Instead, you're telling SCons to build the program that you want, for example, a program
built from a file named hel | 0. ¢, and it's up to SCons to build that program (and any other files) whenever it's
necessary. (Well learn more about how SCons decides when building or rebuilding afile is necessary in Chapter 6,
Dependencies, below.)

SCons reflects this distinction between calling a builder method like Pr ogr amand actually building the program
by printing the status messages that indicate when it's "just reading" the SConst r uct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConst r uct file, and when SConsiis actually executing the commands or other actions to build the necessary files.

Let's clarify thiswith an example. Python hasapr i nt statement that prints a string of characters to the screen. If we
put pri nt statements around our calls to the Pr ogr ambuilder method:

print "Calling Program('hello.c")"
Program(' hello.c")
print "Calling Progran('goodbye.c')"

4n programming parlance, the SConst r uct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Iy
=== SCONS 8

Making the SCons Output Less Verbose

Pr ogr am(' goodbye. c')
print "Finished calling Program)"”

Then when we execute SCons, we see the output from the pr i nt statementsin between the messages about reading
the SConscri pt files, indicating that that is when the Python statements are being executed:

% scons

scons: Readi ng SConscript files ...
Calling Progran('hello.c')

Cal I i ng Progran{' goodbye. c')

Fi ni shed cal I i ng Progrant)

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

Notice also that SCons built the goodbye program first, even though the "reading SConscr i pt " output shows that
wecaled Progran(' hel |l 0. c¢") firstinthe SConst r uct file.

2.6. Making the SCons Output Less Verbose

You've aready seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nologo /QUT: hel | 0. exe hel | 0. obj
enmbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

These messages emphasi ze the order in which SCons does itswork: all of the configuration files (generically referred
to as SConscri pt files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
- Qoption when invoking SCons:

C.\>scons -Q

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enmbedMani f est ExeCheck(target, source, env)

Because we want this User's Guide to focus on what SCons is actually doing, we're going to use the - Q option to
remove these messages from the output of all the remaining examplesin this Guide.

Iy
=== SCONS 9

3 Less Simple Things to Do
With Builds

In this chapter, you will see several examplesof very simple build configurations using SCons, which will demonstrate
how easy it is to use SCons to build programs from several different programming languages on different types of
systems.

3.1. Specifying the Name of the Target (Output)
File

You've seen that when you call the Pr ogr ambuilder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hel | 0. ¢ source file will
build an executable program named hel | 0 on POSIX systems, and an executable program named hel | 0. exe on
Windows systems:

Progran(' hello.c")

If you want to build a program with a different name than the base of the source file name, you simply put the target
file name to the | eft of the source file name:

Progran(' new_hello', '"hello.c")

(SConsrequiresthetarget file namefirst, followed by the source file name, so that the order mimics that of an assign-
ment statement in most programming languages, including Python: " pr ogr am = source files"))

Now SCons will build an executable program named new_hel | o when run on a POSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc -0 new hello hello.o

And SCons will build an executable program named new_hel | 0. exe when run on a Windows system:

C.\>scons -Q
cl /Fohello.obj /c hello.c /nol ogo

Compiling Multiple Source Files

link /nol ogo /QUT: new_hel | 0. exe hel |l 0. obj
enbedMani f est ExeCheck(target, source, env)

3.2. Compiling Multiple Source Files

Y ou've just seen how to configure SConsto compile a program from asingle sourcefile. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
filesin a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'filel.c', '"file2.c'])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 prog prog.o filel.o file2.0

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first sourcefilewaspr og. ¢, SConswill namethe resulting program pr og (or pr og. exe onaWindows system). If
you want to specify adifferent program name, then (as we've seen in the previous section) you slide the list of source
files over to the right to make room for the output program file name. (SCons puts the output file name to the left
of the source file names so that the order mimics that of an assignment statement: "program = source files'.) This
makes our example:

Progranm(' programi, ['prog.c', 'filel.c', 'file2.c'])

On Linux, abuild of this example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 programprog.o filel.o file2.0

Or on Windows:

C.\>scons -Q

cl /Fofilel.obj /c filel.c /nol ogo

cl /Fofile2.0obj /c file2.c /nol ogo

cl /Foprog.obj /c prog.c /nol ogo

link /nol ogo /QOUT: program exe prog.obj filel.obj file2.obj
enbedMani f est ExeCheck(target, source, env)

3.3. Making a list of files with 3 ob

You can aso use the @ ob function to find al files matching a certain template, using the standard shell pattern
matching characters *, ? and [abc] to match any of a, b or c. [! abc] isalso supported, to match any character
except a, b or ¢. This makes many multi-source-file builds quite easy:

Iy
=== SCONS 11

Specifying Single Files Vs. Lists of Files

Program(' programi, G ob('*.c'))

The SCons man page has more detailson using G ob with variant directories (see Chapter 16, Variant Builds, below)
and repositories (see Chapter 22, Building From Code Repositories, below), excluding somefiles and returning strings
rather than Nodes.

3.4. Specifying Single Files Vs. Lists of Files

We've now shown you two ways to specify the source for a program, one with alist of files:
Program('hello', ['filel.c', '"file2.c'])

And onewith asinglefile:

Program(' hell o', '"hello.c'")

Y ou could actually put asingle file namein alist, too, which you might prefer just for the sake of consistency:
Program(' hello', ['hello.c'])

SCons functionswill accept asingle file name in either form. In fact, internally, SCons treats all input aslists of files,
but allows you to omit the square brackets to cut down alittle on the typing when there's only a single file name.

I mportant

Although SCons functions are forgiving about whether or not you use astring vs. alist for asinglefile name,
Python itself is more strict about treating lists and strings differently. So where SCons allows either a string
or list:

The following two calls both work correctly:
Progran(' progranil', 'programl.c')
Progran(' progran', ['progranR.c'])

Trying to do "Python things' that mix strings and lists will cause errors or lead to incorrect results:

common_sources = ['filel.c', "file2.c']

THE FOLLOW NG | S | NCORRECT AND GENERATES A PYTHON ERRCR
BECAUSE I T TRIES TO ADD A STRING TO A LI ST:
Program(' progranil', comon_sources + 'progranil.c')

The foll owi ng works correctly, because it's adding two
lists together to make anot her |ist.
Program(' progran®', comon_sources + ['progran?.c'])

Iy
=== SCONS 12

Making Lists of Files Easier to Read

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide a number of ways to make sure that the SConst r uct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Spl i t function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turnsit into alist of separate file
names. Using the Spl i t function turns the previous example into:

Progranm(' programi, Split('main.c filel.c file2.c'))

(If you're already familiar with Python, you'll have realized that thisis similar tothespl i t () method in the Python
standard st r i ng module. Unlikethespl i t () member function of strings, however, the Spl i t function does not
require a string as input and will wrap up a single non-string object in alist, or return its argument untouched if it's
already alist. This comesin handy as away to make sure arbitrary values can be passed to SCons functions without
having to check the type of the variable by hand.)

Putting the call to the Spl i t function inside the Pr ogr amcall can also be alittle unwieldy. A more readable alter-
native is to assign the output from the Spl it call to a variable name, and then use the variable when calling the
Pr ogr amfunction:

src_files = Split('main.c filel.c file2.c")
Program(' program, src_files)

Lastly, the Spl i t function doesn't care how much white space separates the file names in the quoted string. This
allowsyou to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""main.c
filel.c
file2.c""")

Progran(' program, src_files)

(Note in this example that we used the Python "triple-quote” syntax, which allows a string to contain multiple lines.
The three quotes can be either single or double quotes.)

3.6. Keyword Arguments

SConsalso alowsyou toidentify the output file and input sourcefiles using Python keyword arguments. The output file
isknown asthe target, and the sourcefile(s) are known (logically enough) asthe source. The Python syntax for thisis:

src_files = Split('main.c filel.c file2.c')
Program(target = 'program, source = src_files)

Because the keywords explicitly identify what each argument is, you can actually reverse the order if you prefer:

Iy
=== SCONS 13

Compiling Multiple Programs

src_files = Split('"min.c filel.c file2.c")
Program(source = src_files, target = 'prograni)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programswithin the same SConst r uct file, smply call the Pr ogr ammethod multiple
times, once for each program you need to build:

Progran(' f oo.c')
Program('bar', ['barl.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q

cc -0 barl.o -c barl.c
CC -0 bar2.0 -c bar2.c
cc -0 bar barl.o bar2.o0
cc -o foo.o -c foo.c

cc -o foo foo.o

Notice that SCons does not necessarily build the programsin the same order in which you specify them in the SCon-
st ruct file. SCons does, however, recognize that the individual object files must be built before the resulting pro-
gram can be built. We'll discuss thisin greater detail in the "Dependencies’ section, below.

3.8. Sharing Source Files Between Multiple
Programs

It's common to re-use code by sharing source files between multiple programs. Oneway to do thisisto create alibrary
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programsis simply
to include the common filesin the lists of source files for each program:

Program(Split('foo.c conmonl.c conmon2.c'))
Program(' bar', Split('barl.c bar2.c comobnl.c comon2.c'))

SCons recognizes that the object files for the commonl. ¢ and cormon2. ¢ source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

cc -0 barl.0 -c barl.c

cc -0 bar2.0 -c bar2.c

cc -0 commpnl.o -c¢ commonl. c

Iy
=== SCONS 14

Sharing Source Files Between Multiple Programs

CC -0 comDNn2.0 -C conmobn2.c

cc -0 bar barl.o0 bar2.o0 conmpnl.o comDn2. 0
cc -o foo.o -c foo.c

cc -o foo foo.o compnl. o conmon2. o

If two or more programs share alot of common source files, repeating the common filesin the list for each program
can be a maintenance problem when you need to change the list of common files. Y ou can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

comon = ['comonl.c', 'common2.c']
foo files = ['foo.c'] + conmon
bar files = ['"barl.c', 'bar2.c'] + common

Program('foo', foo files)
Program(' bar', bar _files)

Thisisfunctionally equivalent to the previous example.

Iy
=== SCONS 15

4 Building and Linking with Li-
braries

It's often useful to organize large software projects by collecting parts of the software into one or morelibraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

Y ou build your own libraries by specifying Li br ar y instead of Pr ogr am
Library('foo', ['fl.c', '"f2.¢c', '"f3.c'])

SConsusesthe appropriatelibrary prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on al systems):

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0
ranlib |ibfoo.a

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nologo

lib /nologo /QUT:foo.lib f1.0bj f2.o0obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SConswill deduce onefrom the name of thefirst sourcefile specified, and SConswill add an appropriate
file prefix and suffix if you leave them off.

Building Libraries From Source Code or Object Files

4.1.1. Building Libraries From Source Code or Object
Files

The previous example shows building alibrary from alist of source files. Y ou can, however, aso givethelLi br ary
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object filesin the source list:

Library('foo', ['fl.c', '"f2.0', '"f3.¢c', 'f4.0'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0 f4.0
ranlib |ibfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built filesin alibrary.

4.1.2. Building Static Libraries Explicitly: the St ati cLi -
brary Builder

The Li br ary function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym St at i cLi br ary functioninstead of Li brary:

StaticLibrary('foo', ['fl.c', 'f2.¢c', 'f3.¢c'])

Thereisno functional difference betweenthe St at i cLi brary and Li br ary functions.

4.1.3. Building Shared (DLL) Libraries: the Shar edLi -
brary Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
Shar edLi br ary function:

Shar edLi brary(' foo', ['fl.c', 'f2.¢', 'f3.¢c'])

The output on POSIX:

% scons -Q

cc -o fl.os -c fl.c

cc -o f2.0s -c f2.¢c

cc -o f3.0s -c f3.c

cc -0 libfoo.so -shared f1.0s f2.0s f3.o0s

And the output on Windows:

Iy
=== SCONS 17

Linking with Libraries

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

link /nologo /dll /out:foo.dll /inplib:foo.lib f1.0bj f2.0bj f3.obj
RegSer ver Func(target, source, env)

enmbedMani f est D | Check(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the - shar ed option for a POSIX
compilation, and the/ dl | option on Windows.

4.2. Linking with Libraries

Usually, you build alibrary because you want to link it with one or more programs. Y ou link libraries with a program
by specifying the libraries in the $L1 BS construction variable, and by specifying the directory in which the library
will be found inthe $LI BPATH construction variable:

Library('foo', ['fl.c', '"f2.¢c', '"f3.¢c'])
Program(' prog.c', LIBS=['foo', 'bar'], LIBPATH=".")

Notice, of course, that you don't need to specify alibrary prefix (likel i b) or suffix (like. a or. |i b). SCons uses
the correct prefix or suffix for the current system.

On aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0
ranlib |ibfoo.a

CC -0 prog.o -c prog.c

CC -0 prog prog.o -L. -Ifoo -Ibar

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.obj /c f1l.c /nol ogo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

lib /nologo /QUT:foo.lib f1.0bj f2.0bj f3.o0bj

cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LIBPATH:. foo.lib bar.lib prog. obj
enbedMani f est ExeCheck(target, source, env)

Asusual, notice that SCons has taken care of constructing the correct command linesto link with the specified library
on each system.

Note also that, if you only have asingle library to link with, you can specify the library namein single string, instead
of aPython list, so that:

Program(' prog.c', LIBS=' foo', LIBPATH=".")

Iy
=== SCONS 18

Finding Libraries: the $LI BPATH Construction Variable

is equivaent to:
Program(' prog.c', LIBS=['foo0'], LIBPATH=".")

Thisissimilar to the way that SCons handles either a string or alist to specify a single source file.

4.3. Finding Libraries: the $LI1 BPATH Construc-
tion Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LI BPATH construction variable. $L1 BPATH consists of a list of
directory names, like so:

Program(' prog.c', LIBS = "'m,
LI BPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in asingle string, separated by the system-specific path separator character: acolon on POSIX systems:

LI BPATH = ' /usr/lib:/usr/local/lib'
or a semi-colon on Windows systems:
LI BPATH = 'C:\\lib; D:\\Ii b’

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q
CC -0 prog.o -c prog.c
CC -0 prog prog.o -L/usr/lib -L/usr/local/lib -Im

On aWindows system, a build of the above example would look like:
C.\>scons -Q
cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LI BPATH: \usr\lib /LIBPATH: \usr\local\lib mlib prog.obj
enbedMani f est ExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

Iy
=== SCONS 19

5 Node Objects

Internally, SConsrepresents all of thefilesand directoriesit knows about asNodes. Theseinternal objects (not object
files) can be used in avariety of waysto make your SConscr i pt files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes

All builder methods return alist of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Obj ect builder once for each object file, specifying the desired options:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
nj ect (' goodbye. c', CCFLAGS=' - DGOODBYE')

One way to combine these object files into the resulting program would be to cal the Pr ogr ambuilder with the
names of the object files listed as sources:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
oj ect (' goodbye. ¢c', CCFLAGS=' - DGOODBYE')
Program([' hel l 0. 0', 'goodbye.o'])

The problem with specifying the names as stringsisthat our SConst r uct fileisno longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hel | 0. obj and
goodbye. obj , not hel | 0. 0 and goodbye. o.

A better solution is to assign the lists of targets returned by the calls to the Obj ect builder to variables, which we
can then concatenate in our call to the Pr ogr ambuilder:

hello_ list = Object(' hello.c', CCFLAGS='-DHELLO)
goodbye |ist = Object (' goodbye.c', CCFLAGS='- DGOODBYE')
Program(hell o_list + goodbye |ist)

Explicitly Creating File and Directory Nodes

Thismakes our SConst r uct file portable again, the build output on Linux looking like:

% scons -Q

cc -0 goodbye.o -c - DGOODBYE goodbye. c
cc -0 hello.o -c -DHELLO hello.c

cc -0 hello hello.o goodbye. o

And on Windows:

C.\>scons -Q

cl / Fogoodbye. obj /c goodbye.c - DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /QUT: hel | 0. exe hel | 0. obj goodbye. obj
enmbedMani f est ExeCheck(target, source, env)

WEe'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes

It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supportsFi | e and Di r functions that, respectively, return afile or directory Node:

hello c = File('hello.c")
Program(hel | o_c)

classes = Dir('classes')
Java(cl asses, 'src')

Normally, you don't need to call Fi | e or Di r directly, because calling a builder method automatically trests strings
as the names of files or directories, and translates them into the Node objects for you. The Fi | e and Di r functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in adirectory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it'safile or adirectory. For those situations, SCons also supports an Ent r y function, which returns a Node that can
represent either afile or adirectory.

xyzzy = Entry('xyzzy')

Thereturned xyzzy Node will be turned into afile or directory Node the first timeit is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names

One of the most common things you can do with aNode is useit to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call isalist of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConst r uct file:

Iy
=== SCONS 21

Using aNode's File Name as a String

object list = Cbject('hello.c")

program|ist = Progran(object list)

print "The object file is:", object |ist[O]
print "The programfile is:", programlist[O]

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The programfile is: hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

And the following file names on a Windows system:

C.\>scons -Q

The object file is: hello.obj

The programfile is: hello.exe

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

Note that in the above example, the obj ect _|i st [0] extractsan actual Node object from the list, and the Python
print statement convertsthe object to astring for printing.

5.4. Using a Node's File Name as a String

Printing aNode's name as described in the previous section works because the string representation of aNode object
is the name of thefile. If you want to do something other than print the name of the file, you can fetch it by using the
builtin Python st r function. For example, if you want to use the Python o0s. pat h. exi st s to figure out whether
afile exists whilethe SConst r uct fileisbeing read and executed, you can fetch the string as follows:

i mport os.path
programlist = Progran(' hello.c')
program nane = str(programlist[0])
i f not os.path. exists(program nane):
print program name, "does not exist!"

Which executes as follows on a POSIX system:

% scons -Q

hell o does not exi st!

cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. Get Bui | dPat h: Getting the Path From a
Node or String

env. Get Bui | dPat h(file_or _Iist) returnsthe path of aNode or astring representing apath. It can also take
alist of Nodes and/or strings, and returns the list of paths. If passed asingle Node, the result is the same as calling

Iy
=== SCONS 22

Get Bui | dPat h: Getting the Path From aNode or
String

st r (node) (seeabove). Thestring(s) can have embedded construction variables, which are expanded asusual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Envi r onment (VAR="val ue")
n=Fil e("foo.c")
print env. GetBuildPath([n, "sub/dir/$VAR'])

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: ~.' is up to date.

Thereis also afunction version of Get Bui | dPat h which can be called without an Envi r onnent ; that uses the
default SCons Envi r onment to do substitution on any string arguments.

Iy
=== SCONS 23

6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SConsisto
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our smple
hel | o example:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

scons: ~.' is up to date

The second time it is executed, SCons realizes that the hel | o program is up-to-date with respect to the current
hel | o. ¢ sourcefile, and avoidsrebuildingit. Y ou can seethismore clearly by namingthehel | o program explicitly
on the command line:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Note that SConsreports™. ..is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Deci der Function

Another aspect of avoiding unnecessary rebuilds is the fundamental build tool behavior of rebuilding things when
an input file changes, so that the built software is up to date. By default, SCons keeps track of this through an MD5
si gnat ur e, or checksum, of the contents of each file, although you can easily configure SCons to use the modifi-
cation times (or time stamps) instead. Y ou can even specify your own Python function for deciding if an input file
has changed.

Using MD5 Signatures to Decide if a File Has Changed

6.1.1. Using MD5 Signatures to Decide if a File Has
Changed

By default, SCons keeps track of whether afile has changed based on an MD5 checksum of the file's contents, not the
file's modification time. This means that you may be surprised by the default SCons behavior if you are used to the
Make convention of forcing arebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% touch hello.c

% scons -Q hello

scons: " hello' is up to date

Even though the file's modification time has changed, SCons realizes that the contents of the hel | o. ¢ file have
not changed, and therefore that the hel | o program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% [CHANGE THE CONTENTS OF hel |l o. c]
% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Note that you can, if you wish, specify this default behavior (MD5 signatures) explicitly using the Deci der function
asfollows:

Program(' hello.c")
Deci der (" MD5'")

You can also usethestring' cont ent' asasynonymfor' MD5' when calling the Deci der function.

6.1.1.1. Ramifications of Using MD5 Signatures

Using MD5 signaturesto decideif an input file has changed has one surprising benefit: if asourcefile hasbeen changed
in such away that the contents of the rebuilt target file(s) will be exactly the same as the last time the file was built,
then any "downstream” target files that depend on the rebuilt-but-not-changed target file actually need not be rebuilt.

So if, for example, a user were to only change acomment in ahel | o. c file, then the rebuilt hel | o. o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hel | o program as follows:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE A COWENT I N hel |l o. c]
% scons -Q hello

cc -o hello.o -c hello.c

scons: " hello' is up to date

Iy
=== SCONS 25

Using Time Stampsto Decide If a File Has Changed

In essence, SCons "short-circuits' any dependent builds when it realizes that a target file has been rebuilt to exactly
the samefile asthe last build. This does take some extra processing time to read the contents of thetarget (hel | 0. 0)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed

If you prefer, you can configure SCons to use the modification time of afile, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time atarget has been built.

Themost familiar way to usetime stampsistheway Make does: that is, have SCons decide that atarget must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Deci der function asfollows:

oject (' hello.c")
Deci der (' ti mest anp- newer')

This makes SCons act like Make when afile's modification time is updated (using the touch command, for example):

% scons -Q hello.o

cc -0 hello.o -c hello.c
% touch hello.c

% scons -Q hello.o

cc -0 hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string ' make' asa
synonym for' ti mest anp- newer' when caling the Deci der function:

oject (' hello.c")
Deci der (' make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually stores information about the source files time stamps whenever atarget is built, it can handle
this situation by checking for an exact match of the sourcefile time stamp, instead of just whether or not the sourcefile
is newer than the target file. To do this, specify the argument ' t i mest anp- mat ch' when calling the Deci der
function:

oject (' hello.c")
Deci der (' ti mestanp-mat ch')

When configured this way, SCons will rebuild atarget whenever a source file's modification time has changed. So if
weusethet ouch -t option to change the modification time of hel | 0. ¢ to an old date (January 1, 1989), SCons
will still rebuild the target file:

Iy
=== SCONS 26

Deciding If a File Has Changed Using Both MD Signa-
tures and Time Stamps

% scons -Q hello.o

cc -o hello.o -c hello.c

% touch -t 198901010000 hell o.c
% scons -Q hello.o

cc -o hello.o -c hello.c

In genera, the only reason to prefer t i mest anp- newer instead of t i mest anp- mat ch, would be if you have
some specific reason to require this Make-like behavior of not rebuilding atarget when an otherwise-modified source
fileisolder.

6.1.3. Deciding If a File Has Changed Using Both MD Sig-
natures and Time Stamps

As a performance enhancement, SCons provides away to use MD5 checksums of file contents but to read those con-
tents only when the file's timestamp has changed. To do this, call the Deci der function with' MD5-t i nest anp'
argument as follows:;

Program(' hello.c")
Deci der (' MD5-ti nest anp')

So configured, SCons will still behave like it does when using Deci der (' MD5') :

% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o
% touch hello.c
% scons -Q hello
scons: " hello' is up to date
%edit hello.c
[CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of the hel | o. c file, not by opening it and performing an MD5 checksum
calcuation on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Deci der (' MD5-ti mest anp') isthat SConswill not rebuild atarget fileif asource
file was modified within one second of the last time SCons built the file. While most developers are programming,
thisisn't a problem in practice, since it's unlikely that someone will have built and then thought quickly enough to
make a substantive change to a source file within one second. Certain build scripts or continuous integration tools
may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible, in
which case use of Deci der (' MD5-ti mest anp') may not be appropriate.

6.1.4. Writing Your Own Custom Deci der Function

The different string values that we've passed to the Deci der function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usualy a source file)

Iy
=== SCONS 27

Writing Y our Own Custom Deci der Function

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild alot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain alot of data, we want to open theinput file only if itstimestamp has changed. This could be donewith acustom
Deci der function that might look something like this:

Progran(' hello.c")
def decide_if _changed(dependency, target, prev_ni):
if self.get tinmestanp() != prev_ni.tinestanp:
dep = str(dependency)
tgt = str(target)
if specific _part_of file has_changed(dep, tgt):
return True
return Fal se
Deci der (deci de_i f _changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the t ar get . Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Python st r () .

Thethird argument, pr ev_ni , isan object that holds the signature or timestamp information that was recorded about
the dependency the last timethetarget was built. A pr ev_ni object can hold different information, depending on the
type of thing that the dependency argument represents. For normal files, the pr ev_ni object has the following
attributes:
.csig
The content signature, or MD5 checksum, of the contents of the dependency file the list time thet ar get
was built.

Size
The sizein bytes of the dependency filethelist time the target was built.

timestamp
The modification time of thedependency filethelist timethet ar get was built.

Note that ignoring some of the argumentsin your custom Deci der function isa perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

Another thing to look out for is the fact that the three attributes above may not be present at the time of the first run.
Without any prior build, no targets have been created and no . sconsi gn DB file exists yet. So, you should always
check whether the pr ev_ni attributein question is available.

We finally present a small example for acsi g-based decider function. Note how the signature information for the
dependency filehasto get initialized viaget _csi g during each function call (thisis mandatory!).
env = Environment ()

def config file_decider(dependency, target, prev_ni):
i mport os.path

W always have to init the .csig value...

Iy
=== SCONS 28

Mixing Different Ways of Deciding If aFile Has
Changed

dep_csi g = dependency. get _csi g()
.csig may not exist, because no target was built yet..
if "csig" not in dir(prev_ni):
return True
Target file may not exist yet
if not os.path.exists(str(target.abspath)):
return True
if dep_csig !'= prev_ni.csig:
Some change on source file => update installed one
return True
return Fal se

def update file():
f = open("test.txt","a")
f.wite("sone |[ine\n")
f.close()

update file()

Activate our own decider function
env. Deci der (config file_decider)

env.Install ("install","test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed

The previous examples have all demonstrated calling the global Deci der function to configure all dependency deci-
sionsthat SCons makes. Sometimes, however, you want to be able to configure different decision-making for different
targets. When that's necessary, you can usetheenv. Deci der method to affect only the configuration decisions for
targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using MD5 checkums and another using file modification
times from the same source we might configure it this way:

envl Envi ronnment (CPPPATH = ['."'])

env2 envl. Cl one()

env2. Deci der (' ti mest anp-match')

envl. Progran(' prog-MD5', 'programl.c')

env2. Progran{' prog-ti mestanp', 'progran®.c')

If both of the programsinclude the samei nc. h file, then updating the modification time of i nc. h (using the touch
command) will cause only pr og-ti mest anp to be rebuilt:

% scons -Q

cc -0 progranil.o -c -1. progranil.c
cCc -0 prog-MD5 programtl. o
cc -0 progranR.o -c -1. progran®.c

CC -0 prog-timestanp progran?. o
% touch inc.h
% scons -Q

Iy
=== SCONS 29

Older Functions for Deciding When an Input File Has
Changed

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

6.2. Older Functions for Deciding When an In-
put File Has Changed

SCons still supports two functions that used to be the primary methods for configuring the decision about whether or
not an input file has changed. These functions have been officialy deprecated as SCons version 2.0, and their use is
discouraged, mainly because they rely on a somewhat confusing distinction between how source files and target files
are handled. These functions are documented here mainly in case you encounter them in older SConscr i pt files.

6.2.1. The Sour ceSi gnat ur es Function

TheSour ceSi gnat ur es functionisfairly straightforward, and supportstwo different argument valuesto configure
whether source file changes should be decided using MD5 signatures:

Program(' hello.c")
Sour ceSi gnat ures(' MD5')

Or using time stamps:

Progran(' hello.c')
Sour ceSi gnatures('tinestanp')

These are roughly equivalent to specifying Deci der (' MD5') or Deci der (' ti nest anp-match'), respec-
tively, although it only affects how SCons makes decisions about dependencies on source files--that is, files that are
not built from any other files.

6.2.2. The Tar get Si gnat ur es Function

The Tar get Si gnat ur es function specifies how SCons decides when atarget file has changed when it is used as
a dependency of (input to) another target--that is, the Tar get Si gnat ur es function configures how the signatures
of "intermediate” target files are used when deciding if a"downstream” target file must be rebuilt. !

The Tar get Si gnat ur es function supports the same' MD5' and ' ti nest anp’ argument values that are sup-
ported by the Sour ceSi gnat ur es, with the same meanings, but applied to target files. That is, in the example:

Program(' hello.c")
Tar get Si gnat ures(' MD5')

The MD5 checksum of thehel | 0. o target filewill be used to decideif it has changed since the last time the "down-
stream” hel | o target file was built. And in the example:

! This easily-overlooked distinction between how SCons decides if the target itself must be rebuilt and how the target is then used to decide if
adifferent target must be rebuilt is one of the confusing things that has led to the Tar get Si gnat ur es and Sour ceSi gnat ur es functions
being replaced by the simpler Deci der function.

Iy
=== SCONS 30

Implicit Dependencies: The $CPPPATH Construction
Variable

Program(' hello.c")
Tar get Si gnatures('ti mestanp')

The modification time of the hel | 0. o target file will be used to decide if it has changed since the last time the
"downstream” hel | o target file was built.

The Tar get Si ghat ur es function supports two additional argument values: ' source' and ' bui l d' . The
' sour ce' argument specifiesthat decisionsinvolving whether target fileshave changed since apreviousbuild should
use the same behavior for the decisions configured for source files (using the Sour ceSi gnat ur es function). So
in the example:

Program(' hello.c")
Tar get Si gnat ures(' source')
Sour ceSi gnat ures('tinestanp')

All files, both targets and sources, will use modification times when deciding if an input file has changed since the
last time atarget was built.

Lastly, the' bui | d* argument specifiesthat SCons should examine the build status of atarget file and awaysrebuild
a"downstream" target if the target file wasitself rebuilt, without re-examining the contents or timestamp of the new-
ly-built target file. If the target file was not rebuilt during thisscons invocation, then the target file will be examined
the same way as configured by the Sour ceSi gnat ur e call to decideif it has changed.

Thismimicsthebehavior of bui | d si gnat ur es inearlier versionsof SCons. A bui | d si gnat ur e re-combined
signatures of all theinput files that went into making the target file, so that the target fileitself did not need to have its
contents read to compute an MD5 signature. This can improve performance for some configurations, but is generally
not as effective asusing Deci der (* MD5-ti mestanmp') .

6.3. Implicit Dependencies: The $CPPPATH Con-
struction Variable

Now suppose that our "Hello, World!" program actually has an #i ncl ude line to include the hel | o. h filein the
compilation:

#i ncl ude <hell 0. h>

i nt
mai n()
{
printf("Hello, %!\n", string);
}

And, for completeness, the hel | o. h filelooks like this:

#define string “wor | d"

In this case, we want SCons to recognize that, if the contents of the hel | 0. h file change, the hel | o program must
be recompiled. To do this, we need to modify the SConst r uct filelike so:

Iy
=== SCONS 31

Caching Implicit Dependencies

Program(' hello.c', CPPPATH = '.")

The $CPPPATH value tells SCons to ook in the current directory (* . ') for any filesincluded by C sourcefiles(. ¢
or . h files). With this assignment in the SConst r uct file:

% scons -Q hello

cc -0 hello.o -¢c -1. hello.c

cc -o hello hello.o

% scons -Q hello

scons: " hello' is up to date

% [CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello

cc -0 hello.o -¢c -1. hello.c

cc -o hello hello.o

First, natice that SCons added the - | . argument from the $CPPPATH variable so that the compilation would find
thehel | 0. h filein thelocal directory.

Second, realize that SCons knows that the hel | o program must be rebuilt because it scans the contents of the
hel | o. c filefor the#i ncl ude linesthat indicate another file is being included in the compilation. SCons records
these as implicit dependencies of the target file, Consequently, when the hel | 0. h file changes, SCons realizes that
the hel | o. ¢ file includes it, and rebuilds the resulting hel | o program that depends on both the hel | 0. ¢ and
hel | 0. hfiles.

Like the $L1 BPATH variable, the $CPPPATH variable may be alist of directories, or a string separated by the sys-
tem-specific path separation character (*:' on POSIX/Linux, ;' on Windows). Either way, SCons creates the right com-
mand-line options so that the following example:

Program(' hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like thison POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -linclude -1/home/project/inc hello.c
cc -0 hello hello.o

And like this on Windows:

C.\>scons -Q hell o. exe

cl /Fohello.obj /c hello.c /nologo /1include /I\home\project\inc
link /nologo /QUT: hel | 0. exe hell o. obj

enbedMani f est ExeCheck(target, source, env)

6.4. Caching Implicit Dependencies

Scanning each file for #i ncl ude lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually avery small percentage of the overall time spent on the build. Y ou're most
likely to notice the scanning time, however, when you rebuild all or part of alarge system: SConswill likely take some
extratime to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

Iy
=== SCONS 32

The--inplicit-deps-changed Option

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developerswaiting for their builds to finish. Consequently, SCons lets you cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the - - i npl i ci t - cache option on
the command line:

% scons -Q --inplicit-cache hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

If you don't want to specify - -i npli cit-cache on the command line each time, you can make it the default
behavior for your build by setting thei npl i cit _cache optioninan SConscri pt file:

SetOption('inplicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the - -i npl i ci t - cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not those de-
pendenciesare still correct. Specifically, thismeans- - i npl i ci t - cache instructs SConsto not rebuild " correctly"
in the following cases:

« When--inplicit-cache isused, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $LI BPATH,). This can lead to SCons not rebuilding afile if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

* When--inplicit-cacheisused, SConswill not detect if asame-named file has been added to adirectory that
is earlier in the search path than the directory in which the file was found last time.

6.4.1. The--inplicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out of date. Y ou can update them by running SConswiththe- - i npl i ci t - deps- changed
option:

% scons -Q --inplicit-deps-changed hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

In this case, SCons will re-scan al of the implicit dependencies and cache updated copies of the information.

6.4.2. The--inplicit-deps-unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached im-
plicit dependencies, even if the source files changed. This can speed up a build for example, when you have changed
your source files but know that you haven't changed any #i ncl ude lines. Inthiscase, you canusethe- - i npl i c-
i t-deps-unchanged option:

Iy
=== SCONS 33

Explicit Dependencies. the Depends Function

% scons -Q --inplicit-deps-unchanged hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Inthiscase, SConswill assumethat the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changesto sourcefiles, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.5. Explicit Dependencies: the Depends Func-
tion

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hell o = Progran(' hello.c')
Depends(hell o, 'other file")

% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date
% edit other file
[CHANGE THE CONTENTS OF ot her _fil e]
% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by a call to a Builder):

hell o = Progran(' hello.c')
goodbye = Progran(' goodbye. c')
Depends(hel | o, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello

cc -c goodbye.c -o goodbye. o
cc -0 goodbye goodbye. o

cc -c hello.c -0 hello.o

cc -0 hello hello.o

b4

SCONS 34

Dependencies From External Files: the Par seDepends
Function

6.6. Dependencies From External Files: the
Par seDepends Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit de-
pendencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#def i ne FOO HEADER <f 00. h>
#i ncl ude FOO HEADER

int main() {
return FQOG
}

% scons -Q

cc -0 hello.o -c -I. hello.c
cc -0 hello hello.o

% [CHANGE CONTENTS OF foo. h]
% scons -Q

scons: .' is up to date

Apparently, the scanner does not know about the header dependency. Being not a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. Par seDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

Thefollowing example uses Par seDepends to process acompiler generated dependency file which is generated as
aside effect during compilation of the object file:

obj = Object('hello.c', CCFLAGS='-MD - M- hello.d', CPPPATH='.')
Si deEffect (' hell o.d', obj)

Par seDepends(' hel | 0. d")

Progran(' hell o', obj)

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c
cc -0 hello hello.o

% [CHANGE CONTENTS OF f o0o0. h]

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q

Iy
=== SCONS 35

Ignoring Dependencies. the | gnor e Function

cc -0 hello.o -c -MD -MF hello.d -I. hello.c

cc -0 hello hello.o

% scons -Q --debug=expl ai n

scons: rebuilding " hello.o" because “foo.h' is a new dependency

cc -0 hello.o -c -MD -MF hello.d -1. hello.c
% scons -Q
scons: ~.' is up to date.

In thefirst pass, the dependency file is generated while the object fileis compiled. At that time, SCons does not know
about the dependency on f 00. h. In the second pass, the object file is regenerated because f 00. h is detected as a
new dependency.

Par seDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of Par seDepends
leads to unnecessary recompilations. Therefore, Par seDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.7. Ignoring Dependencies: the | gnor e Func-
tion

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency as follows:

hel | o_obj =Cbj ect (' hell o.c")
hell o = Program(hell o_obj)
I gnore(hello_obj, "hello.h")

% scons -Q hello
cc -c -0 hello.o hello.c
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date.
% edit hello.h
[CHANGE THE CONTENTS OF hel | o. h]
% scons -Q hello
scons: " hello' is up to date.

Now, the above example is alittle contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hel | o if the hel | 0. h file changed. A more realistic example might be if the hel | o program is
being built in adirectory that is shared between multiple systems that have different copies of the st di 0. h include
file. In that case, SCons would notice the differences between the different systems' copies of st di 0. h and would
rebuild hel | o each time you change systems. Y ou could avoid these rebuilds as follows:

hell o = Progran(' hello.c', CPPPATH=['/usr/include'])
I gnore(hello, '"/usr/include/stdio.h")

Iy
=== SCONS 36

Order-Only Dependencies: the Requi r es Function

| gnor e can aso be used to prevent agenerated file from being built by default. Thisis due to the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignorethegenerated file. Notethat thefilewill still bebuilt if the user specifically requeststhetarget on sconscommand
ling, or if thefile is a dependency of another file which is requested and/or is built by default.

hel | o_obj =Cbj ect (' hell 0. c")
hell o = Progran(hell o_obj)
I gnore('."',[hello, hello _obj])

% scons -Q

scons: ~.' is up to date.

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date.

6.8. Order-Only Dependencies: the Requi r es
Function

Occasionaly, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such
arelationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which isincluded in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
filewould be rebuilt every time you ran SCons. For example, we could use some Python codein aSConst r uct file
to create anew ver si on. ¢ file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing ver si on. ¢ in the sources:

i mport time

version_c _text = """

char *date = "%";

"ttt time.ctime(time.time())
open('version.c', '"wW).wite(version_c_text)
hello = Progranm(['hello.c', 'version.c'])

If welist ver si on. ¢ asan actual source file, though, then thever si on. o file will get rebuilt every time we run
SCons (because the SConst r uct fileitself changes the contents of ver si on. ¢) and the hel | o executable will
get re-linked every time (because thever si on. o file changes):

% scons -Q hello
cc -0 hello.o -c hello.c
CC -0 version.o -c version.c

Iy
=== SCONS 37

Order-Only Dependencies: the Requi r es Function

cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sleep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o

(Notethat for the above example to work, we sleep for one second in between each run, so that the SConst r uct file
will createaver si on. c filewith atime string that's one second later than the previous run.)

Onesolution isto usethe Requi r es function to specify that thever si on. o must be rebuilt beforeit is used by the
link step, but that changesto ver si on. o should not actually causethe hel | o executable to be re-linked:

i mport time

version_c_text =

char *date = "%";
"ttt time.ctime(time.time())
open('version.c', "W).wite(version_c_text)

versi on_obj = Object('version.c')

hell o = Progran(' hello.c',
LI NKFLAGS = str(version_obj[0]))

Requi res(hell o, version_obj)

Notice that because we can no longer list ver si on. ¢ asone of the sourcesfor the hel | o program, we haveto find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
filename (extracted fromver si on_obj list returned by the Cbj ect call) intothe $L1 NKFLAGS variable, because
$LI NKFLAGS is aready included in the $LI NKCOMcommand line.

With these changes, we get the desired behavior of only re-linking the hel | o executable when the hel | 0. ¢ has
changed, even though thever si on. o isrebuilt (because the SConst r uct filestill changesthever si on. ¢ con-
tents directly each run):

% scons -Q hello

CC -0 version.o -c version.c
cc -o hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date
% sl eep 1

% [CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello

CC -0 version.o -c version.c
cc -o hello.o -c hello.c

cc -0 hello version.o hello.o

Iy
=== SCONS 38

The Al waysBui | d Function

% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date.

6.9. The Al waysBui | d Function

How SCons handles dependencies can also be affected by the Al waysBui | d method. When afileis passed to the
Al waysBui | d method, like so:

hell o = Progran(' hello.c')
Al waysBui | d(hel | 0)

Then the specified target file (hel | o in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q

cc -o hello.o -c hello.c
cc -o hello hello.o

% scons -Q

cc -o hello hello.o

The Al waysBui | d function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the
target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, atarget that does not itself depend on the Al waysBui | d target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello.o

scons: " hello.o' is up to date

Iy
=== SCONS 39

7 Environments

Anenvi ronnent isacollection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscri pt files), aswell asthe compilers and other tools it executes:

External Environment
Theext ernal envi ronment istheset of variablesin the user's environment at the time the user runs SCons.
These variables are available within the SConscr i pt files through the Python os. envi r on dictionary. See
Section 7.1, “Using Values From the External Environment”, below.

Construction Environment
A construction environnent isadistinct object creating within a SConscri pt file and and which
contains values that affect how SCons decides what action to use to build a target, and even to define which
targets should be built from which sources. One of the most powerful features of SCons is the ability to create
multipleconst ructi on envi r onnent s, including the ability to cloneanew, customizedconst r uct i on
envi ronnent froman existing constructi on envi ronment . See Section 7.2, “Construction Environ-
ments’, below.

Execution Environment
Anexecution environment isthevauesthat SCons sets when executing an external command (such asa
compiler or linker) to build one or moretargets. Notethat thisisnot the same astheext er nal envi r onment
(see above). See Section 7.3, “Controlling the Execution Environment for |ssued Commands’, below.

Unlike Make, SCons does not automatically copy or import val ues between different environments (with the exception
of explicit clonesof const ructi on envi r onment s, which inherit valuesfrom their parent). Thisisadeliberate
design choice to make sure that builds are, by default, repeatable regardless of the values in the user's external envi-
ronment. This avoids a whole class of problems with builds where a developer's local build works because a custom
variable setting causes a different compiler or build option to be used, but the checked-in change breaks the official
build because it uses different environment variable settings.

Note that the SConscr i pt writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environmentsis evil and must aways be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import avariable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.

Using Values From the External Environment

7.1. Using Values From the External Environ-
ment

The ext ernal environment variable settings that the user has in force when executing SCons are available
through the normal Python os. envi r on dictionary. This meansthat you must add ani nport os statement to any
SConscri pt filein which you want to use values from the user's external environment.

i mport os

More usefully, you can use the 0s. envi r on dictionary in your SConscri pt filestoinitialize const ruct i on
envi r onnment s with values from the user's external environment. See the next section, Section 7.2, “ Construction
Environments’, for information on how to do this.

7.2. Construction Environments

Itisrarethat all of the softwarein alarge, complicated system needs to be built the same way. For example, different
source files may need different options enabled on the command line, or different executable programs need to be
linked with different libraries. SCons accommodates these different build requirements by allowing you to create and
configure multiple const ructi on envi r onment s that control how the software is built. A const ruct i on
envi ronnent isan object that hasanumber of associated const ruct i on vari abl es, eachwithanameand a
value. (A construction environment also has an attached set of Bui | der methods, about which we'll learn more later.)

7.2.1. Creating a Constructi on Environnent: the En-
vi ronment Function

A construction environnent iscreated by the Envi r onnent method:
env = Envi ronnent ()

By default, SConsinitializes every new construction environment with aset of const ruct i on vari abl es based
on the tools that it finds on your system, plus the default set of builder methods necessary for using those tools. The
construction variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as
well as the command lines to invoke them.

When you initialize aconstruction environment you can set the values of theenvironment'sconst ructi on vari -
abl es to control how aprogram is built. For example:

env = Environment (CC = 'gcc',
CCFLAGS = '-2')

env. Program(' foo.c')
The construction environment in this example is still initialized with the same default construction variable values,

except that the user has explicitly specified use of the GNU C compiler gec, and further specifies that the - Q2 (opti-
mization level two) flag should be used when compiling the object file. In other words, the explicit initializations of

Iy
=== SCONS 41

Fetching Values FromaConst ructi on Envi r on-
ment

$CC and $CCFLAGS override the default values in the newly-created construction environment. So a run from this
example would look like:

% scons -Q
gcc -o foo.o -c -2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Constructi on Environ-
ment

You can fetch individual construction variables using the normal syntax for accessing individual named itemsin a
Python dictionary:

env = Environnent ()
print "CCis:", env['CC]

Thisexample SConst r uct filedoesn't build anything, but becauseit's actually a Python script, it will print the value
of $CCfor us:

% scons -Q
CCis: cc
scons:

is up to date.

A construction environment, however, is actually an object with associated methods, etc. If you want to have direct
access to only the dictionary of construction variables, you can fetch thisusing the Di ct i onar y method:

env = Environnment (FOO = 'foo', BAR = 'bar')

dict = env.Dictionary()

for key in ["OBISUFFI X', 'LIBSUFFI X , 'PROGSUFFI X]:
print "key = %, value = %" % (key, dict[key])

ThisSConst r uct filewill print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBISUFFI X, value = .0
key = LIBSUFFI X, value = .a
key = PROGSUFFI X, val ue =
scons: ' is up to date.

And on Windows:;

C.\>scons -Q

key = OBIJSUFFI X, val ue = . obj
key = LIBSUFFI X, value = .lib
key = PROGSUFFI X, val ue = .exe
scons: ' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

Iy
=== SCONS 42

Expanding Values From aConst ruct i on Environ-
ment : thesubst Method

env = Environment ()
for itemin sorted(env.Dictionary().itenms()):
print "construction variable = '%', value = "%'" %item

7.2.3. Expanding Values From a Constructi on Envi -
ronnent : the subst Method

Another way to get information from a construction environment is to use the subst method on a string containing

$ expansions of construction variable names. As a simple example, the example from the previous section that used
env[' CC] tofetch the value of $CC could aso be written as:

env = Environnent ()
print "CCis:", env.subst('$CC)

One advantage of using subst to expand stringsisthat construction variablesin the result get re-expanded until there
are no expansions left in the string. So a simple fetch of avalue like $CCCOM

env = Envi ronnment (CCFLAGS = ' - DFQO)
print "CCCOMis:", env[' CCCOM]

Will print the unexpanded value of $CCCOM showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM i s: $CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS -c -0 $TARGET $SOURCES
scons: ~.' is up to date.

Calling the subst method on $CCOM however:

env = Environnment (CCFLAGS = ' - DFOO)
print "CCCOMis:", env.subst (' $CCCOM)

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final output:

% scons -Q
CCCOM is: gcc -DFOO -c -0
scons: ~.' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion

If a problem occurs when expanding a construction variable, by default it is expanded to' ' (anull string), and will
not cause scons to fail.

Iy
=== SCONS 43

Controlling the Default Const r ucti on Environ-
nment : the Def aul t Envi r onment Function

env = Environment ()
print "value is:", env.subst('->$M SSI NG<-')

% scons -Q
val ue is: -><-
scons: ' is up to date.

This default behaviour can be changed using the Al | owSubst Except i ons function. When a problem occurswith
avariable expansion it generates an exception, and the Al | owSubst Except i ons function controls which of these
exceptions are actually fatal and which are allowed to occur safely. By default, NameEr r or and | ndexEr r or are
the two exceptionsthat are allowed to occur: so instead of causing sconsto fail, these are caught, the variable expanded
to' ' and scons execution continues. To require that al construction variable names exist, and that indexes out of
range are not allowed, call Al | owSubst Except i ons with no extra arguments.

Al | owSubst Except i ons()
env = Environment ()
print "value is:", env.subst('->$M SSI NG-')

% scons -Q

val ue is:
scons: *** NaneError "M SSING trying to eval uate ~$M SSI NG
File "/homel/ ny/ project/SConstruct”, line 3, in <nmodul e>

This can also be used to allow other exceptions that might occur, most usefully with the ${ . . . } construction vari-
able syntax. For example, this would allow zero-division to occur in a variable expansion in addition to the default
exceptions allowed

Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
env = Environmnent ()
print "value is:", env.subst('->${1 / 0}<-')

% scons -Q
val ue is: -><-
scons: ' is up to date.

If Al | owSubst Excepti ons iscalled multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Constructi on Environ-
ment : the Def aul t Envi r onnent Function

All of the Bui | der functions that we've introduced so far, like Pr ogr amand Li br ary, actually use a default
construction environnent that contains settings for the various compilers and other tools that SCons con-
figures by default, or otherwise knows about and has discovered on your system. The goal of the default construction
environment isto make many configurations to "just work™ to build software using readily available toolswith amin-
imum of configuration changes.

Y ou can, however, control the settingsin the default construction environment by using the Def aul t Envi r onnent
function to initialize various settings:

Iy
=== SCONS 44

Multiple Const ructi on Environnents

Def aul t Envi ronment (CC = ' /usr/ | ocal / bi n/ gcc')

When configured as above, all calls to the Pr ogr amor Obj ect Builder will build object files with the / usr/
| ocal / bi n/ gcc compiler.

Notethat theDef aul t Envi r onmrent functionreturnstheinitialized default construction environment object, which
can then be manipulated like any other construction environment. So the following would be equivalent to the previous
example, setting the $CC variableto / usr/ | ocal / bi n/ gcc but as a separate step after the default construction
environment has been initialized:

env = Defaul t Envi ronnent ()
env['CC] = '/usr/local/bin/gcc'

One very common use of the Def aul t Envi r onment functionisto speed up SConsinitialization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systemswith slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

env = Defaul t Environnent (tools = ['gcc', 'gnulink'],
CC = '"/usr/local /bin/gcc')

So the above examplewouldtell SConsto explicitly configure thedefault environment to useitsnormal GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at/ usr/ | ocal / bi n/ gcc.

7.2.6. Multiple Constructi on Envi ronnents

The real advantage of construction environments is that you can create as many different construction environments
as you need, each tailored to a different way to build some piece of software or other file. If, for example, we need to
build one program with the - Q2 flag and another with the - g (debug) flag, we would do this like so:

opt
dbg

Envi r onnent (CCFLAGS
Envi r onnent (CCFLAGS

)
'-g')

opt. Program(' foo', 'foo.c')

dbg. Program(' bar', 'bar.c')

% scons -Q

CC -0 bar.o -c -g bar.c
Cc -0 bar bar.o

cc -o foo.o -c -2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of asingle program. If you do this by
simply trying to use the Pr ogr ambuilder with both environments, though, like this:

Iy
=== SCONS 45

Making Copiesof Const ructi on Environnents:
the C one Method

opt
dbg

Envi r onment (CCFLAGS
Envi r onment (CCFLAGS

o)
-9')

opt. Program(' foo', 'foo.c')

dbg. Program(* foo', 'foo.c')

Then SCons generates the following error:
% scons -Q

scons: *** Two environnments with different actions were specified for the sanme target: foo
File "/hone/ nmy/ project/SConstruct”, line 6, in <nmodul e>

Thisis because thetwo Pr ogr amcalls have each implicitly told SCons to generate an object file named f 00. o, one
with a $CCFLAGS vaue of - Q2 and one with a $CCFLAGS value of - g. SCons can't just decide that one of them
should take precedence over the other, so it generatesthe error. To avoid this problem, we must explicitly specify that
each environment compile f 00. ¢ to a separately-named object file using the Qbj ect builder, like so:

opt = Environnent (CCFLAGS = '-Q2')
dbg = Environnent (CCFLAGS = '-g')
o = opt.bject('foo-opt', 'foo.c')

opt . Progr an(0)

d = dbg. Obj ect (' foo-dbhg', 'foo.c')
dbg. Pr ogr an(d)

Notice that each call to the Cbj ect builder returns a value, an internal SCons object that represents the object file
that will be built. We then use that object as input to the Pr ogr ambuilder. This avoids having to specify explicitly
the object file namein multiple places, and makesfor acompact, readable SConst r uct file. Our SCons output then
looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg. o

cc -o foo-opt.o -c -2 foo.c
cc -o foo-opt foo-opt.o

7.2.7. Making Copies of Constructi on Environnents:
the C one Method

Sometimes you want more than one construction environment to share the same values for one or more variables.
Rather than always having to repeat all of the common variables when you create each construction environment, you
can usethe Cl one method to create a copy of a construction environment.

Like the Envi ronnment call that creates a construction environment, the Cl one method takes const ruct i on
var i abl e assignments, which will overridethevaluesin the copied construction environment. For example, suppose
we want to use gcc to create three versions of a program, one optimized, one debug, and one with neither. We could

Iy
=== SCONS 46

Replacing Vaues: the Repl ace Method

do this by creating a "base" construction environment that sets $CC to gcc, and then creating two copies, one which
sets $CCFLAGS for optimization and the other which sets $CCFLAGS for debugging:

env
opt
dbg

Envi ronnent (CC = '
env. Cl one(CCFLAGS
env. Cl one(CCFLAGS

cc')
L)
'-g')

1n 1 Q

env. Program(' foo', 'foo.c')

0 = opt.bject('foo-opt’', 'foo.c')
opt . Progr an(0)

d = dbg. Obj ect (' foo-dbg', 'foo.c')
dbg. Pr ogr an(d)

Then our output would look like:

% scons -Q

gcc -o foo.o -c foo.c

gcc -o foo foo.o

gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o

gcc -o foo-opt.o -c -2 foo.c
gcc -o foo-opt foo-opt.o

7.2.8. Replacing Values: the Repl ace Method

Y ou can replace existing construction variable values using the Repl ace method:

env = Environment (CCFLAGS = ' - DDEFI NE1')
env. Repl ace(CCFLAGS = ' - DDEFI NE2')
env. Progran(' foo.c')

The replacing value (- DDEFI NE2 in the above example) completely replaces the value in the construction environ-
ment:

% scons -Q
cc -o foo.o -c -DDEFI NE2 foo.cC
cc -o foo foo.o

You can safely call Repl ace for construction variables that don't exist in the construction environment:
env = Environnent ()

env. Repl ace(NEW_VARI ABLE = ' xyzzy')

print "NEW VARI ABLE =", env[' NEW VARI ABLE']

In this case, the construction variable simply gets added to the construction environment:

% scons -Q

Iy
=== SCONS 47

Setting Values Only If They're Not Already Defined: the
Set Def aul t Method

NEW VARI ABLE = xyzzy
scons: ~.' is up to date.

Because the variables aren't expanded until the construction environment is actually used to build the targets, and
because SCons function and method calls are order-independent, the last replacement "wins' and is used to build all
targets, regardless of the order in which the calls to Replace() are interspersed with callsto builder methods:

env = Environnment (CCFLAGS = ' - DDEFI NE1')
print "CCFLAGS =", env['CCFLAGS]
env. Progran(' foo.c')

env. Repl ace(CCFLAGS = ' - DDEFI NE2')
print "CCFLAGS =", env['CCFLAGS]
env. Program(' bar.c')

The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run
scons without the - Qoption:

% scons
scons: Readi ng SConscript files ...
CCFLAGS = - DDEFI NE1

CCFLAGS = - DDEFI NE2

scons: done readi ng SConscript files.
scons: Building targets ...

cC -0 bar.o -c -DDEFINE2 bar.c

cc -0 bar bar.o

cc -o foo.o -c -DDEFINE2 foo.c

cc -o foo foo.o

scons: done buil ding targets.

Because the replacement occurs while the SConscri pt files are being read, the $CCFLAGS variable has already
been set to - DDEFI NE2 by the time the f 00. o target is built, even though the call to the Repl ace method does
not occur until later in the SConscr i pt file.

7.2.9. Setting Values Only If They're Not Already Defined:
the Set Def aul t Method

Sometimesit's useful to be able to specify that a construction variable should be set to avalue only if the construction
environment does not aready have that variable defined You can do this with the Set Def aul t method, which
behaves similarly to theset _def aul t method of Python dictionary objects:

env. Set Def aul t (SPECI AL_FLAG = ' -extra-option')

Thisis especially useful when writing your own Tool modules to apply variablesto construction environments.

7.2.10. Appending to the End of Values: the Append
Method

Y ou can append a value to an existing construction variable using the Append method:

Iy
=== SCONS 48

Appending Unique Values: the AppendUni que Method

env = Environment (CCFLAGS = ['-DW_VALUE'])
env. Append(CCFLAGS = ['-DLAST'])
env. Program(' foo.c')

SCons then supplies both the - DMY_VVALUE and - DLAST flags when compiling the object file:

% scons -Q
cc -o foo.o -c -DWMY_VALUE -DLAST foo.c
cc -o foo foo.o

If the construction variable doesn't already exist, the Append method will create it:

env = Environment ()

env. Append(NEW VARI ABLE = ' added')

print "NEWVARI ABLE =", env[' NEW VARl ABLE']
Which yields:

% scons -Q
NEW VARI ABLE = added
scons: ~.' is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value. If both are
strings, the previous and new strings are simply concatenated. Similarly, if both arelists, the lists are concatenated. If,
however, oneisastring and the other isalist, the string is added as a new element to the list.

7.2.11. Appending Unique Values: the AppendUni que
Method

Some times it's useful to add a new value only if the existing construction variable doesn't already contain the value.
This can be done using the AppendUni que method:

env. AppendUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not aready contain a- g value.

7.2.12. Appending to the Beginning of Values: the
Pr epend Method

Y ou can append a value to the beginning of an existing construction variable using the Pr epend method:

env = Environnment (CCFLAGS = ['-DW_VALUE'])
env. Prepend(CCFLAGS = ['-DFIRST'])
env. Progran(' foo.c')

SCons then supplies both the - DFI RST and - DMY_ VAL UE flags when compiling the object file;

Iy
=== SCONS 49

Prepending Unique Values: the Pr ependUni que
Method

% scons -Q
cc -o foo.o -c -DFI RST - DMY_VALUE f oo. c
cc -o foo foo.o

If the construction variable doesn't already exist, the Pr epend method will createit:

env = Environnent ()
env. Prepend(NEW VARl ABLE = ' added')
print "NEW VARl ABLE =", env[' NEW VARl ABLE']

Which yields:

% scons -Q
NEW VARI ABLE = added
scons: ' is up to date.

Likethe Append function, the Pr epend function triesto be "smart" about how the new value is appended to the old
value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both arelists, thelistsare
concatenated. If, however, oneis astring and the other isalist, the string is added as a new element to thelist.

7.2.13. Prepending Unique Values: the PrependUni que
Method

Sometimesit's useful to add a new value to the beginning of a construction variable only if the existing value doesn't
already contain the to-be-added value. This can be done using the Pr ependUni que method:

env. PrependUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not aready contain a- g value.

7.3. Controlling the Execution Environment for
Issued Commands

When SCons builds atarget file, it does not execute the commands with the same external environment that you used
to execute SCons. Instead, it uses the dictionary stored in the $ENV construction variable as the external environment
for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls where the
operating system will look for commands and utilities, is not the same as in the external environment from which
you called SCons. This means that SCons will not, by default, necessarily find all of the tools that you can execute
from the command line.

The default value of the PATH environment variable on aPOSIX systemis/ usr /| ocal / bi n: / bi n: / usr/ bi n.
The default value of the PATH environment variable on a Windows system comes from the Windows registry valuefor
the command interpreter. If you want to execute any commands--compilers, linkers, etc.--that are not in these default
locations, you need to set the PATH value in the $ENV dictionary in your construction environment.

The smplest way to do thisisto initialize explicitly the value when you create the construction environment; thisis
one way to do that:

Iy
=== SCONS 50

Propagating PATH From the External Environment

path = ["/usr/local/bin', "/bin', "/usr/bin']
env = Environment (ENV = {' PATH : path})

Assign adictionary to the $ENV construction variable in this way completely resets the external environment so that
the only variable that will be set when external commands are executed will be the PATHvalue. If you want to use the
rest of the valuesin $ENV and only set the value of PATH, the most straightforward way is probably:

env['ENV']['PATH] = ['/usr/local/bin', '"/bin', '"/usr/bin']

Note that SCons does allow you to define the directories in the PATH in a string, separated by the pathname-separator
character for your system ("' on POSIX systems, ';' on Windows):

env['ENV'][' PATH] = '/usr/local/bin:/bin:/usr/bin'

But doing so makesyour SConscr i pt fileless portable, (athough in this case that may not be a huge concern since
the directories you list are likley system-specific, anyway).

7.3.1. Propagating PATH From the External Environment

Y ou may want to propagate the external PATH to the execution environment for commands. Y ou do thisby initializing
the PATH variable with the PATH value from the os. envi r on dictionary, which is Python's way of letting you get
at the external environment:

i mport os
env = Environment (ENV = {' PATH : os.environ[' PATH]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution environment
for commands. Thisis simpler to code than explicity selecting the PATH value:

i mport os
env = Environnment (ENV = os. environ)

Either of these will guarantee that SConswill be able to execute any command that you can execute from the command
line. The drawback is that the build can behave differently if it's run by people with different PATH values in their
environment--for example, if both the/ bi nand/ usr/ | ocal / bi n directories have different cc commands, then
which one will be used to compile programs will depend on which directory islisted first in the user's PATH variable.

7.3.2. Adding to PATH Values in the Execution Environ-
ment

One of the most common requirements for manipulating a variable in the execution environment is to add one or
more custom directories to a search like the $PATH variable on Linux or POSIX systems, or the %°ATHYvariable on
Windows, so that a locally-installed compiler or other utility can be found when SCons tries to execute it to update
atarget. SCons provides Pr ependENVPat h and AppendENVPat h functions to make adding things to execution

Iy
=== SCONS 51

Adding to PATH Values in the Execution Environment

variables convenient. Y ou call these functions by specifying the variable to which you want the value added, and then
valueitself. Soto add some/ usr/ | ocal directoriesto the $PATHand $LI B variables, you might:

env = Environnment (ENV = 0s. environ)
env. PrependENVPat h(' PATH , '/usr/local/bin")
env. AppendENVPat h(' LIB', '/usr/local/lib")

Note that the added values are strings, and if you want to add multiple directories to avariable like $PATH, you must
include the path separate character (: on Linux or POSIX, ; on Windows) in the string.

Iy
=== SCONS 52

8 Automatically Putting Com-

mand-line Options into their
Construction Variables

This chapter describesthe Mer geFl ags, Par seFl ags, and Par seConf i g methodsof aconstructi on en-
Vi ronnent .

8.1. Merging Options into the Environment: the
Mer geFl ags Function

SCons construction environments have aMer geFl ags method that merges a dictionary of values into the construc-
tion environment. Mer geFl ags treats each value in the dictionary as a list of options such as one might pass to a
command (such as a compiler or linker). Mer geFl ags will not duplicate an option if it already exists in the con-
struction environment variable.

Mer geFl ags triesto beintelligent about merging options. When merging options to any variable whose name ends
inPATH, Mer geFl ags keepstheleftmost occurrence of the option, becausein typical listsof directory paths, thefirst
occurrence "wins." When merging optionsto any other variable name, Mer geFl ags keepsthe rightmost occurrence
of the option, because in alist of typical command-line options, the last occurrence "wins."

env = Environnent ()

env. Append(CCFLAGS = '-option -3 -QO1')
flags = { ' CCFLAGS' : '-whatever -Q3' }
env. Mer geFl ags(fl ags)

print env[' CCFLAGS']

% scons -Q
['-option', '-O1l', '-whatever', '-Q8']
scons: .' is up to date.

Note that the default value for $CCFLAGS is an internal SCons object which automatically converts the options we
specified asastring into alist.

Separating Compile Argumentsinto their Variables: the
Par seFl ags Function

env = Environment ()

env. Append(CPPPATH = ['/include', '/usr/local/include', '/usr/include'])
flags = { 'CPPPATH : ['/usr/opt/include', "/usr/local/include] }

env. Mer geFl ags(fl ags)

print env[' CPPPATH]

% scons -Q
['/include', "/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ".' is up to date.

Notethat thedefault valuefor $CPPPATHisanormal Pythonlist, so wemust specify itsvaluesasalist in thedictionary
we passto the Mer geFl ags function.

If Mer geFl ags is passed anything other than a dictionary, it calls the Par seFl ags method to convert it into a
dictionary.

env = Environnent ()

env. Append(CCFLAGS = '-option -3 -0O1')

env. Append(CPPPATH = ['/include', '/usr/local/include', '/usr/include'])
env. Mer geFl ags(' -whatever -I1/usr/opt/include -O3 -1/usr/local/include')
print env[' CCFLAGS']

print env[' CPPPATH]

% scons -Q

['-option', '-O1l', '-whatever', '-Q8']
['/include', "/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ".' is up to date.

In the combined example above, Par seFl ags has sorted the optionsinto their corresponding variables and returned
adictionary for Mer geFl ags to apply to the construction variables in the specified construction environment.

8.2. Separating Compile Arguments into their
Variables: the Par seFl ags Function

SCons has abewildering array of construction variablesfor different types of optionswhen building programs. Some-
times you may not know exactly which variable should be used for a particular option.

SCons construction environments have aPar seFl ags method that takes a set of typical command-line options and
distrbutes them into the appropriate construction variables. Historicaly, it was created to support the Par seConf i g
method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains.

Par seFl ags returnsadictionary containing the options distributed into their respective construction variables. Nor-
mally, this dictionary would be passed to Mer geFl ags to merge the optionsinto aconstructi on envi r on-
nent , but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not
going to be edited, calling Mer geFl ags with the options directly will avoid an additional step.)

env = Environment ()
d = env. ParseFl ags("-1/opt/include -L/opt/lib -1foo")
for k,v in sorted(d.itens()):

if wv:

Iy
=== SCONS 54

Separating Compile Argumentsinto their Variables: the
Par seFl ags Function

print k, v
env. Mer geFl ags(d)
env. Program('f1.c')

% scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -ofl.o-c -I/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Notethat if the options are limited to generic typeslike those above, they will be correctly translated for other platform
types:

C.\>scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cl /Fofl.obj /c fl1.c /nologo /I\opt\include

link /nologo /OUT: f1.exe /LIBPATH \opt\lib foo.lib f1.obj
enbedMani f est ExeCheck(target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in $CCFLAGS
so they will be used for both C and C++ compiles:

env = Environnent ()
d = env. ParseFl ags("-what ever")
for k,v in sorted(d.itens()):
if v:
print k, v
env. Mer geFl ags(d)
env. Progran('fl.c')

% scons -Q

CCFLAGS - what ever

cc -o fl.o -c -whatever fl.c
cc -oflfl.o

Par seFl ags will also accept a(recursive) list of stringsasinput; thelist isflattened before the strings are processed:

env = Environment ()

d = env. ParseFl ags(["-I/opt/include", ["-L/opt/lib", "-1fo0"]])
for k,v in sorted(d.itenms()):
if v
print k, v

env. Mer geFl ags(d)
env. Program('fl.c')

% scons -Q
CPPPATH [/ opt/i ncl ude']

Iy
=== SCONS 55

Finding Installed Library Information: the Par seCon-
fi g Function

LI BPATH [/opt/lib"]

LIBS ['foo0']

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

If astring beginswith a"!" (an exclamation mark, often called a bang), the string is passed to the shell for execution.
The output of the command is then parsed:

env = Environnent ()

d = env. ParseFl ags(["!echo -1/opt/include", "!echo -L/opt/lib", "-1fo0"])
for k,v in sorted(d.itenms()):
if v
print k, v

env. Mer geFl ags(d)
env. Program('fl.c')

% scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Par seFl ags isregularly updated for new options; consult the man page for details about those currently recognized.

8.3. Finding Installed Library Information: the
Par seConfi g Function

Configuring theright optionsto build programsto work with libraries--especially shared libraries--that are available on
POSIX systems can be very complicated. To help this situation, various utilies with namesthat end in conf i g return
the command-line options for the GNU Compiler Collection (GCC) that are needed to use these libraries; for example,
the command-line options to use alibrary named | i b would be found by calling autility named | i b- confi g.

A more recent convention is that these options are available from the generic pkg- conf i g program, which has
common framework, error handling, and the like, so that all the package creator hasto do is provide the set of strings
for his particular package.

SCons construction environmentshave aPar seConf i g method that executesa* conf i g utility (either pkg- con-
f i g or amore specific utility) and configures the appropriate construction variables in the environment based on the
command-line options returned by the specified command.

env = Environment ()

env[' CPPPATH] = ['/Ilib/conpat"']

env. Par seConfi g("pkg-config x11 --cflags --1ibs")
print env[' CPPPATH]

SCons will execute the specified command string, parse the resultant flags, and add the flags to the appropriate envi-
ronment variables.

Iy
=== SCONS 56

Finding Installed Library Information: the Par seCon-
fi g Function

% scons -Q
["/1ib/compat', '/usr/X11l/incl ude']
scons: ~.' is up to date.

In the example above, SCons has added the include directory to CPPPATH. (Depending upon what other flags are
emitted by the pkg- conf i g command, other variables may have been extended as well.)

Note that the options are merged with existing options using the Mer geFl ags method, so that each option only
occurs once in the construction variable;

env = Environment ()

env. ParseConfi g("pkg-config x11 --cflags --1ibs")
env. ParseConfi g("pkg-config x11 --cflags --1ibs")
print env[' CPPPATH]

% scons -Q
['/usr/X11/i ncl ude']
scons: ' is up to date.

Iy
=== SCONS 57

9 Controlling Build Output

A key aspect of creating a usable build configuration is providing good output from the build so its users can readily
understand what the build is doing and get information about how to control the build. SCons provides several ways
of controlling output from the build configuration to help make the build more useful and understandable.

9.1. Providing Build Help: the Hel p Function

It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can
be used for your build. SCons provides the Hel p function to allow you to specify this help text:

Hel p("""
Type: 'scons programli to build the production program
'scons debug' to build the debug version.

")
Optionally, one can specify the append flag:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.
", append=True)

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings
like help text.)

When the SConst ruct or SConscri pt filescontain such acall to the Hel p function, the specified help text will
be displayed in response to the SCons - h option:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programli to build the production program
'scons debug' to build the debug version.

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

Use scons -H for hel p about command-|ine options.

The SConscri pt filesmay contain multiple calls to the Hel p function, in which case the specified text(s) will be
concatenated when displayed. This allows you to split up the help text across multiple SConscri pt files. In this
situation, the order in which the SConscr i pt filesare called will determine the order in which the Hel p functions
are called, which will determine the order in which the various bits of text will get concatenated.

When used with AddOpt i on Help(“text", append=False) will clobber any help output associated with AddOption().
To preserve the help output from AddOption(), set append=True.

Another use would be to make the help text conditional on some variable. For example, suppose you only want to
display a line about building a Windows-only version of a program when actually run on Windows. The following
SConst ruct file:
env = Environment ()
Hel p("\ nType: 'scons programi to build the production program\n")
if env[' PLATFORM] == 'w n32':
Hel p("\ nType: 'scons w ndebug' to build the Wndows debug version.\n")
Will display the complete help text on Windows:
C.\>scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
Type: 'scons programi to build the production program
Type: 'scons wi ndebug' to build the Wndows debug versi on.
Use scons -H for hel p about comand-|ine options.
But only show the relevant option on aLinux or UNIX system:
% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
Type: 'scons programli to build the production program

Use scons -H for hel p about command-Iine options.

If thereisno Hel p textinthe SConst ruct or SConscri pt files, SConswill revert to displaying its standard list
that describes the SCons command-line options. Thislist is also always displayed whenever the - Hoption is used.

9.2. Controlling How SCons Prints Build Com-
mands: the $* COVSTR Variables

Sometimes the commands executed to compile object files or link programs (or build other targets) can get very
long, long enough to make it difficult for users to distinguish error messages or other important build output from the

Iy
=== SCONS 59

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

commands themselves. All of the default $* COMvariables that specify the command lines used to build various types
of target files have a corresponding $* COVBTR variable that can be set to an aternative string that will be displayed
when the target is built.

For example, suppose you want to have SCons display a" Conpi | i ng" message whenever it's compiling an object
file,and a" Li nki ng" when it'slinking an executable. Y ou could writea SConst r uct filethat lookslike:

env = Environnment (CCCOMSTR = " Conpi |l i ng $TARGET",
LI NKCOMSTR = "Li nki ng $TARGET")
env. Program(' foo.c')

Which would then yield the output:

% scons -Q
Conpi i ng foo.o0
Li nki ng foo

SCons performs complete variable substitution on $* COVBTR variables, so they have access to al of the standard
variables like $TARGET $SOURCES, etc., as well as any construction variables that happen to be configured in the
construction environment used to build a specific target.

Of course, sometimesit's still important to be able to see the exact command that SCons will execute to build atarget.
For example, you may simply need to verify that SConsis configured to supply the right options to the compiler, or a
developer may want to cut-and-paste a compile command to add afew options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line or a short,
configured summary is to add support for a VERBOSE command-line variable to your SConst r uct file. A smple
configuration for this might look like:

env = Environment ()
i f ARGUMENTS. get (' VERBOSE') != "1":
env[' CCCOMSTR] = "Conpiling $TARGET"
env[' LI NKCOMSTR] = "Linki ng $TARGET"
env. Program(' foo.c')

By only setting the appropriate $* COVSTR variablesif the user specifies VERBOSE=1 on the command line, the user
has control over how SCons displays these particular command lines:

% scons -Q
Conpi i ng foo.o0

Li nki ng foo

% scons -Q -c
Rermoved foo. 0
Rermoved f oo

% scons - Q VERBOSE=1
cc -o foo.o -c foo.c
cc -o foo foo.o

Iy
=== SCONS 60

Providing Build Progress Output: the Pr ogr ess Func-
tion

9.3. Providing Build Progress Output: the
Pr ogr ess Function

Another aspect of providing good build output is to give the user feedback about what SCons is doing even when
nothing is being built at the moment. This can be especially true for large builds when most of the targets are already
up-to-date. Because SCons can take a long time making absolutely sure that every target is, in fact, up-to-date with
respect to alot of dependency files, it can be easy for users to mistakenly conclude that SCons is hung or that there
is some other problem with the build.

One way to deal with this perception isto configure SCons to print something to let the user know what it's "thinking
about." The Pr ogr ess function allows you to specify a string that will be printed for every file that SConsis"con-
sidering" whileit is traversing the dependency graph to decide what targets are or are not up-to-date.

Progress(' Eval uati ng $TARGET\ n')
Program('fl.c')
Program('f2.c')

Note that the Pr ogr ess function does not arrange for a newline to be printed automatically at the end of the string
(as does the Python pr i nt statement), and we must specify the\ n that we want printed at the end of the configured
string. This configuration, then, will have SCons print that it is Eval uat i ng each file that it encountersin turn as
it traverses the dependency graph:

% scons -Q

Eval uati ng SConst r uct
Eval uating f1.c
Eval uating f1.0
cc -ofl.o-cfl.c
Eval uating f1

cc -oflfl.o

Eval uating f2.c
Eval uating f2.0
cc -of2.0-c f2.c
Eval uating f2

cc -of2f2.0

Eval uating .

Of course, normally you don't want to add all of these additional linesto your build output, asthat can makeit difficult
for the user to find errors or other important messages. A more useful way to display this progress might be to have the
file names printed directly to the user's screen, not to the same standard output stream where build output is printed,
and to use acarriage return character (\ r) so that each file name gets re-printed on the same line. Such a configuration
would look like:

Progress(' $TARCET\r "',
file=open('/dev/tty', 'w),
overw ite=True)

Program('fl.c')

Program('f2.c')

Note that we also specified the over wri t e=Tr ue argument to the Pr ogr ess function, which causes SCons
to "wipe out" the previous string with space characters before printing the next Pr ogr ess string. Without the

Iy
=== SCONS 61

Printing Detailed Build Status: the Get Bui | dFai | -
ur es Function

overwr i t e=Tr ue argument, a shorter file name would not overwrite all of the charactesin alonger file name that
precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the /
dev/ tty filefor direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the
con: filename.

Also, it'simportant to know that although you can use $TARGET to substitute the name of the node in the string, the
Pr ogr ess function does not perform general variable substitution (because there's not necessarily a construction
environment involved in evaluating a node like a sourcefile, for example).

Y ou can also specify alist of stringsto the Pr ogr ess function, in which case SConswill display each string in turn.
This can be used to implement a"spinner" by having SCons cycle through a sequence of strings:

Progress(['-\r', "\\\r', "|\r', "/\r'], interval =5)
Program('fl.c')
Program('f2.c')

Notethat here we have also used thei nt er val = keyword argument to have SCons only print anew "spinner” string
once every five evaluated nodes. Using ani nt er val = count, even with stringsthat use $TARGET like our examples
above, can be a good way to lessen the work that SCons expends printing Pr ogr ess strings, while still giving the
user feedback that indicates SConsis still working on evaluating the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other
Python callable) to the Pr ogr ess function. Y our function will be called for each evaluated node, allowing you to
implement more sophisticated logic like adding a counter:

screen = open('/dev/tty', 'w)
count = 0
def progress_functi on(node)
count += 1
screen.wite(' Node %id: %\r' % (count, node))

Progress(progress_function)

Of course, if you choose, you could completely ignore the node argument to the function, and just print a count, or
anything else you wish.

(Note that there's an obvious follow-on question here: how would you find the total number of nodes that will be
evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, thereisn't a
good way to do that, short of having SCons evaluate its dependency graph twice, first to count the total and the second
timeto actually build the targets. Thiswould be necessary because you can't know in advance which target(s) the user
actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user
specifically requested that only a single object file be built.)

9.4. Printing Detailed Build Status: the CGet -
Bui | dFai | ur es Function

SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's
useful to give moreinformation about the build status at the end of therun, for instanceto print an informative message,
send an email, or page the poor slob who broke the build.

Iy
=== SCONS 62

Printing Detailed Build Status: the Get Bui | dFai | -
ur es Function

SConsprovidesaGet Bui | dFai | ur es method that you can usein apythonat exi t functionto get alist of objects
describing the actions that failed while attempting to build targets. There can be more than one if you're using - j .
Here's asimple example:

i mport atexit

def print_build_failures():
from SCons. Scri pt inmport GetBuil dFail ures
for bf in GetBuildFailures():
print "% failed: %" % (bf.node, bf.errstr)
atexit.register(print_build fail ures)

Theatexit.register cal registersprint _buil d failures asanatexit calback, to be called before
SCons exits. When that function is caled, it calls Get Bui | dFai | ur es to fetch the list of failed objects. See the
man page for the detailed contents of the returned objects; some of the more useful attributes are. node, . errstr,
.filenanme,and. command. Thefi | enane isnot necessarily the same file asthe node; the node isthe target
that was being built when the error occurred, whilethef i | enaneisthefileor dir that actually caused the error. Note:
only call Get Bui | dFai | ur es at the end of the build; calling it at any other time is undefined.

Here is a more compl ete example showing how to turn each element of Get Bui | dFai | ur es into astring:

Make the build fail if we pass fail=1 on the command |ine
i f ARGUMENTS. get('fail', 0):
Conmmand(' target', 'source', ['/bin/false'])

def bf _to_str(bf):
"""Convert an el enent of GetBuil dFailures() to a string
in a useful way."""
i mport SCons. Errors
if bf is None: # unknown targets product None in |ist
return ' (unknown tgt)
elif isinstance(bf, SCons.Errors. StopError):
return str(bf)
elif bf.node:
return str(bf.node) +
elif bf.filenane:
return bf.filename +
return 'unknown fail ure:
i mport atexit

+ bf.errstr
"' + bf.errstr
+ bf.errstr

def build_status():

"""Convert the build status to a 2-tuple, (status, nsg).

from SCons. Scri pt inport GetBuildFail ures

bf = GetBuil dFai |l ures()

i f bf:
bf is normally a list of build failures; if an elenent is None,
it's because of a target that scons doesn't know anythi ng about.
status = 'failed
failures_nessage = "\n".join(["Failed building %" % bf_to_str(x)

for x in bf if x is not None])

el se:
if bf is None, the build conpl eted successfully.

Iy
=== SCONS 63

Printing Detailed Build Status: the Get Bui | dFai | -
ur es Function

status = ' ok’
failures_nmessage = "'
return (status, failures_nessage)

def display_ build_status():
"""Display the build status. Called by atexit.
Here you could do all kinds of conplicated things."""
status, failures_nessage = buil d_status()

if status == 'failed":
print "FAILED !'I'!" # could display alert, ring bell, etc.
elif status == 'ok':

print "Build succeeded."”
print failures_nessage

atexit.register(display_build_status)

When thisruns, you'll see the appropriate output:

% scons -Q

scons: ' is up to date.

Bui | d succeeded.

% scons -Q fail=1

scons: *** [target] Source "source' not found, needed by target “target'.

FAI LED! ! ']

Fail ed building target: Source "“source' not found, needed by target “target'.

Iy
=== SCONS 64

10 Controlling a Build From
the Command Line

SCons provides a number of ways for the writer of the SConscr i pt filesto give the users who will run SCons a
great deal of control over the build execution. The arguments that the user can specify on the command line are broken
down into three types:

Options
Command-line options always begin with one or two - (hyphen) characters. SCons provides ways for you to
examine and set options values from within your SConscr i pt files, aswell as the ability to define your own
custom options. See Section 10.1, “Command-Line Options’, below.

Variables
Any command-line argument containing an = (equal sign) is considered a variable setting with the form
var i abl e=val ue. SCons provides direct access to all of the command-line variable settings, the ability to
apply command-line variable settings to construction environments, and functions for configuring specific types
of variables (Boolean values, path names, etc.) with automatic validation of the user's specified values. See Sec-
tion 10.2, “Command-Linevar i abl e=val ue Build Variables’, below.

Targets
Any command-line argument that is not an option or a variable setting (does not begin with a hyphen and does
not contain an equal sign) is considered a target that the user (presumably) wants SCons to build. A list of Node
objects representing the target or targets to build. SCons provides access to the list of specified targets, as well
as ways to set the default list of targets from within the SConscr i pt files. See Section 10.3, “Command-Line
Targets’, below.

10.1. Command-Line Options

SCons has many command-line options that control its behavior. A SCons command-line option aways begins with
oneor two - (hyphen) characters.

10.1.1. Not Having to Specify Command-Line Options
Each Time: the SCONSFLAGS Environment Variable

Users may find themselves supplying the same command-line options every time they run SCons. For example, you
might find it savestimeto specify avalueof - j 2 to have SCons run up to two build commandsin parallel. To avoid
having to type -] 2 by hand every time, you can set the external environment variable SCONSFLAGS to a string
containing command-line options that you want SConsto use.

Getting Vaues Set by Command-Line Options: the
Get Opt i on Function

If, for example, you're using a POSIX shell that's compatible with the Bourne shell, and you aways want SCons to
use the - Qoption, you can set the SCONSFLAGS environment as follows:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...
[build output]
scons: done buil ding targets.
% export SCONSFLAGS="- Q'
% scons
[build output]

Users of csh-style shells on POSIX systems can set the SCONSFLAGS environment as follows:
$ setenv SCONSFLAGS "- Q'

Windows users may typically want to set the SCONSFLAGS in the appropriate tab of the Syst em Properties
window.

10.1.2. Getting Values Set by Command-Line Options:
the Get Opt i on Function

SCons provides the Get Opt i on function to get the values set by the various command-line options. One common
use of thisisto check whether or not the - h or - - hel p option has been specified. Normally, SCons does not print
its help text until after it has read all of the SConscri pt files, because it's possible that help text has been added
by some subsidiary SConscr i pt file deep in the source tree hierarchy. Of course, reading all of the SConscr i pt
filestakes extratime.

If you know that your configuration does not define any additional help text in subsidiary SConscr i pt files, you
can speed up the command-line help available to users by using the Get Qpt i on function to load the subsidiary
SConscri pt filesonly if the the user has not specified the- h or - - hel p option, like so:

if not GetOption('help'):
SConscri pt (' src/ SConscript', export='env')

In general, the string that you passto the Get Opt i on function to fetch the value of acommand-line option setting is
the same as the "most common" long option name (beginning with two hyphen characters), although there are some
exceptions. Thelist of SCons command-line options and the Get Opt i on strings for fetching them, are available in
the Section 10.1.4, “ Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

10.1.3. Setting Values of Command-Line Options: the
Set Opt i on Function

You can aso set the values of SCons command-line options from within the SConscr i pt files by using the Se-
t Opt i on function. The strings that you use to set the values of SCons command-line options are available in the
Section 10.1.4, “ Strings for Getting or Setting Vaues of SCons Command-Line Options” section, below.

Oneuse of the Set Opt i on functionisto specify avalueforthe-j or - -j obs option, so that users get the improved
performance of a parallel build without having to specify the option by hand. A complicating factor is that a good

Iy
=== SCONS 66

Strings for Getting or Setting Vaues of SCons Com-
mand-Line Options

value for the-j optionis somewhat system-dependent. One rough guideline is that the more processors your system
has, the higher you want to set the- j value, in order to take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a NUM_CPU en-
vironment variable to the number of processors on each system. A little bit of Python code to access the environment
variable and the Set Opt i on function provide the right level of flexibility:

i mport os

numcpu = int(os.environ.get(' NUM CPU, 2))
Set Opti on(' num j obs', num cpu)

print "running with -j", GetOption(' numjobs')

The above snippet of code setsthe value of the - - j obs option to the value specified in the $NUM_CPU environment
variable. (Thisisone of the exception caseswherethe string is spelled differently from the from command-line option.
The string for fetching or setting the - - j obs valueisnum j obs for historical reasons.) The code in this example
printsthe num j obs vauefor illustrative purposes. It uses a default value of 2 to provide some minimal parallelism
even on single-processor systems:

% scons -Q
running with -j 2
scons: ~.' is up to date.

But if the $NUM_CPU environment variable is set, then we use that for the default number of jobs:

% export NUM CPU="4"

% scons -Q

running with -j 4

scons: ~.' is up to date.

But any explicit -j or - -] obs value the user specifies an the command line is used first, regardless of whether or
not the SNUM_CPU environment variableis set:

% scons -Q -j 7

running with -j 7

scons: .' is up to date.
% export NUM CPU="4"

% scons -Q -j 3

running with -j 3

scons: .' is up to date.

10.1.4. Strings for Getting or Setting Values of SCons
Command-Line Options

The strings that you can pass to the Get Opt i on and Set Opt i on functions usually correspond to the first long-
form option name (beginning with two hyphen characters: - -), after replacing any remaining hyphen characters with
underscores.

Thefull list of strings and the variables they correspond to is as follows:

String for Get Opt i on and Set Opti on Command-Line Option(s)
cache_debug --cache-debug
[

'—‘-‘ SCONS 67

Adding Custom Command-Line Options. the AddOp-
ti on Function

String for Get Opt i on and Set Opti on

Command-Line Option(s)

cache_di sabl e

--cache-di sabl e

cache_force

--cache-force

cache_show

--cache- show

cl ean -c,--clean,--renove

config --config

directory -C,--directory

di skcheck --di skcheck

duplicate --duplicate

file -f,--file,--makefile ,--sconstruct
hel p -h,--help

ignore_errors

--ignore-errors

i mplicit_cache

--inplicit-cache

i mplicit_deps_changed

--inplicit-deps-changed

i mplicit_deps_unchanged

--inmplicit-deps-unchanged

interactive

--interact,--interactive

keep_goi ng -k, - - keep-goi ng

mex_drift --max-drift

no_exec -n,--no-exec,--just-print,--dry-run,--
recon

no site dir

--no-site-dir

num j obs

-j,--]jobs

profile_file

--profile

question

-q,--question

random

--random

repository

-Y,--repository,--srcdir

sil ent

-s,--silent,--quiet

site dir

--site-dir

stack_si ze

--stack-si ze

taskmastertrace file

--taskmastertrace

war n

--warn - -war ni ng

10.1.5. Adding Custom Command-Line Options: the Ad-
dOpt i on Function

SCons also alows you to define your own command-line options with the AddQpt i on function. The AddOpt i on
function takes the same arguments as the opt par se. add_opt i on function from the standard Python library. !
Once you have added a custom command-line option with the AddQpt i on function, the value of the option (if any)
is immediately available using the standard Get Opt i on function. (The value can also be set using Set Opt i on,
although that's not very useful in practice because a default value can be specified in directly inthe AddOpt i on call.)

1TheAddQ)t i on function is, in fact, implemented using a subclass of the opt par se. Opt i onPar ser .

Iy
=== SCONS 68

Command-Linevar i abl e=val ue Build Variables

One useful example of using this functionality isto providea- - pr ef i x for users:

AddOpt i on(' --prefix',
dest =" prefi x',
type='string',
nar gs=1,
action='store',
metavar='DI R,
hel p="install ati on prefix')

env = Environnment (PREFI X = Get Option(' prefix'))

installed_foo = env.|nstall (' $PREFI X/ usr/bin', 'foo.in")
Def aul t (i nstal | ed_f 0o0)

The above code uses the Get Opt i on function to set the $PREFI X construction variable to any value that the user
specifies with acommand-line option of - - pr ef i x. Because $PREFI X will expand to anull string if it's not initial -
ized, running SCons without the option of - - pr ef i x will install thefileinthe/ usr/ bi n/ directory:

% scons -Q -n
Install file: "foo.in" as "/usr/bin/foo.in"

But specifying - - pref i x=/t np/ i nst al | onthecommand line causesthefileto beinstalled inthe/ t np/ i n-
stal | /usr/ bin/ directory:

% scons -Q -n --prefix=/tnp/install
Install file: "foo.in" as "/tnp/install/usr/bin/foo.in"

10.2. Command-Line var i abl e=val ue Build
Variables

Y ou may want to control various aspects of your build by allowing the user to specify var i abl e=val ue valueson
the command line. For example, suppose you want users to be able to build a debug version of a program by running
SCons asfollows:

% scons - Q debug=1

SCons provides an ARGUMENTS dictionary that stores all of the vari abl e=val ue assignments from the com-
mand line. This alows you to modify aspects of your build in response to specifications on the command line.
(Note that unless you want to require that users always specify a variable, you probably want to use the Python
ARGUMENTS. get () function, which alows you to specify a default value to be used if there is no specification on
the command line.)

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in the ARGU-
MENTS dictionary:

env = Environment ()
debug = ARGUMENTS. get (' debug', 0)
i f int(debug):

Iy
=== SCONS 69

Command-Linevar i abl e=val ue Build Variables

env. Append(CCFLAGS = '-g')
env. Progran(' prog.c')

Thisresultsin the - g compiler option being used when debug=1 is used on the command line;

% scons - Q debug=0

CC -0 prog.o -c prog.c
CC -0 prog prog.o

% scons - Q debug=0

scons: ~.' is up to date.
% scons -Q debug=1

CC -0 prog.o -c -g prog.c
CC -0 prog prog.o

% scons -Q debug=1

scons: ~.' is up to date.

Notice that SCons keeps track of the last values used to build the object files, and as a result correctly rebuilds the
object and executable files only when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, because it is a dictionary, it can only store one value
for each specified keyword, and thus only "remembers’ the last setting for each keyword on the command line. This
makes the ARGUMENTS dictionary inappropriate if users should be able to specify multiple values on the command
line for a given keyword. Second, it does not preserve the order in which the variable settings were specified, which
is a problem if you want the configuration to behave differently in response to the order in which the build variable
settings were specified on the command line.

To accomodate these requirements, SCons provides an ARGLI ST variable that gives you direct access to
var i abl e=val ue settings on the command line, in the exact order they were specified, and without removing any
duplicate settings. Each element in the ARGLI ST variable isitself atwo-element list containing the keyword and the
value of the setting, and you must loop through, or otherwise select from, the elements of ARGLI ST to process the spe-
cific settingsyou want in whatever way isappropriate for your configuration. For example, thefollowing codeto let the
user add to the CPPDEFI NES construction variable by specifying multiple def i ne= settings on the command line:

cppdefines = []
for key, value in ARGLI ST:
if key == 'define':
cppdefi nes. append(val ue)
env = Envi r onnent (CPPDEFI NES = cppdefi nes)
env. Qbj ect (' prog.c')

Yields the following output:

% scons - Q defi ne=FOO

CC -0 prog.o -c -DFQOO prog.c

% scons - Q defi ne=FOO defi ne=BAR
CC -0 prog.o -c -DFQO - DBAR prog.c

Note that the ARGLI ST and ARGUMENTS variables do not interfere with each other, but merely provide dightly
different views into how the user specified var i abl e=val ue settings on the command line. You can use both
variables in the same SCons configuration. In general, the ARGUMENTS dictionary is more convenient to use, (since
you can just fetch variable settings through a dictionary access), and the ARGLI ST list ismore flexible (since you can
examine the specific order in which the user's command-line variabe settings).

Iy
=== SCONS 70

Controlling Command-Line Build Variables

10.2.1. Controlling Command-Line Build Variables

Being ableto use acommand-line build variable likedebug=1 ishandy, but it can be achoreto write specific Python
code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a
construction variable. To help with this, SCons supports a class to define such build variables easily, and a mechanism
to apply the build variables to a construction environment. This allows you to control how the build variables affect
construction environments.

For exampl e, suppose that you want users to set a REL EASE construction variable on the command line whenever the
time comes to build a program for release, and that the value of this variable should be added to the command line
with the appropriate - D option (or other command line option) to pass the value to the C compiler. Here's how you
might do that by setting the appropriate value in a dictionary for the $CPPDEFI NES construction variable;

vars = Vari abl es(None, ARGUVENTS)
vars. Add(' RELEASE', 'Set to 1 to build for rel ease', 0)
env = Environnment (vari abl es = vars,
CPPDEFI NES={' RELEASE BUI LD : '${RELEASE}'})
env. Program(['foo.c', 'bar.c'])

This SConst r uct file first creates a Var i abl es object which uses the values from the command-line options
dictionary ARGUMENTS (thevars = Vari abl es(None, ARGUMENTS) cal). It then uses the object's Add
method to indicate that the RELEASE variable can be set on the command line, and that its default value will be O
(the third argument to the Add method). The second argument is a line of help text; we'll learn how to use it in the
next section.

We then pass the created Var i abl es object asavari abl es keyword argument to the Envi r onnment call used
to create the construction environment. This then allows a user to set the RELEASE build variable on the command
line and have the variable show up in the command line used to build each object from a C sourcefile:

% scons - Q RELEASE=1
CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o0 bar.o

NOTE: Before SCons release 0.98.1, these build variables were known as "command-line build options.” The class
was actually named the Opt i ons class, and in the sections bel ow, the various functions were named Bool Opt i on,
EnunmOpt i on,Li st Opti on,Pat hOpt i on,PackageOpt i on and AddOpt i ons. Theseolder namesstill work,
and you may encounter theminolder SConscr i pt files, but they have been officially deprecated as of SConsversion
2.0.

10.2.2. Providing Help for Command-Line Build Variables

To make command-line build variables most useful, you ideally want to provide some help text that will describe
the available variables when the user runs scons - h. You could write this text by hand, but SCons provides an
easier way. Var i abl es abjects support a Gener at eHel pText method that will, as its name suggests, generate
text that describes the various variables that have been added to it. Y ou then pass the output from this method to the
Hel p function:

vars = Vari abl es(None, ARGUVMENTS)

vars. Add(' RELEASE', 'Set to 1 to build for rel ease', 0)
env = Environment (vari abl es = vars)

Hel p(vars. Gener at eHel pText (env))

Iy
=== SCONS 71

Reading Build Variables From aFile

SConswill now display some useful text when the - h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for rel ease
default: O
actual : O

Use scons -H for hel p about comand-|ine options.

Notice that the help output shows the default value, and the current actual value of the build variable.

10.2.3. Reading Build Variables From a File

Giving the user away to specify the value of abuild variable on the command line is useful, but can still be tediousiif
users must specify the variable every timethey run SCons. We can let users provide customized build variable settings
inalocal file by providing afile name when we create the Var i abl es object:

vars = Vari abl es(' custom py')
vars. Add(' RELEASE', 'Set to 1 to build for rel ease', 0)
env = Environnent (vari abl es = vars,
CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
env. Progran(['foo.c', '"bar.c'])
Hel p(vars. Gener at eHel pText (env))

This then allows the user to control the RELEASE variable by setting it inthe cust om py file:
RELEASE = 1

Note that thisfileis actually executed like a Python script. Now when we run SCons:

% scons -Q

cCc -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo0.c
cc -o foo foo.o0 bar.o

And if we change the contents of cust om py to:
RELEASE = 0

The object files are rebuilt appropriately with the new variable:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=0 bar.c
cc -o foo.o -c -DRELEASE BU LD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:

Iy
=== SCONS 72

Pre-Defined Build Variable Functions

vars = Variabl es(' custom py', ARGUMENTS)

where valuesin the option filecust om py get overwritten by the ones specified on the command line.

10.2.4. Pre-Defined Build Variable Functions

SCons provides a number of functions that provide ready-made behaviors for various types of command-line build
variables.

10.2.4.1. True/False Values: the Bool Vari abl e Build Variable Func-
tion

It's often handy to be able to specify avariable that controls asimple Boolean variablewithat r ue or f al se value. It
would be even more handy to accomodate users who have different preferencesfor how to representt r ue or f al se
values. TheBool Var i abl e function makesit easy to accomodate these common representationsof t r ue or f al se.

The Bool Var i abl e function takes three arguments: the name of the build variable, the default value of the build
variable, and the help string for the variable. It then returns appropriate information for passing to the Add method
of aVari abl es object, like so:

vars = Vari abl es(' custom py')
vars. Add(Bool Vari abl e(' RELEASE', 'Set to build for rel ease', 0))
env = Environnment (variabl es = vars,

CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Progran(' foo.c')

With this build variable, the RELEASE variable can now be enabled by setting it to the valueyes ort :

% scons - Q RELEASE=yes f 00.0
cc -o foo.o -c -DRELEASE BUI LD=True foo0.c

% scons -Q RELEASE=t foo0.0
cc -0 foo.o0 -c -DRELEASE BUI LD=True foo.c

Other valuesthat equatetot r ue includey, 1,on andal | .
Conversely, RELEASE may now be given af al se value by setting ittono or f :

% scons - Q RELEASE=no fo0o0.0
cc -0 foo.o0 -c -DRELEASE BUI LD=Fal se foo.c

% scons - Q RELEASE=f foo0.0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

Other valuesthat equateto f al se includen, 0, of f and none.
Lastly, if auser triesto specify any other value, SCons supplies an appropriate error message:
% scons - Q RELEASE=bad_val ue foo0.0

scons: *** Error converting option: RELEASE
Invalid val ue for bool ean option: bad_val ue
File "/home/ ny/ project/SConstruct”, line 4, in <nmodul e>

Iy
=== SCONS 73

Pre-Defined Build Variable Functions

10.2.4.2. Single Value From a List: the EnunVar i abl e Build Variable
Function

Suppose that we want a user to be able to set a COLOR variable that selects a background color to be displayed by
an application, but that we want to restrict the choices to a specific set of allowed colors. This can be set up quite
easily using the EnunVar i abl e, which takesalist of al | owed_val ues in addition to the variable name, default
value, and help text arguments:

vars = Vari abl es(' custom py')
vars. Add(EnunVari abl e(' COLOR , ' Set background color', 'red',

al | owed val ues=('red', 'green', 'blue')))
env = Environnent (variabl es = vars,
CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Progran(' foo.c')

The user can now explicity set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo0.0

cc -o foo.o -c -DCOLOR="red" foo0.cC
% scons - Q COLOR=bl ue foo.o0

cc -o foo.o -c -DCOLOR="Dbl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

But, almost more importantly, an attempt to set COLOR to avalue that's not in the list generates an error message:

% scons - Q COLOR=magenta fo00.0

scons: *** |nvalid value for option COLOR nmgenta. Valid values are: ('red', 'green',
File "/home/ ny/ project/SConstruct”, line 5, in <nmodul e>

The EnunVar i abl e function also supports away to map aternate namesto allowed values. Suppose, for example,
that we want to allow the user to use the word navy asasynonym for bl ue. We do this by adding amap dictionary
that will map its key valuesto the desired legal value:

vars = Vari abl es(' custom py')
vars. Add(EnunVari abl e(' COLOR , ' Set background color', 'red',
al | owed _val ues=('red', 'green', 'blue'),
map={' navy':'blue'}))
env = Environnent(variables = vars,
CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Progran(' foo.c')

As desired, the user can then use navy on the command line, and SCons will trandlate it into bl ue when it comes
time to use the COLOR variable to build atarget:

% scons -Q COLOR=navy foo0.0
cc -o foo.o -c -DCOLOR="bl ue" foo.c

By default, when using the EnunVar i abl e function, arguments that differ from the legal values only in case are
treated asillegal values:

Iy
=== SCONS 74

"b

Pre-Defined Build Variable Functions

% scons -Q COLOR=Red fo0o0.0

scons: *** |nvalid value for option COLOR Red. Valid values are: ('red', 'green',
File "/home/ ny/ project/SConstruct”, line 5, in <nmodul e>
% scons -Q COLOR=BLUE f 00. 0

scons: *** |nvalid value for option COLOR BLUE. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, line 5, in <nmodul e>
% scons -Q COLOR=nAVY fo00.0

scons: *** |nvalid value for option COLOR nAvY. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, line 5, in <nmodul e>

The EnunVar i abl e function can take an additional i gnor ecase keyword argument that, when set to 1, tells
SConsto allow case differences when the values are specified:

vars = Vari abl es(' custom py')

vars. Add(Enunmvari abl e(' COLOR , ' Set background color', 'red
al | owed_val ues=('red', 'green', 'blue'),
map={"' navy' :' bl ue'},
i gnor ecase=1))

env = Environnent (vari abl es = vars,

CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Program(' foo.c')

Which yields the output:

% scons -Q COLOR=Red fo0o0.0

cc -0 foo.o0 -c -DCOLOR="Red" foo0.cC
% scons - Q COLOR=BLUE f 00. 0

cc -o foo.o -c -DCOLOR="BLUE" foo0.cC
% scons -Q COLOR=nAVY fo00.0

cc -o foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

Notice that an i gnor ecase vaue of 1 preserves the case-spelling that the user supplied. If you want SCons to
trand ate the names into lower-case, regardless of the case used by the user, specify ani gnor ecase value of 2:

vars = Vari abl es(' custom py')

vars. Add(Enumvari abl e(' COLOR , ' Set background color', 'red
al | owed_val ues=('red', 'green', 'blue'),
map={"' navy' :' bl ue'},
i gnor ecase=2))

env = Environnent (vari abl es = vars,

CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Program(' foo.c')

Now SConswill use values of r ed, gr een or bl ue regardiess of how the user spells those values on the command
line:

% scons -Q COLOR=Red fo0o0.0

Iy
=== SCONS 75

" bl ue'

" bl ue

" bl ue

Pre-Defined Build Variable Functions

cc -0 foo.o -c -DCOLOR="red" foo0.cC
% scons - Q COLOR=nAVY fo00.0

cc -0 foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=CREEN f 00. 0

cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the Li st Vari abl e Build Vari-
able Function

Another way in which you might want to allow usersto control abuild variableisto specify alist of one or more legal
values. SCons supports this through the Li st Var i abl e function. If, for example, we want a user to be able to set
a COLORS variable to one or more of the legal list of values:

vars = Vari abl es(' custom py')
vars. Add(Li st Vari abl e(' COLORS', 'List of colors', O,
['red', 'green', 'blue']))
env = Environnment (variabl es = vars,
CPPDEFI NES={' COLORS' : '"${COLORS}"'})
env. Progran(' foo.c')

A user can now specify a comma-separated list of legal values, which will get translated into a space-separated list
for passing to the any build commands:

% scons - Q COLORS=red, bl ue foo.o

cc -o foo.o -c -DCOLORS="red blue" foo.c

% scons - Q COLORS=bl ue, green, red foo.o0

cc -o foo.o -c -DCOLORS="bl ue green red" foo.c

In addition, the Li st Var i abl e function allows the user to specify explicit keywords of al | or none to select all
of the legal values, or none of them, respectively:

% scons -Q COLORS=al |l foo.0

cc -o foo.o -c -DCOLORS="red green bl ue" foo.c
% scons - Q COLORS=none foo0.0

cc -o foo.o -c -DCOLORS="" foo0.cC

And, of course, anillegal value still generates an error message:

% scons - Q COLORS=magenta foo.0

scons: *** Error converting option: COLORS
Invalid val ue(s) for option: nagenta
File "/homel/ ny/ project/SConstruct”, line 5, in <nmodul e>

10.2.4.4. Path Names: the Pat hVari abl e Build Variable Function

SCons supports a Pat hVar i abl e function to make it easy to create a build variable to control an expected path
name. If, for example, you need to define avariablein the preprocessor that controlsthelocation of aconfigurationfile:

vars = Vari abl es(' custom py')

vars. Add(Pat hVvari abl e(" CONFI G ,
"Path to configuration file',
"/etc/nmy_config'))

Iy
=== SCONS 76

Pre-Defined Build Variable Functions

env = Environnment (vari abl es = vars,
CPPDEFI NES={' CONFI G_FI LE'" : '"$CONFI G''})
env. Program(' foo.c')

This then allows the user to override the CONFI Gbuild variable on the command line as necessary:

% scons -Q foo.0

cc -o foo.o -c -DCONFI G FI LE="/etc/ my_config" foo.c
% scons -Q CONFI G=/usr/ | ocal /etc/other _config foo.o
scons: foo.0' is up to date.

By default, Pat hVar i abl e checksto make sure that the specified path exists and generates an error if it doesn't:

% scons - Q CONFI G=/ does/ not/ exi st foo0.0

scons: *** Path for option CONFI G does not exist: /does/not/exist
File "/home/ ny/ project/SConstruct”, line 6, in <nmodul e>

Pat hVar i abl e provides anumber of methods that you can use to change this behavior. If you want to ensure that
any specified paths are, in fact, files and not directories, use the Pat hVar i abl e. Pat hl sFi | e method:

vars = Vari abl es(' custom py')
vars. Add(Pat hVvari abl e(" CONFI G ,
"Path to configuration file',
"/etc/my_config',
Pat hVari abl e. Pat hl sFi | e))
env = Environnent (vari abl es = vars,
CPPDEFI NES={' CONFI G_FI LE'" : '"$CONFI G''})
env. Program(' foo.c')

Conversely, to ensure that any specified paths are directories and not files, use the Pat hVari abl e. Pat hl sDi r
method:

vars = Vari abl es(' custom py')
vars. Add(Pat hVvari abl e(' DBDI R ,
'Path to database directory',
"/var/nmy_dbdir"',
Pat hVari abl e. Pat hl sDir))
env = Environnment (vari abl es = vars,
CPPDEFI NES={' DBDIR : '"$DBDIR''})
env. Program(' foo.c')

If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't
already exist, use the Pat hvar i abl e. Pat hl sDi r Cr eat e method:

vars = Vari abl es(' custom py')

vars. Add(Pat hVvari abl e(' DBDI R ,
'Path to database directory',
"/var/nmy_dbdir"',
Pat hVari abl e. Pat hl sDi r Cr eat e))

Iy
=== SCONS 77

Adding Multiple Command-Line Build Variables at Once

env = Environnment (vari abl es = vars,
CPPDEFI NES={' DBDIR : '"$DBDIR''})
env. Program(' foo.c')

Lastly, if you don't care whether the path exists, is afile, or a directory, use the Pat hVvar i abl e. Pat hAccept
method to accept any path that the user supplies:

vars = Vari abl es(' custom py')
vars. Add(Pat hVvari abl e(" QUTPUT" ,
"Path to output file or directory',
None,
Pat hVari abl e. Pat hAccept))
env = Environnment (vari ables = vars,
CPPDEFI NES={' QUTPUT' : ' "$QUTPUT"'})
env. Progran(' foo.c')

10.2.4.5. Enabled/Disabled Path Names: the PackageVar i abl e
Build Variable Function

Sometimes you want to give users even more control over a path name variable, allowing them to explicitly enable
or disable the path name by using yes or no keywords, in addition to allow them to supply an explicit path name.
SCons supportsthe PackageVar i abl e function to support this:

vars = Vari abl es(' custom py')
var s. Add(PackageVari abl e(' PACKAGE' ,
'Locati on package',
"/opt/location'))
env = Environnent (vari abl es = vars,
CPPDEFI NES={' PACKAGE' : '"$PACKAGE"'})
env. Program(' foo.c')

When the SConscr i pt fileusesthe PackageVar i abl e funciton, user can now still use the default or supply an
overriding path name, but can now explicitly set the specified variable to a value that indicates the package should be
enabled (in which case the default should be used) or disabled:

% scons -Q foo.0

cc -o foo.o -c - DPACKAGE="/opt/I| ocati on" foo.c

% scons - Q PACKAGE=/usr/l ocal /|l ocation foo.o0

cc -o foo.o -c -DPACKAGE="/usr/l|ocal /Il ocation" foo.c
% scons - Q PACKAGE=yes fo00.0

cc -o foo.o0 -c - DPACKAGE="True" foo.c

% scons - Q PACKAGE=no fo00.o0

cc -o foo.o -c - DPACKAGE="Fal se" foo.c

10.2.5. Adding Multiple Command-Line Build Variables at
Once

Lastly, SCons provides away to add multiple build variablesto aVar i abl es object at once. Instead of having to call
the Add method multiple times, you can call the AddVar i abl es method with alist of build variables to be added

Iy
=== SCONS 78

Handling Unknown Command-Line Build Variables: the
UnknownVar i abl es Function

to the object. Each build variable is specified as either a tuple of arguments, just like you'd pass to the Add method
itself, or as acall to one of the pre-defined functions for pre-packaged command-line build variables. in any order:

vars = Vari abl es()

vars. AddVar i abl es(
("RELEASE', 'Set to 1 to build for rel ease', 0),
("CONFIG, 'Configuration file', '/etc/ny_config'),

Bool Vari abl e(' warni ngs', 'conpilation with -Wall and simliar', 1),
EnunVari abl e(' debug', 'debug out put and synbols', 'no',
al | owed_val ues=("'yes', 'no', 'full'),

map={}, ignorecase=0), # case sensitive
Li st Vari abl e(' shared'
‘"libraries to build as shared libraries',
“all',
nanes = list_of |ibs),
PackageVari abl e(' x11',
'use X11 installed here (yes = search sone pl aces)',
‘yes'),
Pat hVari able('qtdir', 'where the root of @ is installed' , qtdir),

10.2.6. Handling Unknown Command-Line Build Vari-
ables: the UnknownVar i abl es Function

Usersmay, of course, occasionally misspell variable namesin their command-line settings. SCons does not generate an
error or warning for any unknown variabl es the users specifies on the command line. (Thisisin no small part because
you may be processing the arguments directly using the ARGUMENTS dictionary, and therefore SCons can't know in
the general case whether a given "misspelled” variable is really unknown and a potential problem, or something that
your SConscri pt filewill handle directly with some Python code.)

If, however, you'reusingaVar i abl es object to define aspecific set of command-line build variablesthat you expect
usersto be ableto set, you may want to provide an error message or warning of your own if the user suppliesavariable
setting that is not among the defined list of variable names known to the Var i abl es object. You can do this by
calling the UnknownVar i abl es method of the Var i abl es object:

vars = Vari abl es(None)
vars. Add(' RELEASE', 'Set to 1 to build for rel ease', 0)
env = Environnent (variabl es = vars,
CPPDEFI NES={' RELEASE BUI LD : '${RELEASE}'})

unknown = vars. UnknownVari abl es()
i f unknown:

print "Unknown variabl es:", unknown. keys()

Exit (1)
env. Progran(' foo.c')

TheUnknownVar i abl es method returns adictionary containing the keywords and values of any variablesthe user
specified on the command line that are not among the variables known to the Var i abl es object (from having been
specified using the Var i abl es object'sAdd method). In the examble above, we check for whether the dictionary

Iy
=== SCONS 79

Command-Line Targets

returned by the UnknownVar i abl es is non-empty, and if so print the Python list containing the names of the
unknwown variables and then call the Exi t function to terminate SCons:

% scons - Q NOT_KNOWN=f oo
Unknown vari abl es: [' NOT_KNOW]

Of course, you can process the items in the dictionary returned by the UnknownVar i abl es function in any way
appropriate to your build configuration, including just printing a warning message but not exiting, logging an error
somewhere, etc.

Note that you must delay the call of UnknownVar i abl es until after you have applied the Var i abl es objecttoa
construction environment with thevar i abl es= keyword argument of an Envi r onment call.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COVMAND LI NE_TARGETS Variable

SCons supportsa COVMAND LI NE_TARGETS variablethat lets you fetch the list of targets that the user specified on
the command line. Y ou can use the targets to manipul ate the build in any way you wish. As asimple example, suppose
that you want to print a reminder to the user whenever a specific program is built. Y ou can do this by checking for
the target in the COMMAND LI NE_TARGETS list:

if "bar' in COMVAND LI NE_TARGETS:

print "Don't forget to copy bar' to the archive!"
Def aul t (Progranm(' foo.c'))
Progran(' bar.c')

Then, running SCons with the default target works as it always does, but explicity specifying the bar target on the
command line generates the warning message:

% scons -Q

cc -o foo.o -c foo.c

cc -o foo foo.o

% scons -Q bar

Don't forget to copy "bar' to the archive!
CC -0 bar.o -c bar.c

Cc -0 bar bar.o

Another practical use for the COVMMAND_LI NE_TARCETS variable might be to speed up a build by only reading
certain subsidiary SConscr i pt filesif aspecific target is requested.

10.3.2. Controlling the Default Targets: the Def aul t
Function

One of the most basic things you can control is which targets SCons will build by default--that is, when there are no
targets specified on the command line. As mentioned previously, SCons will normally build every target in or below
the current directory by default--that is, when you don't explicitly specify one or more targets on the command line.
Sometimes, however, you may want to specify explicitly that only certain programs, or programsin certain directories,
should be built by default. Y ou do thiswith the Def aul t function:

Iy
=== SCONS 80

Controlling the Default Targets. the Def aul t Function

env = Environment ()

hell o = env. Progran(' hello.c")
env. Progran(' goodbye. c')

Def aul t (hel | o)

ThisSConst r uct fileknowshow to build two programs, hel | o andgoodbye, but only buildsthehel | o program
by default:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q

scons: " hello' is up to date
% scons - Q goodbye

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

Note that, even when you use the Def aul t function in your SConst r uct file, you can still explicitly specify the
current directory (.) on the command line to tell SConsto build everything in (or below) the current directory:

% scons -Q .

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

You can aso call the Def aul t function more than once, in which case each call adds to the list of targets to be
built by default:

env = Environment ()

progl = env. Progran(' progl.c')
Def aul t (progl)

prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (pr og3)

Or you can specify more than onetarget in asingle call to the Def aul t function;

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (progl, prog3)

Either of these last two examples will build only the progl and prog3 programs by default:

% scons -Q

cc -0 progl.o -c progl.c
cCc -0 progl progl.o

cc -0 prog3.0 -c prog3.c

Iy
=== SCONS 81

Controlling the Default Targets. the Def aul t Function

cc -0 prog3 prog3.o0

% scons -Q .

CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

You can list adirectory as an argument to Def aul t :

env = Environment ()

env. Progran([' progl/ main.c', 'progl/foo.c'])
env. Progran([' prog2/ main.c', 'prog2/bar.c'])
Def aul t (" progl')

In which case only the target(s) in that directory will be built by default:

% scons -Q

cc -0 progl/foo.o -c progl/foo.c

cc -0 progl/main.o -c progl/ main.c

cCc -0 progl/ main progl/ main.o progl/foo.o
% scons -Q

scons: "progl' is up to date.

% scons -Q .

CC -0 prog2/bar.o -c prog2/bar.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ main prog2/ main.o prog2/ bar.o

Lastly, if for some reason you don't want any targets built by default, you can use the Python None variable:

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
Def aul t (None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default() targets found. Stop.
Found nothing to build

% scons -Q .

cc -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.0 -c prog2.c

CC -0 prog2 prog2.o0

10.3.2.1. Fetching the List of Default Targets: the DEFAULT TARGETS
Variable

SCons supports a DEFAULT_TARGETS variable that lets you get at the current list of default targets. The
DEFAULT_TARGETS variable has two important differences from the COMVAND LI NE_TARGETS variable. First,
the DEFAULT_TARGETS variableisalist of internal SCons nodes, so you need to convert the list elements to strings
if you want to print them or look for a specific target name. Fortunately, you can do this easily by using the Python
map function to run the list through st r :

Iy
=== SCONS 82

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

progl = Progran(' progl.c')
Def aul t (progl)
print "DEFAULT_TARGETS is", map(str, DEFAULT_TARGETS)

(Keep in mind that all of the manipulation of the DEFAULT_TARCGETS list takes place during the first phase when
SConsisreading up the SConscr i pt files, whichis obviousif we leave off the - Qflag when we run SCons:)

% scons

scons: Readi ng SConscript files ...
DEFAULT_TARGETS is ['progl']

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cc -0 progl progl.o

scons: done buil ding targets.

Second, the contents of the DEFAULT_TARGETS list change in response to cals to the Def aul t function, as you
can see from the following SConst r uct file:

progl = Progran(' progl.c')

Def aul t (progl)

print "DEFAULT TARGETS is now', map(str, DEFAULT TARGETS)
prog2 = Progran(' prog2.c')

Def aul t (pr og2)

print "DEFAULT TARGETS is now', map(str, DEFAULT TARGETS)

Which yields the output:

% scons

scons: Readi ng SConscript files ...
DEFAULT_TARGETS is now [' progl']
DEFAULT_TARGETS is now ['progl', 'prog2']
scons: done readi ng SConscript files.
scons: Building targets ...

ccC -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.o0 -c prog2.c

CC -0 prog2 prog2.o0

scons: done buil ding targets.

In practice, this simply means that you need to pay attention to the order in which you call the Def aul t function and
refer to the DEFAULT_TARGCETS list, to make sure that you don't examine the list before you've added the default
targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BU LD _TARGETS Variable

We've aready been introduced to the COVMAND LI NE_TARGETS variable, which contains alist of targets specified
on the command line, and the DEFAULT_TARGETS variable, which contains a list of targets specified via calls to
the Def aul t method or function. Sometimes, however, you want a list of whatever targets SCons will try to build,

Iy
=== SCONS 83

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

regardless of whether the targets came from the command line or a Def aul t call. You could code this up by hand,
asfollows:

i f COMVAND LI NE_TARGETS:

targets = COVIVAND LI NE_TARGETS
el se:

targets = DEFAULT_TARCETS

SCons, however, provides a convenient BUI LD_TARGETS variable that eliminates the need for this by-hand manip-
ulation. Essentially, theBUI LD_TARGETS variable contains alist of the command-line targets, if any were specified,
and if no command-line targets were specified, it contains a list of the targets specified via the Def aul t method
or function.

Because BUI LD _TARGETS may contain alist of SCons nodes, you must convert the list elements to strings if you
want to print them or look for a specific target name, just like the DEFAULT _TARGETS list:

progl = Progran('progl.c')

Progran(' prog2.c')

Def aul t (progl)

print "BU LD TARGETS is", nmap(str, BU LD TARGETS)

Notice how the value of BUI LD _TARGETS changes depending on whether atarget is specified on the command line:

% scons -Q

BU LD _TARGETS is ['progl']
cc -0 progl.o -c progl.c
cc -0 progl progl.o

% scons -Q prog2

BU LD _TARGETS is ['prog2']
CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

% scons -Q -c .

BU LD TARGETS is ['.']
Renoved progl. o

Renoved progl

Renoved prog2.o

Renoved prog2

Iy
=== SCONS 84

11 Installing Files in Other Di-
rectories: the |l nst al | Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You usethel nst al |
method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environnent ()
hell o = env. Progran(' hello.c")
env.Install ('/usr/bin', hello)

Note, however, that installing afileis still considered atype of file"build.” Thisisimportant when you remember that
the default behavior of SConsisto build filesin or below the current directory. If, as in the example above, you are
installing filesin adirectory outside of thetop-level SConst r uct file'sdirectory tree, you must specify that directory
(or ahigher directory, such as/) for it to install anything there:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersometo remember (and type) the specific destination directory in which the program (or any
other file) should beinstalled. Thisis an areawherethe Al i as function comes in handy, allowing you, for example,
to create a pseudo-target named i nst al | that can expand to the specified destination directory:

env = Environment ()

hello = env. Progran(' hello.c")
env.Install ('/usr/bin, hello)
env.Alias('install', '"/usr/bin")

This then yields the more natural ability to install the program in its destination as follows:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q instal

Installing Multiple Filesin a Directory

Install file: "hello" as "/usr/bin/hello"

11.1. Installing Multiple Files in a Directory

You can install multiplefilesinto adirectory simply by calling thel nst al | function multiple times:

env = Environnent ()

hello = env. Progran(' hello.c")
goodbye = env. Progran(' goodbye.c')
env.Install ('/usr/bin, hello)
env.Install ('/usr/bin', goodbye)
env. Alias('install', '/usr/bin")

Or, more succinctly, listing the multiple input filesin alist (just like you can do with any other builder):

env = Environnent ()

hell o = env. Progran(' hello.c')

goodbye = env. Progran{' goodbye. c')
env.Install ('/usr/bin', [hello, goodbye])
env.Alias('install', '/usr/bin")

Either of these two examplesyields:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye"
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

Thel nst al | method preserves the name of the file when it is copied into the destination directory. If you need to
change the name of the file when you copy it, usethe | nst al | As function:

env = Environment ()

hello = env. Progranm(' hello.c")

env. I nstall As('/usr/bin/hello-new , hello)
env.Alias('install', '"/usr/bin")

Thisinstallsthe hel | o program with the name hel | 0- newasfollows:

% scons -Q instal

cc -o hello.o -c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello-new

Iy
=== SCONS 86

Installing Multiple Files Under Different Names

11.3. Installing Multiple Files Under Different
Names

Lastly, if you have multiple files that all need to be installed with different file names, you can either call the | n-
st al | As function multiple times, or as a shorthand, you can supply same-length lists for both the target and source
arguments:

env = Environnent ()
hell o = env. Progran(' hello.c")
goodbye = env. Progran{(' goodbye. c')
env.Install As(['/usr/bin/hello-new,
"/ usr/ bi n/ goodbye- new],
[hel | o, goodbye])
env.Alias('install', '/usr/bin")

In this case, the | nst al | As function loops through both lists simultaneously, and copies each source file into its
corresponding target file name:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye-new'
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello-new

Iy
=== SCONS 87

12 Platform-Independent File
System Manipulation

SCons provides a number of platform-independent functions, called f act or i es, that perform common file system
mani pulations like copying, moving or deleting files and directories, or making directories. These functionsaref ac-
t ori es becausethey don't perform the action at the time they're called, they each return an Act i on object that can
be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy
Factory

Suppose you want to arrange to make a copy of afile, and don't have a suitable pre-existing builder. 1 One way would
be to use the Copy action factory in conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at the time
file.out ishbuilt, and that the order of the arguments is the same as that of a builder itself--that is, target first,
followed by source:

% scons -Q
Copy("file.out", "file.in")

Y ou can, of course, name afile explicitly instead of using $TARGET or $SOURCE:
Conmmand("file.out", [], Copy("S$TARGET", "file.in"))
Which executes as.

% scons -Q
Copy("file.out", "file.in")

1 Unfortunately, in the early days of SCons design, we used the name Copy for the function that returns a copy of the environment, otherwise that
would be the logical choice for aBuilder that copies afile or directory tree to atarget location.

Deleting Files or Directories: The Del et e Factory

The usefulness of the Copy factory becomes more apparent when you useitin alist of actions passed to the Command
builder. For example, suppose you needed to run afile through a utility that only modifies files in-place, and can't
"pipe" input to output. One solution isto copy the source file to atemporary file name, run the utility, and then copy
the modified temporary file to the target, which the Copy factory makes extremely easy:

Command("file.out", "file.in",
[
Copy("tenmpfile", "$SOURCE"),
"nmodi fy tenpfile",
Copy (" $TARGET", "tenpfile"),
1)

The output then looks like:

% scons -Q

Copy("tenpfile", "file.in")
nodi fy tenmpfile
Copy("file.out", "tenpfile")

The Copy factory has athird optional argument which controls how symlinks are copied.

Synbolic |ink shallow copied as a new synbolic |ink:
Command(" Li nkl n", "LinkQut", Copy("$TARGET", "$SOURCE'[, True]))

Synbolic link target copied as a file or directory:
Command("Li nkln", "FileODirectoryQut", Copy("$TARGET", "$SOURCE', Fal se))

12.2. Deleting Files or Directories: The Del et e
Factory

If you need to delete a file, then the Del et e factory can be used in much the same way as the Copy factory. For
example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we
could add Del et e to the beginning of the command list:

Command("file.out", "file.in",
[
Del ete("tenpfile"),
Copy("tenpfile", "$SOURCE"),
"modi fy tenpfile",
Copy (" $TARGET", "tenpfile"),
1)

Which then executes as follows:
% scons -Q

Del ete("tenpfile")
Copy(“"tenpfile", "file.in")

Iy
=== SCONS 89

Moving (Renaming) Files or Directories. The Move Fac-
tory

nodi fy tempfile
Copy("file.out”, "tenpfile")

Of course, like all of these Act i on factories, the Del et e factory also expands $TARGET and $SOURCE variables
appropriately. For example:

Command("file.out", "file.in",

[
Del et e(" $TARGET") ,

Copy (" $TARGET", "$SOURCE")
1)

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

Note, however, that you typically don't need to call the Del et e factory explicitly in this way; by default, SCons
deletes its target(s) for you before executing any action.

One word of caution about using the Del et e factory: it has the same variable expansions available as any other
factory, including the $SOURCE variable. Specifying Del et e(" $SOURCE") is not something you usually want to
do!

12.3. Moving (Renaming) Files or Directories:
The Move Factory

The Mbve factory allows you to rename afile or directory. For example, if we don't want to copy the temporary file,
we could use:

Command("file.out", "file.in",

[
Copy("tenpfile", "$SOURCE"),
"modi fy tenpfile",
Move(" $TARCET", "tenpfile"),
1)

Which would execute as:

% scons -Q

Copy(“"tenpfile", "file.in")
nodi fy tempfile
Move("file.out", "tenpfile")

12.4. Updating the Modification Time of a File:
The Touch Factory

If you just need to update the recorded modification time for afile, use the Touch factory:

Iy
=== SCONS 90

Creating a Directory: The Mkdi r Factory

Command("file.out”, "file.in",
[
Copy(" $TARGET", "$SCURCE"),
Touch(" $TARGET"),

1)

Which executes as:

% scons -Q
Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdi r Factory

If you need to create a directory, use the Mkdi r factory. For example, if we need to process a file in a temporary
directory in which the processing tool will create other files that we don't care about, you could use:

Command("file.out", "file.in",

[
Del ete("tenpdir"),
Mkdir("tenpdir"),
Copy("tenpdir/${SOURCE.file}", "$SOURCE"),
"process tenpdir",
Move(" $TARGET", "tenpdir/output_file"),
Del ete("tenpdir"),

1)

Which executes as:

% scons -Q

Delete("tenmpdir™)

Mkdir("tenmpdir")

Copy(“"tenmpdir/file.in", "file.in")

process tenpdir

Move("file.out”, "tenpdir/output file")

scons: *** [file.out] tenpdir/output file: No such file or directory

12.6. Changing File or Directory Permissions:
The Chnod Factory

To change permissions on a file or directory, use the Chnod factory. The permission argument uses POSIX-style
permission bits and should typically be expressed as an octal, not decimal, number:

Command("file.out”, "file.in",
[
Copy(" $TARGET", "$SCURCE"),
Chrmod(" $TARGET", 0755),

b4

SCONS 91

Executing an action immediately: the Execut e Function

1)

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chrnod("file.out", 0755)

12.7. Executing an action immediately: the Ex-
ecut e Function

We've been showing you how to use Act i on factories in the Conmaind function. Y ou can also execute an Act i on
returned by a factory (or actualy, any Act i on) at the time the SConscr i pt fileisread by using the Execut e
function. For example, if we need to make sure that a directory exists before we build any targets,

Execute(Mdir (' /tnmp/ ny_tenp directory'))

Notice that thiswill create the directory whilethe SConscr i pt fileisbeing read:

% scons

scons: Readi ng SConscript files ...
Mkdir("/tnmp/ my_tenp directory")
scons: done readi ng SConscript files.
scons: Building targets ...

scons: ~.' is up to date.

scons: done buil ding targets.

If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native
Python os. nkdi r () function. The advantage here is that the Mcdi r action will behave appropriately if the user
specifiesthe SCons - n or - q options--that is, it will print the action but not actually make the directory when - n is
specified, or make the directory but not print the action when - q is specified.

The Execut e function returnsthe exit status or return value of the underlying action being executed. It will also print
an error message if the action fails and returns a non-zero value. SCons will not, however, actually stop the build if
the action fails. If you want the build to stop in response to afailurein an action called by Execut e, you must do so
by explicitly checking the return value and calling the Exi t function (or a Python equivalent):

if Execute(Mdir('/tnp/ny_tenp directory')):
A problem occurred while making the tenp directory.
Exit (1)

Iy
=== SCONS 92

13 Controlling Removal of
Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons determines that
an target file needs to be rebuilt and removes the existing version of the target before executing The second is when
SCons is invoked with the - ¢ option to "clean" atree of its built targets. These behaviours can be suppressed with
the Pr eci ous and Nod ean functions, respectively.

13.1. Preventing target removal during build:
the Preci ous Function

By default, SCons removestargets before building them. Sometimes, however, thisis not what you want. For example,
you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent
object files. In such cases, you can use the Pr eci ous method to prevent SCons from removing the target before
itisbuilt:

env = Envi ronnment (RANLI BCOVE' ')
lib env. Library('foo', ['fl.c', 'f2.¢', 'f3.¢c'])
env. Preci ous(!lib)

Although the output doesn't look any different, SCons does not, in fact, delete the target library before rebuilding it:

% scons -Q

cc -o fl.o-c fil.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0

SConswill, however, still delete files marked as Pr eci ous when the - ¢ option is used.

13.2. Preventing target removal during clean:
the NoCl ean Function

By default, SCons removes all built targets when invoked with the - ¢ option to clean a source tree of built targets.
Sometimes, however, thisis not what you want. For example, you may want to remove only intermediate generated

Removing additional files during clean: the Cl ean Func-
tion

files (such asobject files), but leave thefinal targets (the libraries) untouched. In such cases, you can usethe NoCl ean
method to prevent SCons from removing atarget during a clean:

env = Envi ronnment (RANLI BCOVE' ')
lib = env.Library('foo', ['fl.c', 'f2.¢c', '"f3.¢c'])
env. NoCl ean(| i b)

Notice that thel i bf 0o. a isnot listed as aremoved file:

% scons -Q

cc -ofl.o-cfl.c

cc -o f2.0-c f2.c

cc -o f3.0-c f3.c

ar rc libfoo.a f1.0 f2.0 f3.0

% scons -cC

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved f1.0

Renoved f 2.0

Renoved f 3.0

scons: done cl eani ng targets.

13.3. Removing additional files during clean:
the C ean Function

There may be additional files that you want removed when the - ¢ option is used, but which SCons doesn't know
about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part
of building the target file you want. Y ou would like the log file cleaned, but you don't want to have to teach SCons
that the command "builds' two files.

You can use the Cl ean function to arrange for additional files to be removed when the - ¢ option is used. Notice,
however, that the Cl ean function takes two arguments, and the second argument is the name of the additional file
you want cleaned (f 0o. | og in this example):

t = Conmand('foo.out', 'foo.in', 'build -o $TARGET $SOURCE')
Clean(t, 'foo.log")

Thefirst argument isthetarget with which you want the cleaning of thisadditional file associated. Inthe above example,
we've used the return value from the Command function, which representsthe f 0o. out target. Now whenever the
f 00. out targetis cleaned by the - ¢ option, thef 0o. | og filewill be removed as well:

% scons -Q

build -o foo.out foo.in
% scons -Q -c

Renmpoved f oo. out

Renmoved f oo. | og

Iy
=== SCONS 94

14 Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided into a
hierarchy of directories. Organizing alarge software build using SCons involves creating a hierarchy of build scripts
using the SConscr i pt function.

14.1. SConscri pt Files

Aswe've dready seen, the build script at the top of thetreeiscalled SConst r uct . Thetop-level SConst r uct file
canusetheSConscri pt functiontoinclude other subsidiary scriptsin the build. These subsidiary scriptscan, inturn,
use the SConscr i pt function to include still other scripts in the build. By convention, these subsidiary scripts are
usually named SConscr i pt . For example, atop-level SConst r uct file might arrange for four subsidiary scripts
to beincluded in the build as follows:

SConscri pt ([' drivers/displ ay/ SConscri pt',
"drivers/ nouse/ SConscri pt',
' par ser/ SConscri pt',
"utilities/SConscript'])

In this case, the SConst r uct filelists al of the SConscri pt filesin the build explicitly. (Note, however, that
not every directory in the tree necessarily hasan SConscr i pt file)) Alternatively, thedr i ver s subdirectory might
contain an intermediate SConscr i pt file, in which casethe SConscri pt cal inthetop-level SConst ruct file
would look like:

SConscri pt (['drivers/ SConscript',
' par ser/ SConscri pt',
‘utilities/SConscript'])

And the subsidiary SConscr i pt fileinthedri ver s subdirectory would look like:

SConscri pt ([' di spl ay/ SConscri pt',
' mouse/ SConscript'])

Whether you list all of theSConscr i pt filesinthetop-level SConst r uct file, or placeasubsidiary SConscr i pt
filein intervening directories, or use some mix of the two schemes, is up to you and the needs of your software.

Path Names Are Relative to the SConscr i pt Directory

14.2. Path Names Are Relative to the SCon-
scri pt Directory

Subsidiary SConscr i pt filesmakeit easy to create abuild hierarchy because al of the file and directory namesin a
subsidiary SConscr i pt filesareinterpreted relativeto thedirectory inwhichthe SConscr i pt filelives. Typicaly,
thisallows the SConscri pt file containing the instructions to build atarget file to live in the same directory as the
source files from which the target will be built, making it easy to update how the software is built whenever files are
added or deleted (or other changes are made).

For example, suppose we want to build two programs pr ogl and pr og2 in two separate directories with the same
names as the programs. One typical way to do this would be with atop-level SConst r uct filelike this:

SConscri pt ([' progl/ SConscri pt',
' prog2/ SConscript'])

And subsidiary SConscr i pt filesthat look like this:

env = Environnent ()
env. Program(' progl', ['main.c', 'fool.c', 'foo2.c'])

And this:

env = Environnent ()
env. Progran(' prog2', ['main.c', '"barl.c', 'bar2.c'])

Then, when we run SCons in the top-level directory, our build looks like:

% scons -Q

cc -o progl/fool.o -c progl/fool.c

cc -0 progl/foo2.0 -c progl/foo2.c

cc -0 progl/main.o -c progl/ main.c

cc -0 progl/progl progl/ main.o progl/fool.o progl/foo2.o0
cC -0 prog2/barl.o -c prog2/barl.c

CC -0 prog2/bar2.0 -c prog2/ bar2.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ prog2 prog2/ mai n.o prog2/barl.o prog2/bar2.0

Notice the following: First, you can have files with the same names in multiple directories, like main.c in the above
example. Second, unlike standard recursive use of Make, SCons stays in the top-level directory (where the SCon-
st ruct filelives) and issues commands that use the path names from the top-level directory to the target and source
files within the hierarchy.

14.3. Top-Level Path Names in Subsidiary
SConscri pt Files

If you need to use afile from another directory, it's sometimes more convenient to specify the path to afile in another
directory from the top-level SConst r uct directory, even when you're using that file in asubsidiary SConscr i pt

Iy
=== SCONS 96

Absolute Path Names

filein asubdirectory. Y ou can tell SConsto interpret a path name asrelative to thetop-level SConst r uct directory,
not the local directory of the SConscr i pt file, by appending a# (hash mark) to the beginning of the path name:

env = Environment ()
env. Program(' prog', ['main.c', "#lib/fool.c', 'foo2.c'])

In this example, thel i b directory is directly underneath the top-level SConst r uct directory. If the above SCon-
scri pt fileisin asubdirectory named sr ¢/ pr og, the output would look like:

% scons -Q

cc -o lib/fool.o -c lib/fool.c

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

CC -0 src/prog/main.o -c src/prog/ nain.c

cc -0 src/prog/prog src/prog/main.o |ib/fool.o src/prog/foo2.o0

(Noticethat thel i b/ f 001. o object fileis built in the same directory asits source file. See Chapter 15, Separating
Source and Build Directories, below, for information about how to build the object filein a different subdirectory.)

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for afile--for example:

env = Environnent ()
env. Progranm(' prog', ['main.c', '/usr/joe/lib/fool.c', 'foo2.c'])

Which, when executed, would yield:

% scons -Q

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

cCc -0 src/prog/main.o -c src/prog/ main.c

cc -o /usr/joel/lib/fool.o -c /usr/joel/lib/fool.c

cc -0 src/prog/prog src/prog/main.o /usr/joel/lib/fool.o src/prog/foo2.0

(As was the case with top-relative path names, notice that the/ usr/j oe/ | i b/ f ool. o object fileis built in the
same directory as its source file. See Chapter 15, Separating Source and Build Directories, below, for information
about how to build the object file in a different subdirectory.)

14.5. Sharing Environments (and Other Vari-
ables) Between SConscri pt Files

Inthepreviousexample, each of thesubsidiary SConscr i pt filescreateditsown construction environment by calling
Envi ronnment separately. This obviously works fine, but if each program must be built with the same construction
variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and
over in each subsidiary SConscri pt file.

SCons supports the ability to export variables from a parent SConscr i pt filetoitssubsidiary SConscr i pt files,
which alows you to share common initialized values throughout your build hierarchy.

Iy
=== SCONS 97

Exporting Variables

14.5.1. Exporting Variables

There are two ways to export a variable, such as a construction environment, from an SConscr i pt file, so that it
may be used by other SConscr i pt files. First, you can call the Expor t function with alist of variables, or a string
of white-space separated variable names. Each call to Expor t adds one or more variablesto aglobal list of variables
that are available for import by other SConscr i pt files.

env = Environnent ()
Export (' env')

Y ou may export more than one variable name at atime:

env = Environment ()
debug = ARGUMENTS| ' debug']
Export (' env', 'debug')

Because white spaceis not legal in Python variable names, the Expor t function will even automatically split astring
into separate names for you:

Export (' env debug')

Second, you can specify alist of variablesto export as a second argument to the SConscr i pt function call:
SConscri pt (' src/ SConscript', 'env')

Or astheexpor t s keyword argument:

SConscri pt (' src/ SConscript', exports='env')

These calls export the specified variablesto only thelisted SConscr i pt files. Y ou may, however, specify more than
one SConscri pt fileinalist:

SConscri pt ([' srcl/ SConscri pt',
'src2/ SConscript'], exports='env')

Thisisfunctionally equivalentto callingtheSConscr i pt functionmultipletimeswiththesameexpor t s argument,
one per SConscri pt file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscr i pt file, it may be used in other SConscr i pt filesby
calingthel nport function:

Iy
=== SCONS 98

Returning Values From an SConscr i pt File

| mport (' env')
env. Program(' prog', ['prog.c'])

Thel nmpor t call makestheenv construction environment availabletothe SConscr i pt file, after whichthevariable
can be used to build programs, libraries, etc.

Likethe Export function, thel nport function can be used with multiple variable names:

| mport (' env', 'debug')
env = env. C one(DEBUG = debug)
env. Progran(' prog', ['prog.c'])

Andthel nport functionwill similarly split a string along white-space into separate variable names:

| mport (' env debug')
env = env. C one(DEBUG = debug)

env. Progran(' prog', ['prog.c'])

Lastly, as a special case, you may import all of the variables that have been exported by supplying an asterisk to the
| mport function;

| mport (' *")
env = env. Cl one(DEBUG = debug)

env. Progran(' prog', ['prog.c'])

If you're dealing with alot of SConscri pt files, this can be alot smpler than keeping arbitrary lists of imported
variablesin each file.

14.5.3. Returning Values From an SConscri pt File

Sometimes, you would like to be able to use information from a subsidiary SConscr i pt file in some way. For
example, suppose that you want to create one library from source files scattered throughout a number of subsidiary
SConscri pt files. Youcandothisby usingtheRet ur n functiontoreturn valuesfromthe subsidiary SConscr i pt

filesto the caling file.

If, for example, we have two subdirectoriesf 0o and bar that should each contribute a source file to a Library, what
wed liketo be ableto do is collect the object files from the subsidiary SConscr i pt calslikethis:

env = Environment ()

Export (' env')

objs =[]

for subdir in ['foo', "bar']:
0 = SConscri pt (' %/ SConscript' % subdir)
obj s. append(0)

env. Li brary(' prog', objs)

We can do this by using the Ret ur n functioninthef oo/ SConscri pt filelikethis:

Iy
=== SCONS 99

Returning Values From an SConscr i pt File

| mport (' env')
obj = env. ject('foo.c")
Return(' obj ")

(The corresponding bar / SConscri pt file should be pretty obvious.) Then when we run SCons, the object files
from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

CC -0 bar/bar.o -c bar/bar.c

cc -o foo/foo.o0 -c foo/foo.c

ar rc libprog.a foo/foo.o0 bar/bar.o
ranlib |ibprog.a

Iy
=== SCONS 100

15 Separating Source and
Build Directories

It's often useful to keep any built files completely separate from the source files. In SCons, this is usually done by
creating one or more separate variant directory trees that are used to hold the built objects files, libraries, and exe-
cutable programs, etc. for a specific flavor, or variant, of build. SCons provides two ways to do this, one through the
SConscri pt function that we've aready seen, and the second through a more flexible Var i ant Di r function.

One historical note: the Var i ant Di r function used to be called Bui | dDi r. That name is still supported but has
been deprecated because the SCons functionality differs from the model of a"build directory" implemented by other
build systems like the GNU Autotools.

15.1. Specifying a Variant Directory Tree as
Part of an SConscri pt Call

The most straightforward way to establish a variant directory tree uses the fact that the usual way to set up a build
hierarchy isto have an SConscri pt filein the source subdirectory. If you then passavari ant _di r argument
tothe SConscri pt function cal:

SConscri pt (' src/ SConscript', variant _dir="build")

SConswill then build all of thefilesin the bui | d subdirectory:

%ls src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/hello.o
%I1ls build

SConscript hello hello.c hello.o

But wait aminute--what's going on here? SCons created the object filebui | d/ hel | 0. o inthebui | d subdirectory,
asexpected. But eventhough our hel | o. ¢ filelivesinthesr ¢ subdirectory, SConshasactually compiled abui | d/
hel | o. c fileto create the object file.

What'shappened isthat SConshasduplicatedthehel | 0. ¢ filefromthesr ¢ subdirectory tothebui | d subdirectory,
and built the program from there. The next section explains why SCons does this.

Why SCons Duplicates Source Filesin a Variant Directo-
ry Tree

15.2. Why SCons Duplicates Source Files in a
Variant Directory Tree

SConsduplicates sourcefilesin variant directory trees becauseit'sthe most straightforward way to guarantee a correct
build regardless of include-file directory paths, relative references between files, or tool support for putting filesin
different locations, and the SCons philosophy isto, by default, guarantee a correct build in all cases.

The most direct reason to duplicate source filesin variant directoriesis simply that some tools (mostly older versions)
are written to only build their output filesin the same directory as the source files. In this case, the choices are either
to build the output file in the source directory and move it to the variant directory, or to duplicate the source filesin
the variant directory.

Additionally, relative references between files can cause problems if we don't just duplicate the hierarchy of source
filesinthevariant directory. Y ou can seethisat work in use of the C preprocessor #i ncl ude mechanism with double
guotes, not angle brackets:

#i ncl ude "file.h"

The de facto standard behavior for most C compilersin this caseisto first look in the same directory asthe source file
that contains the #i ncl ude line, then to look in the directories in the preprocessor search path. Add to this that the
SConsimplementation of support for code repositories (described below) meansnot al of thefileswill befound inthe
samedirectory hierarchy, and the simplest way to make surethat theright includefileisfound isto duplicate the source
filesinto the variant directory, which provides a correct build regardless of the original location(s) of the sourcefiles.

Although source-file duplication guarantees a correct build even in these end-cases, it can usually be safely disabled.
The next section describes how you can disable the duplication of source filesin the variant directory.

15.3. Telling SCons to Not Duplicate Source
Files in the Variant Directory Tree

In most cases and with most tool sets, SCons can place its target filesin a build subdirectory without duplicating the
source files and everything will work just fine. Y ou can disable the default SCons behavior by specifying dupl i -
cat e=0 when you call the SConscri pt function:

SConscri pt (' src/ SConscript', variant _dir="build', duplicate=0)

When thisflag is specified, SCons usesthe variant directory like most people expect--that is, the output files are placed
in the variant directory while the source files stay in the source directory:

%Ils src

SConscri pt

hello.c

% scons -Q

cc -c src/hello.c -0 build/hello.o
cc -0 build/hello build/ hello.o
%I|s build

hel |l o

Iy
=== SCONS 102

TheVari ant Di r Function

hell 0.0

15.4. The Vari ant D r Function

UsetheVar i ant Di r function to establish that target files should be built in aseparate directory from the sourcefiles:

VariantDir('build , "src')
env = Environment ()
env. Progran(' build/hello.c")

Note that when you're not using an SConscr i pt filein the sr ¢ subdirectory, you must actually specify that the
program must be built from thebui | d/ hel | o. c filethat SConswill duplicate in the bui | d subdirectory.

When using the Var i ant Di r function directly, SCons still duplicates the source files in the variant directory by
default:

%Ils src

hell o.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

% 1ls build

hello hello.c hello.o

Y ou can specify the same dupl i cat e=0 argument that you can specify for an SConscri pt call:

VariantDir('build, 'src', duplicate=0)
env = Environnent ()
env. Progran(' buil d/ hello.c")

In which case SCons will disable duplication of the sourcefiles:

%Ils src

hello.c

% scons -Q

cc -0 build/hello.o -c src/hello.c
cc -0 build/hello build/ hello.o
%ls build

hello hello.o

15.5. Using Var i ant D r With an SConscr i pt
File

Even when using the Var i ant Di r function, it's much more natural to use it with a subsidiary SConscri pt file.
For example, if thesr ¢/ SConscri pt lookslike this:

env = Environment ()

Iy
=== SCONS 103

Using @ ob withVari ant Di r

env. Progranm(' hello.c")
Then our SConst r uct file could look like:

VariantDir('build, 'src')
SConscri pt (' bui | d/ SConscri pt')

Yielding the following output:

%Ils src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/hello.o
%Ils build

SConscript hello hello.c hello.o

Notice that thisis completely equivalent to the use of SConscr i pt that we learned about in the previous section.

15.6. Using A ob with Vari antDi r

The A ob file name pattern matching function works just as usual when using Var i ant Di r . For example, if the
src/ SConscri pt lookslikethis:

env = Environment ()
env. Program(' hello', @ob('*.c"))

Then with the same SConst r uct file asin the previous section, and sourcefilesf 1. ¢ and f 2. ¢ in src, wewould
see the following outpult:

%ls src

SConscript fl.c f2.¢ f2.h

% scons -Q

cc -0 build/fl.0 -c build/fl.c

cC -0 build/f2.0 -c build/f2.c

cc -0 build/hello build/fl.0 build/f2.0

%Ils build

SConscript fl.c fl.o0 f2.¢c f2.h f2.0 hello

The d ob function returns Nodesin the bui | d/ tree, asyou'd expect.

Iy
=== SCONS 104

16 Variant Builds

Thevari ant _di r keyword argument of the SConscr i pt function provideseverything we need to show how easy
it isto create variant builds using SCons. Suppose, for example, that we want to build a program for both Windows
and Linux platforms, but that we want to build it in a shared directory with separate side-by-side build directories for
the Windows and Linux versions of the program.

pl atform = ARGUMENTS. get (' OS', Platform))

i ncl ude = "#export/$PLATFORM i ncl ude"

[ib = "#export/$PLATFORM | i b"

bi n = "#export/$PLATFORM bi n"

env = Environnent (PLATFORM = pl at f or m
BINDI R = bi n,
I NCDI R = i ncl ude,
LIBDIR = I|i b,
CPPPATH = [i ncl ude],
LI BPATH = [1ib],

LIBS = "world")
Export (' env')

env. SConscri pt (' src/ SConscript', variant _dir="buil d/ $PLATFORM)

This SConstruct file, when run on a Linux system, yields:

% scons - Q OS=l i nux

Install file: "build/linux/world/ world.h" as "export/I|inux/include/world.h"

cc -0 build/linux/hello/hello.o -c -lexport/linux/include build/linux/hello/hello.c
cc -0 build/linux/world/world.o -c -lexport/Ilinux/include build/linux/world/ world.c
ar rc build/linux/world/libworld.a build/linux/world/ world.o

ranlib build/linux/world/libworld.a

Install file: "build/linux/world/libworld. a" as "export/linux/lib/libworld.a"

cc -0 build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hellol/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

C.\>scons - Q OS=wi ndows

Install file: "build/ wi ndows/world/world.h" as "export/w ndows/i ncl ude/worl d. h"

cl /Fobuil d\wi ndows\ hel | o\ hel | 0. obj /c buil d\w ndows\ hel | o\ hel | 0. ¢ /nol ogo /1 export\w ndow
cl /Fobuil d\wi ndows\ wor | d\wor | d. obj /c buil d\w ndows\wor| d\worl d.c /nol ogo /1 export\w ndow
lib /nol ogo /QUT: bui | d\wi ndows\wor | d\worl d.lib buil d\w ndows\wor| d\wor| d. obj

Install file: "build/ wi ndows/world/world.lib" as "export/w ndows/l|ib/world.lib"

i nk /nol ogo /QUT: bui | d\wi ndows\ hel | o\ hel | 0. exe /LI BPATH: export\w ndows\lib world.lib buil
enbedMani f est ExeCheck(target, source, env)

Install file: "build/ wi ndows/ hell o/ hello.exe" as "export/w ndows/ bi n/ hell o. exe"

Iy
=== SCONS 106

17 Internationalization and lo-
calization with gettext

The get t ext toolset supports internationalization and localization of SCons-based projects. Builders provided by
get t ext automatize generation and updates of translation files. Y ou can manage translations and translation tem-
plates similarly to how it's done with autotools.

17.1. Prerequisites

To follow examples provided in this chapter set up your operating system to support two or more languages. In fol-
lowing exampleswe use localesen_US, de_DE, and pl _PL.

Ensure, that you have GNU gettext utilities [http://www.gnu.org/software/gettext/manual/gettext.html] installed on
your system.

To edit trandation files you may wish to install poedit [http://www.poedit.net/] editor.

17.2. Simple project

Let's start with avery simple project, the "Hello world" program for example

/* hello.c */
#i ncl ude <stdi o. h>
int main(int argc, char* argv[])
{
printf("Hello world\n");
return O;

}

Prepare a SConst r uct to compile the program as usua.

SConst ruct
env = Environnent ()
hello = Program(["hello.c"])

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.poedit.net/
http://www.poedit.net/

Simple project

Now well convert the project to a multi-lingual one. If you don't already have GNU gettext utilities [http://
www.gnu.org/software/gettext/manual /gettext.ntml] installed, install them from your preffered package repository, or
download from http://ftp.gnu.org/gnu/gettext/ [http://ftp.gnu.org/gnu/gettext/]. For the purpose of this example, you
should have following three locales installed on your system: en_US, de_DE and pl _PL. On debian, for example,
you may enable certain local es through dpkg-reconfigure locales.

First preparethe hel | 0. ¢ program for internationalization. Change the previous code so it reads as follows:

/* hello.c */

#i ncl ude <stdi o. h>

#i ncl ude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl| ocal e(LC ALL, "");
t ext domai n("hel | 0");
printf(gettext("Hello world\n"));
return O;

Detailed recipes for such conversion can be found at http://www.gnu.org/software/get-
text/manual/gettext.html#Sources [http://www.gnu.org/software/gettext/manual/gettext.html#Sources]. The get -
text("...") hastwo purposes. First, it marks messages for the xgettext(1) program, which we will use to extract
from the sources the messages for localization. Second, it callstheget t ext library internalsto translate the message
at runtime.

Now we shall instruct SCons how to generate and maintain trand ation files. For that, usethe Tr ans| at e builder and
MOFi | es builder. The first one takes source files, extracts internationalized messages from them, creates so-called
POT file (trandation template), and then creates PO trandation files, one for each requested language. Later, during
the development lifecycle, the builder keeps all these files up-to date. The MOFi | es builder compiles the POfilesto
binary form. Then install the MOfiles under directory called | ocal e.

The completed SConst r uct isasfollows:

SConst ruct
env = Environnment(tools = ['default', 'gettext'])
hell o = env. Progran(["hello.c"])
env[' XCETTEXTFLAGS'] = [
' - - package- nanme=%"' % ' hell o',
' - - package-version=%"' %'1.0',
]
po = env. Translate(["pl","en", "de"], ["hello.c"], POAUTONT = 1)
no = env. MOFi | es(po)
Instal |l As(["] ocal e/ en/ LC_ MESSAGES/ hel | 0. m0"], ["en.nm"])
Instal |l As(["] ocal e/ pl / LC_MESSAGES/ hel | 0. m0"], ["pl.nm"])
Instal |l As(["] ocal e/ de/ LC_MESSAGES/ hel | 0. m0"], ["de.nmp"])

Generate the trandlation files with scons po-update. Y ou should see the output from SCons simillar to this:

Iy
=== SCONS 108

http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://ftp.gnu.org/gnu/gettext/
http://ftp.gnu.org/gnu/gettext/
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources

Simple project

user @ost:$ scons po-update

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ honme/ptomnulik/projects/tnp'

xgettext --package-nanme=hello --package-version=1.0 -0 - hello.c
Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

Witting 'messages.pot’ (new file)

msginit --no-translator -1 pl -i nessages.pot -o pl.po
Created pl. po.
msginit --no-translator -1 en -i nessages.pot -0 en.po
Creat ed en. po.
msginit --no-translator -1 de -i nessages.pot -o de.po

Creat ed de. po.
scons: done buil ding targets.

If everything isright, you should see following new files.

user @ost:$ I's *. po*
de.po en.po nessages.pot pl.po

Openen. po inpoedit and providethe English trandationto message" Hel | o wor | d\ n". Dothesamefor de. po
(deutsch) and pl . po (polish). Let the trandlations be, for example:

e en: "Welcone to beautiful world!'\n"
e de: "Hallo Welt!\n"
e pl: "Wtaj swieciel\n"

Now compile the project by executing scons. The output should be similar to this:

user @ost: $ scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

msgfm -c -o de.np de. po

msgfm -c -o en.nb en. po

gcc -0 hello.o -c hello.c

gcc -0 hello hello.o

Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. nD"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
msgfm -c -o pl.m pl.po

Install file: "pl.m" as "l ocal e/ pl /LC MESSACES/ hel | 0. no"
scons: done buil ding targets.

SCons automatically compiled the POfilesto binary format MO, and the| nst al | As linesinstalled these files under
| ocal e folder.

Y our program should be now ready. Y ou may try it as follows (linux):

Iy
=== SCONS 109

Simple project

user @ost : $ LANG=en_US. UTF-8 ./hello
VWl cone to beautiful world

user @ost:$ LANG=de DE. UTF-8 ./hell o
Hal | o Welt

user @ost:$ LANG=pl PL.UTF-8 ./hello
Wtaj swiecie

To demonstrate the further life of trandation files, let's change Polish trandation (poedit pl.po) to" Wt aj dr ogi
swi eci e\ n". Run sconsto see how scons reacts to this

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

msgfm -c -o pl.nm pl.po

Install file: "pl.m" as "l ocal e/ pl /LC MESSACES/ hel | 0. no"
scons: done buil ding targets.

Now, open hel | 0. ¢ and add another one pri nt f line with new message.

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl ocal e(LC ALL, "");
t ext domai n(" hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
return O;

Compile project with scons. This time, the msgmer ge(1) program is used by SCons to update PO file. The output
from compilation islike:

user @ost : $scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

Iy
=== SCONS 110

Simple project

xgettext --package-nane=hello --package-version=1.0 -0 -
Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'
Witting 'nmessages.pot’' (nmessages in file were outdated)
nmsgner ge --update de.po nessages. pot

done.
msgfm -c -o de.np de. po
negner ge --update en. po nessages. pot

done.
msgfm -c -0 en.nb en. po
gcc -0 hello.o -c hello.c
gcc -0 hello hello.o
Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. nD"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
nmsgner ge --update pl.po nessages. pot

done.
msgfm -c -o pl.nm pl.po
Install file: "pl.m" as "l ocal e/ pl /LC_MESSACES/ hel | 0. no"
scons: done buil ding targets.

hel |l o.c

The next example demonstrates what happens if we change the source code in such way that the internationalized
messages do not change. The answer is that none of trandation files (POT, PO) are touched (i.e. no content changes,
no creation/modification time changed and so on). Let's append another line to the program (after the last printf), so

its code becomes:

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext domai n("hel |l 0", "l ocal e");
set| ocal e(LC ALL, "");
t ext domai n(" hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
printf("---------------- \n");
return a;

Compile the project. You'll see on your screen

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

xgettext --package-nane=hello --package-version=1.0 -0 -
Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

hel |l o.c

Not witting 'messages. pot' (nessages in file found to be up-to-date)

gcc -0 hello.o -c hello.c
gcc -o hello hello.o

Iy
=== SCONS

111

Simple project

scons: done buil ding targets.

As you see, the internationalized messages ditn't change, so the POT and the rest of trandation files have not even
been touched.

Iy
=== SCONS 112

18 Writing Your Own Builders

Although SCons provides many useful methods for building common software products (programs, libraries, docu-
ments, etc.), you frequently want to be able to build some other type of file not supported directly by SCons. Fortu-
nately, SCons makes it very easy to define your own Bui | der objects for any custom file types you want to build.
(Infact, the SConsinterfaces for creating Bui | der objects are flexible enough and easy enough to use that al of the
the SCons built-in Bui | der objects are created using the mechanisms described in this section.)

18.1. Writing Builders That Execute External
Commands

Thesimplest Bui | der tocreateisonethat executes an external command. For example, if we want to build an output
file by running the contents of the input file through a command named f oobui | d, creating that Bui | der might
look like:

bld = Builder(action = 'foobuild < $SOURCE > $TARGET')

All the abovelinedoesiscreate afree-standing Bui | der object. The next section will show us how to actually useit.

18.2. Attaching a Builder to a Constructi on
Envi r onnent

A Bui | der object isn't useful until it's attached to aconstructi on environnent so that we can call it to
arrange for filesto be built. Thisis done through the $BUI LDERS const r ucti on vari abl e inan environment.
The $BUI LDERS variable is a Python dictionary that maps the names by which you want to call various Bui | der
objects to the objects themselves. For example, if we want to call the Bui | der we just defined by the name Foo,
our SConst ruct filemight look like:

bl d
env

Bui | der (action = 'foobuild < $SOURCE > $TARCET')
Envi ronnent (BU LDERS = {' Foo' : bl d})

With the Bui | der attached to our constructi on environnent with the name Foo, we can now actually
cal it like so:

Attaching aBuilder toaConst ructi on Envi ron-
ment

env. Foo('file.foo', "file.input')

Then when we run SConsiit looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that the default $BUI LDERS variableinaconstructi on envi ronment comeswith a default
set of Bui | der objects already defined: Pr ogr am Li br ary, etc. And when we explicitly set the $BUI LDERS
variable when we create the constructi on envi ronnent, the default Bui | der s are no longer part of the
environment:

bl d Bui | der (action = 'foobuild < $SOURCE > $TARGET')
env Envi ronnent (BU LDERS = {' Foo' : bl d})

env. Foo('file.foo', "file.input')

env. Progran(' hello.c")

% scons -Q
AttributeError: 'SConsEnvironnent' object has no attribute 'Prograni:
File "/home/ ny/ project/SConstruct”, |ine 4:
env. Progran(' hello.c")

To be able to use both our own defined Bui | der objects and the default Bui | der objectsinthesameconst r uc-
tion environment,you can either add to the $BUI LDERS variable using the Append function:

env Envi ronnent ()

bl d Bui | der (action = 'foobuild < $SOURCE > $TARGET')
env. Append(BUl LDERS = {' Foo' : bld})

env. Foo('file.foo', "file.input')

env. Progranm(' hello.c")

Or you can explicitly set the appropriately-named key in the $BUI LDERS dictionary:

env = Environment ()

bl d = Builder(action = 'foobuild < $SOURCE > $TARGET')
env[' BU LDERS][' Foo'] = bld

env. Foo('file.foo', "file.input')

env. Progran(' hello.c")

Either way, the same constructi on environnment can then use both the newly-defined Foo Bui | der and
the default Pr ogr amBui | der :

% scons -Q

foobuild < file.input > file.foo
cc -o hello.o -c hello.c

cc -o hello hello.o

Iy
=== SCONS 114

Letting SCons Handle The File Suffixes

18.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create aBui | der , you can let SCons add appropriate file suffixes to
thetarget and/or the sourcefile. For example, rather than having to specify explicitly that you want the Foo Bui | der
to buildthefi | e. f oo target filefromthefi | e. i nput sourcefile, you can givethe. f oo and. i nput suffixes
tothe Bui | der, making for more compact and readable callsto the Foo Bui | der :

bl d = Builder(action = 'foobuild < $SOURCE > $TARGET',
suffix = '.foo',
src_suffix = "'.input')

env = Environnent (BU LDERS = {' Foo' : bld})

env. Foo('filel")

env. Foo('file2")

% scons -Q
foobuild < filel.input > filel.foo
foobuild < file2.input > file2.foo

You can aso supply apr ef i x keyword argument if it's appropriate to have SCons append a prefix to the beginning
of target file names.

18.4. Builders That Execute Python Functions

In SCons, you don't have to call an external command to build afile. Y ou can, instead, define a Python function that
aBui | der object caninvoketo build your target file (or files). Suchabui | der functi on definitionlookslike:

def build _function(target, source, env):
Code to build "target" from "source"
return None

Theargumentsof abui | der functi on are

tar get
A list of Node objects representing the target or targetsto be built by this builder function. Thefile names of these
target(s) may be extracted using the Python st r function.

source
A list of Node objects representing the sources to be used by this builder function to build the targets. The file
names of these source(s) may be extracted using the Python st r function.

env
Theconstructi on environnent used for building the target(s). The builder function may use any of the
environment's construction variables in any way to affect how it builds the targets.

The builder function must return a0 or None value if the target(s) are built successfully. The builder function may
raise an exception or return any non-zero value to indicate that the build is unsuccessful.

Once you've defined the Python function that will build your target file, defining aBui | der object foritisassimple
as specifying the name of the function, instead of an external command, asthe Bui | der 'sact i on argument:

Iy
=== SCONS 115

Builders That Create Actions Using aGener at or

def build_function(target, source, env):
Code to build "target” from "source"
return None
bld = Builder(action = build_function,
suffix = '.foo',
src_suffix = "'.input')
env = Environment (BU LDERS = {' Foo' : bl d})
env. Foo('file")

And notice that the output changes dlightly, reflecting the fact that a Python function, not an external command, is
now called to build the target file:

% scons -Q
build function(["file.foo"], ["file.input"])

18.5. Builders That Create Actions Using a
Cener at or

SCons Builder objects can create an action "on the fly" by using a function called agener at or . This provides a
great deal of flexibility to construct just the right list of commands to build your target. A gener at or lookslike:

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (target[0], source[0])

The arguments of agener at or are:

source
A list of Node objects representing the sources to be built by the command or other action generated by this
function. The file names of these source(s) may be extracted using the Python st r function.

tar get
A list of Node objects representing the target or targets to be built by the command or other action generated by
this function. The file names of these target(s) may be extracted using the Python st r function.

env
The construction environnment used for building the target(s). The generator may use any of the
environment's construction variables in any way to determine what command or other action to return.

for_signature
A flag that specifies whether the generator is being called to contribute to abuild signature, as opposed to actually
executing the command.

Thegener at or must return acommand string or other action that will be used to build the specified target(s) from
the specified source(s).

Once you've defined agener at or , you create a Bui | der to useit by specifying the generator keyword argument
instead of act i on.

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (source[0], target[0])
bl d = Buil der (generator = generate_actions,

Iy
=== SCONS 116

Builders That Modify the Target or Source Lists Using an
Emtter

suffix = '.foo',

src_suffix = "'.input')
env = Environment (BU LDERS = {' Foo' : bl d})
env. Foo('file")

% scons -Q
foobuild < file.input > file.foo

Note that it'sillegal to specify bothanact i on andagener at or foraBui | der .

18.6. Builders That Modify the Target or Source
Lists Using an Em tter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). Y ou do this by
defining an eni t t er function that takes as its arguments the list of the targets passed to the builder, the list of the
sources passed to the builder, and the construction environment. The emitter function should return the modified lists
of targets that should be built and sources from which the targets will be built.

For example, suppose you want to define a Builder that alwayscalsaf oobui | d program, and you want to automat-
icaly add a new target file named new _t ar get and a new source file named new_sour ce whenever it's called.
The SConst r uct filemight look like this:

def nmodify targets(target, source, env):
t arget . append(' new_ target')
sour ce. append(' new_sour ce')
return target, source
bl d = Buil der(action = 'foobuild $TARGETS - $SOURCES',
suffix = "'.foo'
src_suffix = "'.input',
emtter = nodify_targets)
env = Environment (BU LDERS = {' Foo' : bl d})
env. Foo(' file")

And would yield the following output:

% scons -Q
foobuild file.foo new target - file.input new source

One very flexible thing that you can do is use a construction variabl e to specify different emitter functionsfor different
construction variable. To do this, specify astring containing a construction variable expansion as the emitter when you
call the Bui | der function, and set that construction variable to the desired emitter function in different construction
environments:

bl d = Builder(action = 'ny_command $SOURCES > $TARCET' ,
suffix = '.foo",
src_suffix = "'.input',
emtter = '$MY_EM TTER)
def nodifyl(target, source, env):
return target, source + ['nodifyl.in']
def nodify2(target, source, env):

Iy
=== SCONS 117

Where To Put Y our Custom Builders and Tools

return target, source + ['nodify2.in"]
envl = Environnent (BU LDERS = {' Foo' : bld},
MY_EM TTER = nodi fy1l)
env2 = Environnment (BU LDERS = {' Foo' : bld},
MY_EM TTER = nodi fy2)

envl. Foo('filel")
env2. Foo('file2")

i mport os

envl[' ENV][' PATH]
env2[' ENV] [' PATH]

env2['ENV'] [' PATH] + os.pathsep + os.getcwd()
env2['ENV'] [' PATH] + os.pathsep + os.getcwd()

bl d = Builder(action = 'ny_conmmand $SOURCES > $TARGET',
suf fix ‘. foo',
src_suffix = "'.input',
emtter = '$MY_EM TTER)
def nodifyl(target, source, env):
return target, source + ['nodifyl.in']
def nodify2(target, source, env):
return target, source + ['nodify2.in"]
envl = Environnent (BU LDERS = {' Foo' : bld},

MY_EM TTER = nodi fy1)
env2 = Environnent (BU LDERS = {' Foo' : bld},
MY_EM TTER = nodi fy2)

envl. Foo('filel")
env2. Foo('file2")

In this example, themodi f y1. i n and nodi fy2. i n files get added to the source lists of the different commands:

% scons -Q
ny_comrand filel.input nodifyl.in > filel.foo
ny_comrand file2.input nmodify2.in > file2.foo

18.7. Where To Put Your Custom Builders and
Tools

Thesit e_scons directories give you a place to put Python modules and packages that you can import into your
SConscri pt files(sit e_scons), add-on tools that can integrate into SCons (si t e_scons/ site_t ool s),
andasite_scons/site_init. py filethat getsread beforeany SConst ruct or SConscri pt file, alowing
you to change SCons's default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directoriesfor site_scons; see the man page
for details. The top-level SConstruct's site_scons dir is always searched last, and its dir is placed first in the tool path
so it overrides al others.

If you get atool from somewhere (the SConswiki or athird party, for instance) and you'd like to useit in your project,
asi te_scons dir isthe simplest place to put it. Tools come in two flavors; either a Python function that operates
on an Envi r onnent or a Python module or package containing two functions, exi st s() andgenerate() .

A single-function Tool can just beincludedinyour sit e_scons/site_init. py filewhereit will be parsed and
made available for use. For instance, you could haveasi t e_scons/site_i nit. py filelikethis:

Iy
=== SCONS 118

Where To Put Y our Custom Builders and Tools

def TOOL_ADD_ HEADER(env) :
"""A Tool to add a header from $HEADER to the source file"""
add_header = Buil der(action=['echo "$HEADER' > $TARGET' ,
'cat $SOURCE >> $TARGET'])
env. Append(BUI LDERS = {' AddHeader' : add_header})
env[' HEADER | ="' # set default val ue

and aSConst r uct likethis:

Use TOOL_ADD HEADER from site_scons/site_init.py
env=Envi ronment (t ool s=[' default', TOOL_ADD HEADER], HEADER="=====")
env. AddHeader ("tgt', 'src')

The TOOL_ADD_ HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exi st s() and gener at e() methods can be installed either as amodule in the file
site_scons/site_tool s/tool nane. py or as a package in the directory si t e_scons/site_t ool s/
t ool nan®e. In the case of using a package, the exi st s() and gener at e() are in the file site_scons/
site_tool s/toolname/ __init__.py.(Inaltheabovecaset ool nane isreplaced by the name of thetool.)
Sincesi te_scons/ site_tool s isautomatically added to the head of the tool search path, any tool found there
will be available to al environments. Furthermore, a tool found there will override a built-in tool of the same name,
so if you need to change the behavior of abuilt-intool, si t e_scons givesyou the hook you need.

Many people have alibrary of utility Python functionsthey'd liketoincludein SConscr i pt s; just put that modulein
site_scons/ny_utils. py orany valid Python module name of your choice. For instance you can do something
likethisinsite_scons/ny_utils. pytoaddbui |l d_i d and MakeWor kDi r functions:

from SCons. Scri pt inport * # for Execute and Mdir
def build_id():
"""Return a build ID (stub version)"""
return "100"
def MakeWor kDi r (wor kdi r) :
"""Create the specified dir i mediately
Execut e(Mkdi r (wor kdir))

And then in your SConscr i pt or any sub-SConscri pt anywherein your build, you canimportmy_uti | s and
useit:

import nmy_utils
print "build_id=" + my_utils.build_id()
ny_utils. MakeWbrkDir (" /tnp/ work')

Note that although you can put this library in site_scons/site_init.py, it is no better there than
site_scons/ny_utils. py sinceyou still have to import that module into your SConscr i pt . Also note that
in order to refer to objects in the SCons namespace such asEnvi r onment or Mkdi r or Execut e in any file other
than aSConst r uct or SConscri pt you aways need to do

Iy
=== SCONS 119

Where To Put Y our Custom Builders and Tools

from SCons. Scri pt inport *

Thisistrueinmodulesinsi t e_scons suchassite_scons/site_init.py aswell.

You can use any of the user- or machine-wide site dirs such as ~/ . scons/ site_scons instead of ./
site_scons, orusethe--site-dir optionto pointtoyourowndir.site_init.pyandsite_tools will
belocated under that dir. Toavoidusingasi t e_scons dir at al, evenif it exists, usethe- - no- si t e- di r option.

Iy
=== SCONS 120

19 Not Writing a Builder: the
Conmmand Builder

Creating a Bui | der and attaching it to aconstructi on environnent alows for alot of flexibility when
you want to re-use actions to build multiple files of the same type. This can, however, be cumbersome if you only
need to execute one specific command to build a single file (or group of files). For these situations, SCons supports
a Conmand Bui | der that arranges for a specific action to be executed to build a specific file or files. This looks
alot like the other builders (like Pr ogr am Cbj ect , etc.), but takes as an additional argument the command to be
executed to build thefile:

env = Environnent ()
env. Command(' foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q
sed 's/x/yl' < foo.in > foo.out

Thisis often more convenient than creating aBui | der object and adding it to the $BUI LDERS variable of acon-
struction environnent

Note that the action you specify to the Command Bui | der can be any legal SCons Act i on, such as a Python
function:

env = Environnent ()

def build(target, source, env):
Whatever it takes to build
return None

env. Command(' foo.out', 'foo.in', build)

Which executes as follows:

% scons -Q
buil d(["foo.out"], ["fo0.in"])

Note that $SOURCE and $TARGET are expanded in the source and target as well as of SCons 1.1, so you can write:

env. Command(' ${ SOURCE. basenane}.out', 'foo.in', build)

which does the same thing as the previous example, but allows you to avoid repeating yourself.

Iy
=== SCONS 122

20 Pseudo-Builders: the Ad-
dMethod function

The AddMet hod function is used to add a method to an environment. It's typically used to add a "pseudo-builder,"
a function that looks like a Bui | der but wraps up calls to multiple other Bui | der s or otherwise processes its
arguments before calling one or more Bui | der s. In the following example, we want to install the program into the
standard/ usr / bi n directory hierarchy, but also copy itintoalocal i nst al | / bi n directory from which a package
might be built:

def install _in_bin_dirs(env, source):
“""|nstall source in both bin dirs
il = env.Install ("$BIN', source)
i2 = env.Install ("$LOCALBI N*, source)
return [i1[0], i2[0]] # Return a list, like a nornal buil der

env = Environnent (BIN="/usr/bin', LOCALBIN='#install/bin")

env. AddMet hod(install _in_bin dirs, "lInstalllnBinDirs")

env.InstallInBinDirs(Progranm(' hello.c')) # installs hello in both bin dirs

This produces the following:

% scons -Q /

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

Asmentioned, apseudo-builder a so provides more flexibility in parsing argumentsthan you can get withaBui | der .
The next example shows a pseudo-builder with anamed argument that modifies the filename, and a separate argument
for the resource file (rather than having the builder figure it out by file extension). This example also demonstrates
using the global AddMet hod function to add a method to the global Environment class, so it will be used in all
subsequently created environments.

def Buil dTest Prog(env, testfile, resourcefile, testdir="tests"):
"""Build the test program
prepends "test " to src and target,
and puts target into testdir."""
srcfile = "test %.c" %testfile

target = "%/test_%" % (testdir, testfile)
if env[' PLATFORM] == 'wi n32":
resfile = env. RES(resourcefile)
p = env.Progran(target, [srcfile, resfile])
el se:
p = env.Progran(target, srcfile)
return p
AddMet hod(Envi r onment, Bui | dTest Pr og)

env = Environment ()
env. Bui | dTest Prog(' stuff', resourcefile="res.rc')

This produces the following on Linux:

% scons -Q
cc -o test _stuff.o -c test_stuff.c
cc -0 tests/test _stuff test _stuff.o

And the following on Windows:

C.\>scons -Q

rc /fores.res res.rc

cl /Fotest stuff.obj /c test _stuff.c /nol ogo

link /nologo /QOUT:tests\test stuff.exe test stuff.obj res.res
enbedMani f est ExeCheck(target, source, env)

Using AddMet hod is better than just adding an instance method to aconstructi on envi r onment because
it gets called as a proper method, and because AddMet hod provides for copying the method to any clones of the
construction environment instance.

Iy
=== SCONS 124

2 1 Writing Scanners

SCons has built-in scanners that know how to look in C, Fortran and IDL source filesfor information about other files
that targets built from those files depend on--for example, in the case of files that use the C preprocessor, the . h files
that are specified using #i ncl ude linesin the source. Y ou can use the same mechanismsthat SCons usesto createits
built-in scanners to write scanners of your own for file types that SCons does not know how to scan "out of the box."

21.1. A Simple Scanner Example

Suppose, for example, that we want to create a simple scanner for . f 0o files. A . f 0o file contains some text that
will be processed, and can include other files on lines that begin with i ncl ude followed by afile name:

i ncl ude fil enane. f oo

Scanning afile will be handled by a Python function that you must supply. Hereis afunction that will use the Python
r e moduleto scan for thei ncl ude linesin our example:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
return env. Fil e(include_re.findall (contents))

It isimportant to note that you have to return alist of File nodes from the scanner function, simple strings for the file
nameswon't do. Asin the examples we are showing here, you can usethe Fi | e function of your current Environment
in order to create nodes on the fly from a sequence of file names with relative paths.

The scanner function must accept the four specified arguments and return alist of implicit dependencies. Presumably,
these would be dependencies found from examining the contents of the file, although the function can perform any
manipulation at all to generate the list of dependencies.

node
An SCons node object representing the file being scanned. The path name to the file can be used by converting
the nodeto astring using thest r () function, or an internal SConsget t ext cont ent s() object method
can be used to fetch the contents.

Adding a search path to ascanner: Fi ndPat hDir s

env
The construction environment in effect for this scan. The scanner function may choose to use construction vari-
ables from this environment to affect its behavior.

path
A list of directories that form the search path for included files for this scanner. This is how SCons handles the
$CPPPATHand $L1 BPATH variables.

arg
An optional argument that you can choose to have passed to this scanner function by various scanner instances.

A Scanner object is created using the Scanner function, which typically takes an skeys argument to associate the
type of file suffix with this scanner. The Scanner object must then be associated with the $SCANNERS construction
variable of a construction environment, typically by using the Append method:

kscan = Scanner (function = kfile_scan,
skeys = [".k'])
env. Append(SCANNERS = kscan)

When we put it all together, it looks like:

i mport re
include_re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path):
contents = node.get _text contents()
i ncl udes = include_re.findall (contents)
return env. Fil e(i ncl udes)

kscan = Scanner (function = kfile_scan,
skeys = [".k'])

env = Environment (ENV = {' PATH : '/usr/local/bin'})
env. Append(SCANNERS = kscan)

env. Command(' foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

21.2. Adding a search path to a scanner: Fi nd-
Pat hDirs

Many scanners need to search for included files or dependencies using a path variable; this is how $CPPPATH and
$LI BPATHwork. The path to search is passed to your scanner as the pat h argument. Path variables may be lists of
nodes, semicolon-separated strings, or even contain SCons variables which need to be expanded. Fortunately, SCons
provides the Fi ndPat hDi r s function which itself returns a function to expand a given path (given as a SCons
construction variable name) to a list of paths at the time the scanner is called. Deferring evaluation until that point
allows, for instance, the path to contain STARGET references which differ for each file scanned.

Iy
=== SCONS 126

Adding a search path to ascanner: Fi ndPat hDir s

Using Fi ndPat hDi r s isquite easy. Continuing the above example, using KPATH asthe construction variable with
the search path (analogous to $CPPPATH), we just modify the Scanner constructor call to include a path keyword
arg:

kscan = Scanner (function = kfile_scan,
skeys = ['.k'],
pat h=Fi ndPat hDi r s(' KPATH))

FindPathDirs returns a callable object that, when called, will essentially expand the elementsin env['KPATH'] and tell
the scanner to search in those dirs. It will also properly add related repository and variant dirs to the search list. Asa
side note, the returned method stores the path in an efficient way so lookups are fast even when variable substitutions
may be needed. Thisisimportant since many files get scanned in atypical build.

Iy
=== SCONS 127

22 Building From Code
Repositories

Often, a software project will have one or more central repositories, directory treesthat contain source code, or derived
files, or both. Y ou can eliminate additional unnecessary rebuilds of files by having SCons use files from one or more
code repositories to build filesin your local build tree.

22.1. The Reposi t ory Method

It's often useful to allow multiple programmers working on aproject to build software from source files and/or derived
filesthat are stored in a centrally-accessible repository, a directory copy of the source code tree. (Note that thisis not
the sort of repository maintained by a source code management system like BitKeeper, CVS, or Subversion.) Y ou use
the Reposi t or y method to tell SCons to search one or more central code repositories (in order) for any sourcefiles
and derived files that are not present in the local build tree:

env = Environnent ()
env. Progran(' hello.c')
Repository('/usr/repositoryl', '/usr/repository2')

MultiplecallstotheReposi t or y method will simply add repositoriesto the global list that SCons maintains, withthe
exception that SCons will automatically eliminate the current directory and any non-existent directories from the list.

22.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the / usr/ reposi t or y1 tree and next
under the/ usr/ r eposi t or y2 tree. SCons expects that any filesit searches for will be found in the same position
relativeto thetop-level directory. Inthe above example, if thehel | 0. ¢ fileisnot foundinthelocal build tree, SCons
will search first for a/ usr/ reposi toryl/ hel | o. c fileand thenfor a/ usr/ r eposi t ory2/ hel | o. c file
touseinitsplace.

So given the SConst r uct fileabove, if thehel | 0. ¢ fileexistsin thelocal build directory, SCons will rebuild the
hel | o program as normal:

% scons -Q
cc -0 hello.o -c hello.c
cc -o hello hello.o

Finding #i ncl ude filesin repositories

If, however, there is no local hel | 0. ¢ file, but one exists in / usr/ reposi t or yl, SCons will recompile the
hel | o program from the sourcefileit finds in the repository:

% scons -Q
cc -0 hello.o -c /usr/repositoryl/hello.c
cc -0 hello hello.o

And similarly, if thereisnolocal hel | 0. c fileandno/ usr/ reposi toryl/ hel | o. c, butoneexistsin/ usr/
repository2:

% scons -Q
cc -0 hello.o -c /usr/repository2/hello.c
cc -0 hello hello.o

22.3. Finding #i ncl ude files in repositories

We've aready seen that SConswill scan the contents of asourcefilefor #i ncl ude file namesand realize that targets
built from that source file also depend on the #i ncl ude file(s). For each directory in the $CPPPATH list, SCons
will actually search the corresponding directoriesin any repository trees and establish the correct dependencies on any
#i ncl ude filesthat it findsin repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the
#i ncl ude files. If, for example, the hel | 0. ¢ file in our previous example includes the hel | 0. h in its current
directory, and the hel | 0. h only existsin the repository:

% scons -Q
cc -0 hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate - | flags to the compilation
commands for each directory inthe SCPPPATHIist. Soif we add the current directory to the construction environment
$CPPPATH like so:

env = Environment (CPPPATH = ['."'])
env. Progran(' hello.c")
Repository('/usr/repositoryl')

Then re-executing SCons yields:

% scons -Q
cc -0 hello.o -c -1. -l/usr/repositoryl hello.c
cc -0 hello hello.o

The order of the - | options replicates, for the C preprocessor, the same repository-directory search path that SCons
uses for its own dependency analysis. If there are multiple repositories and multiple $CPPPATH directories, SCons
will add the repository directories to the beginning of each $CPPPATH directory, rapidly multiplying the number of
- | flags. If, for example, the $CPPPATH contains three directories (and shorter repository path names!):

Iy
=== SCONS 129

Limitationson #i ncl ude filesin repositories

env = Environment (CPPPATH = ['dirl', 'dir2', 'dir3'])
env. Progranm(' hello.c")
Repository('/r1', "/r2")

Then well end up with nine - | options on the command line, three (for each of the $CPPPATH directories) times
three (for the local directory plus the two repositories):

% scons -Q

cc -o hello.o -c -Idirl -1/r1/dirdl -1/r2/dirl -1dir2 -1/r1/dir2 -1/r2/dir2 -1dir3

cc -o hello hello.o

22.3.1. Limitations on #i ncl ude files in repositories

SConsrelies on the C compiler's- | optionsto control the order in which the preprocessor will search the repository
directories for #i ncl ude files. This causes a problem, however, with how the C preprocessor handles #i ncl ude
lines with the file name included in double-quotes.

Aswe've seen, SCons will compilethe hel | 0. ¢ file from the repository if it doesn't exist in the local directory. If,
however, thehel | 0. c filein the repository contains a#i ncl ude line with the file name in double quotes:

#i ncl ude "hell o. h"

i nt
mai n(i nt argc, char *argv[])
{
printf (HELLO MESSAGE) ;
return (0);
}

Thenthe C preprocessor will alwaysuseahel | o. h filefromtherepository directory first, evenif thereisahel | 0. h
filein the local directory, despite the fact that the command line specifies- | asthe first option:

% scons -Q
cc -0 hello.o -c -1. -l/usr/repositoryl /usr/repositoryl/hello.c
cc -0 hello hello.o

This behavior of the C preprocessor--always search for a#i ncl ude filein double-quotes first in the same directory
as the source file, and only then search the - | --can not, in general, be changed. In other words, it's a limitation that
must belived with if you want to use code repositoriesin thisway. There are three ways you can possibly work around
this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option
to $CFLAGS (or $CXXFLAGS or both) in your construction environment(s). Make sure the option is used for all
construction environments that use C preprocessing!

2. Change all occurrences of #i ncl ude "file.h" to#i nclude <file.h>. Useof #i ncl ude with angle
brackets does not have the same behavior--the - | directories are searched first for #i ncl ude files--which gives
SCons direct control over the list of directories the C preprocessor will search.

3. Requirethat everyone working with compilation from repositories check out and work on entire directories of files,
not individual files. (If you uselocal wrapper scriptsaround your source code control system’'s command, you could
add logic to enforce this restriction there.

Iy
=== SCONS 130

-1/ r1/di

Finding the SConst r uct fileinrepositories

22.4. Finding the SConst ruct file in reposito-
ries

SCons will also search in repositories for the SConst r uct file and any specified SConscri pt files. This poses
a problem, though: how can SCons search a repository tree for an SConst r uct fileif the SConst r uct fileitself
contains the information about the pathname of the repository? To solve this problem, SCons allows you to specify
repository directories on the command line using the - Y option:

% scons -Q -Y /usr/repositoryl -Y /usr/repository?2

When looking for source or derived files, SCons will first search the repositories specified on the command line, and
then search the repositories specified in the SConst r uct or SConscr i pt files.

22.5. Finding derived files in repositories

If arepository contains not only source files, but also derived files (such as object files, libraries, or executables),
SCons will perform its norma MD5 signature calculation to decide if a derived file in a repository is up-to-date, or
the derived file must be rebuilt in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the. sconsi gn filesthat SCons uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of its derived
filesand . sconsi gn files, or who would run SCons in a separate build directory and copy the resulting tree to the
desired repository:

% cd /usr/repositoryl

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cc -0 hello.o -c hello.c

cc -0 hello hello.o filel.o file2.0

(Notethat thisis safe even if the SConst r uct filelists/ usr/ reposi t or yl asarepository, because SCons will
remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we're interested in working with
at the moment, and use the - Y option to tell SCons to fetch any other files it needs from the repository:

% cd $HOVE/ bui | d

%edit hello.c

% scons -Q -Y /usr/repositoryl

cc -c -0 hello.o hello.c

cc -0 hello hello.o /usr/repositoryl/filel.o /usr/repositoryl/file2.o0

Noticethat SConsrealizesthat it does not need to rebuild local copiesfi | el. oandfi | e2. o files, but instead uses
the already-compiled files from the repository.

22.6. Guaranteeing local copies of files

If the repository tree contains the complete results of a build, and we try to build from the repository without any files
inour local tree, something moderately surprising happens:

Iy
=== SCONS 131

Guaranteeing local copies of files

% nkdi r $HOVE/ bui | d2

% cd $HOVE/ bui | d2

% scons -Q -Y /usr/all/repository hello
scons: " hello' is up-to-date.

Why does SCons say that the hel | o program is up-to-date when there is no hel | o program in the loca build
directory?Becausetherepository (not thelocal directory) containsthe up-to-datehel | o program, and SConscorrectly
determines that nothing needs to be done to rebuild that up-to-date copy of thefile.

There are, however, many times when you want to ensure that a local copy of afile always exists. A packaging or
testing script, for example, may assume that certain generated files exist locally. To tell SCons to make a copy of any
up-to-date repository file in the local build directory, usethe Local function:

env = Environment ()
hell o = env. Progran(' hello.c")
Local (hel | 0)

If we then run the same command, SCons will make aloca copy of the program from the repository copy, and tell
you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from/usr/all/repository/hello
scons: " hello' is up-to-date.

(Noticethat, because the act of making thelocal copy isnot considered a"build" of thehel | o file, SCons still reports
that it is up-to-date.)

Iy
=== SCONS 132

23 Multi-Platform Configura-
tion (Autoconf Functionality)

SCons has integrated support for multi-platform build configuration similar to that offered by GNU Autoconf, such
as figuring out what libraries or header files are available on the local system. This section describes how to use this
SCons feature.

Note

This chapter is till under development, so not everything is explained aswell asit should be. See the SCons
man page for additional information.

23.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to attach a conf i gure context toa
construction environment by calling the Conf i gur e function, perform a number of checks for libraries, functions,
header files, etc., and to then call the configure context's Fi ni sh method to finish off the configuration:

env = Environnent ()

conf = Confi gure(env)

Checks for libraries, header files, etc. go here!
env = conf. Fi ni sh()

SCons provides a number of basic checks, as well as a mechanism for adding your own custom checks.

Note that SCons usesits own dependency mechanism to determine when a check needsto be run--that is, SCons does
not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached
values unless something has changed. This saves a tremendous amount of developer time while working on cross-

platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom checks.

Checking for the Existence of Header Files

23.2. Checking for the Existence of Header
Files

Testing the existence of a header file requires knowing what language the header file is. A configure context has a
CheckCHeader method that checks for the existence of a C header file:

env = Environment ()

conf = Confi gure(env)

i f not conf.CheckCHeader (' math. h'):
print 'Math.h nust be installed!'
Exit(1)

i f conf.CheckCHeader (' foo.h'):
conf . env. Append("' - DHAS FOO H)

env = conf. Fi ni sh()

Note that you can choose to terminate the build if a given header file doesn't exist, or you can modify the construction
environment based on the existence of a header file.

If you need to check for the existence a C++ header file, use the Check CXXHeader method:

env = Environnent ()

conf = Confi gure(env)

i f not conf.CheckCXXHeader (' vector.h'):
print 'vector.h nust be installed!’
Exit (1)

env = conf. Fi ni sh()

23.3. Checking for the Availability of a Function

Check for the availability of a specific function using the Check Func method:

env = Environnent ()
conf = Configure(env)
i f not conf.CheckFunc('strcpy'):
print "Did not find strcpy(), using |ocal version'
conf . env. Append(CPPDEFI NES = ' - Dstrcpy=ny_| ocal strcpy')
env = conf. Fini sh()

23.4. Checking for the Availability of a Library

Check for the availability of alibrary using the CheckLi b method. Y ou only specify the basename of the library,
youdontneedtoaddal i b prefixora. aor. | i b suffix:

env = Environment ()
conf = Configure(env)

Iy
=== SCONS 134

Checking for the Availability of at ypedef

if not conf.CheckLib('m):
print '"Did not find libma or mlib, exiting!'
Exit (1)

env = conf. Fini sh()

Because the ability to use a library successfully often depends on having access to a header file that describes the
library'sinterface, you can check for alibrary and aheader file at the sametimeby usingtheCheckLi bW t hHeader
method:

env = Environnent ()

conf = Confi gure(env)

i f not conf.CheckLi bWthHeader('m, 'math.h', 'c'):
print 'Did not find [ibma or mlib, exiting!'
Exit (1)

env = conf. Fi ni sh()

Thisis essentially shorthand for separate callsto the CheckHeader and CheckLi b functions.

23.5. Checking for the Availability of at ypedef

Check for the availahility of at ypedef by usingthe CheckType method:

env = Environment ()

conf = Configure(env)

i f not conf.CheckType(' off _t'):
print '"Did not find off_t typedef, assum ng int'
conf . env. Append(CCFLAGS = '-Dof f _t=int"')

env = conf. Fini sh()

Y ou can al so add astring that will be placed at the beginning of thetest file that will be used to check for thet ypedef .
This provide away to specify files that must be included to find thet ypedef :

env = Environnent ()

conf = Configure(env)

i f not conf.CheckType('off _t', '#include <sys/types.h>\n'):
print '"Did not find off _t typedef, assum ng int'
conf . env. Append(CCFLAGS = '-Doff _t=int"')

env = conf. Fini sh()

23.6. Checking the size of a datatype

Check the size of a datatype by using the Check TypeSi ze method:

env = Environment ()
conf = Configure(env)
i nt_size = conf.CheckTypeSi ze(' unsi gned int')

Iy
=== SCONS 135

Checking for the Presence of a program

print 'sizeof unsigned int is', int_size
env = conf. Fini sh()

% scons -Q
si zeof unsigned int is 4
scons: ~.' is up to date.

23.7. Checking for the Presence of a program

Check for the presence of a program by using the Check Pr og method:

env = Environment ()

conf = Configure(env)

i f not conf.CheckProg('foobar'):
print 'Unable to find the program foobar on the systeni
Exit (1)

env = conf. Fini sh()

23.8. Adding Your Own Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system, usually using
methods that SCons supplies to take care of the details of checking whether a compilation succeeds, alink succeeds,
aprogram isrunnable, etc. A simple custom check for the existence of a specific library might look as follows:

nylib test source file = """
#i ncl ude <nylib. h>
int main(int argc, char **argv)
{
MyLi brary nylib(argc, argv);
return O;

def CheckMLi brary(context):
cont ext . Message(' Checking for MyLibrary...")
result = context. TryLink(nylib test source file, '.c')
context. Result(result)
return result

TheMessage and Resul t methods should typically begin and end a custom check to let the user know what's going
on: the Message call prints the specified message (with no trailing newline) and the Resul t call printsyes if the
check succeeds and no if it doesn't. The Tr yLi nk method actually tests for whether the specified program text will
successfully link.

(Notethat acustom check can modify its check based on any argumentsyou chooseto passit, or by using or modifying
the configure context environment in the cont ext . env attribute.)

Iy
=== SCONS 136

Adding Y our Own Custom Checks

Thiscustom check functionisthen attachedtotheconf i gur e cont ext by passingadictionary totheConf i gur e
call that maps a name of the check to the underlying function:

env = Environnent ()
conf = Configure(env, customtests = {' CheckM/Li brary' : CheckMyLi brary})

Youl'l typically want to make the check and the function name the same, as we've done here, to avoid potential con-
fusion.

We can then put these pieces together and actualy call the CheckMyLi br ar y check asfollows:

nylib_test source file =
#i ncl ude <nylib. h>
int main(int argc, char **argv)
{
MyLi brary nylib(argc, argv);
return O;

}

def CheckMLi brary(context):
cont ext . Message(' Checking for MLibrary... ")
result = context. TryLink(nmylib test source file, '.c")
context.Result(result)
return result

env = Environment ()
conf = Configure(env, customtests = {' CheckM/Li brary' : CheckMyLi brary})
i f not conf.CheckMyLibrary():
print 'MyLibrary is not installed!'
Exit (1)
env = conf. Fini sh()

W woul d then add actual calls like Progran() to build
somet hing using the "env" construction environment.

If MyLibrary is not installed on the system, the output will ook like:

% scons

scons: Readi ng SConscript file ...
Checking for MyLibrary... failed
MyLi brary is not install ed!

If MyLibrary isinstalled, the output will look like:

% scons
scons: Readi ng SConscript file ...
Checking for MyLibrary... failed

Iy
=== SCONS 137

Not Configuring When Cleaning Targets

scons: done readi ng SConscri pt
scons: Building targets ...

23.9. Not Configuring When Cleaning Targets

Using multi-platform configuration as described in the previous sections will run the configuration commands even
when invoking scons - ¢ to clean targets:

% scons -Q -c

Checking for MyLibrary... yes
Renoved foo.0

Renoved f oo

Although running the platform checks when removing targets doesn't hurt anything, it's usually unnecessary. You
can avoid this by using the Get Opt i on method to check whether the - ¢ (clean) option has been invoked on the
command line:

env = Environment ()
if not env.GetOption('clean'):
conf = Configure(env, customtests = {' CheckM/Li brary' : CheckMyLi brary})
i f not conf.CheckMyLibrary():
print 'MyLibrary is not installed!'
Exit (1)
env = conf. Fini sh()

% scons -Q -c
Renmoved foo. 0
Renmoved f oo

Iy
=== SCONS 138

24 Caching Built Files

On multi-devel oper software projects, you can sometimes speed up every devel oper's builds alot by allowing them to
share the derived files that they build. SCons makes this easy, as well asreliable.

24.1. Specifying the Shared Cache Directory

To enable sharing of derived files, usethe CacheDi r functionin any SConscri pt file:
CacheDir (' /usr/local/build cache')

Note that the directory you specify must already exist and be readable and writable by all developers who will be
sharing derived files. It should also be in some central location that all builds will be able to access. In environments
where developers are using separate systems (like individual workstations) for builds, this directory would typically
be on a shared or NFS-mounted file system.

Here'swhat happens: When abuild hasaCacheDi r specified, every timeafileisbuilt, it isstored in the shared cache
directory along with its MD5 build signature. * On subsequent builds, before an action isinvoked to build afile, SCons
will check the shared cache directory to seeif afile with the exact same build signature already exists. If so, the derived
filewill not be built locally, but will be copied into the local build directory from the shared cache directory, like so:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Renmpoved hell 0.0

Renmpoved hell o

% scons -Q

Retrieved hello.o' from cache
Retrieved "hello' from cache

Note that the CacheDi r feature still calculates MD5 build sigantures for the shared cache file names even if you
configure SCons to use timestamps to decide if files are up to date. (See the Chapter 6, Dependencies chapter for
information about the Deci der function.) Consequently, using CacheDi r may reduce or eliminate any potential
performance improvements from using timestamps for up-to-date decisions.

1 Actually, the MD5 signature is used as the name of the file in the shared cache directory in which the contents are stored.

K eeping Build Output Consistent

24.2. Keeping Build Output Consistent

One potential drawback to using ashared cacheisthat the output printed by SCons can beinconsistent from invocation
toinvocation, because any givenfile may berebuilt onetimeand retrieved from the shared cache the next time. Thiscan
make analyzing build output more difficult, especially for automated scripts that expect consistent output each time.

If, however, you use the - - cache- show option, SCons will print the command line that it would have executed to
build the file, even when it is retrieving the file from the shared cache. This makes the build output consistent every
time the build is run:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renmoved hell 0.0

Renmpoved hell o

% scons -Q --cache-show
cc -0 hello.o -c hello.c
cc -0 hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file from cache or
has rebuilt it locally.

24.3. Not Using the Shared Cache for Specific
Files

Y ou may want to disable caching for certain specific filesin your configuration. For example, if you only want to put
executable filesin acentral cache, but not the intermediate object files, you can use the NoCac he function to specify
that the object files should not be cached:

env Envi ronnent ()

obj env. Obj ect (' hello.c")
env. Progran(' hello.c")
CacheDir (' cache")

NoCache(' hel l 0. 0")

Then when you run scons after cleaning the built targets, it will recompile the object file locally (since it doesn't
exist in the shared cache directory), but still realize that the shared cache directory contains an up-to-date executable
program that can be retrieved instead of re-linking:

% scons -Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q -c

Rermoved hel l 0. 0

Rermoved hel |l o

% scons -Q

cc -o hello.o -c hello.c
Retrieved "hello' from cache

Iy
=== SCONS 140

Disabling the Shared Cache

24.4. Disabling the Shared Cache

Retrieving an already-built file from the shared cache is usually a significant time-savings over rebuilding the file,
but how much of a savings (or even whether it savestime at all) can depend a great deal on your system or network
configuration. For example, retrieving cached files from abusy server over abusy network might end up being slower
than rebuilding the files locally.

In these cases, you can specify the - - cache- di sabl e command-line option to tell SCons to not retrieve al-
ready-built files from the shared cache directory:

% scons -Q

cc -o hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Rermoved hel |l 0. 0

Rermoved hel |l o

% scons -Q

Retrieved " hello.o' from cache
Retrieved "hello' from cache
% scons -Q -c

Rermoved hel l 0. 0

Rermoved hel | o

% scons -Q --cache-di sabl e
cc -o hello.o -c hello.c

cc -0 hello hello.o

24.5. Populating a Shared Cache With Al-
ready-Built Files

Sometimes, you may have one or more derived files already built in your local build tree that you wish to make
available to other people doing builds. For example, you may find it more effective to perform integration builds with
the cache disabled (per the previous section) and only populate the shared cache directory with the built files after the
integration build has completed successfully. Thisway, the cache will only get filled up with derived filesthat are part
of acomplete, successful build not with files that might be later overwritten while you debug integration problems.

In this case, you can use the the - - cache- f or ce option to tell SConsto put al derived filesin the cache, even if
thefiles already exist in your local tree from having been built by a previous invocation:

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renmoved hel |l 0. 0

Renmoved hel |l o

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q --cache-force
scons: .' is up to date

% scons -Q

Iy
=== SCONS 141

Minimizing Cache Contention: the - - r andomOption

scons: is up to date.

Notice how the above sample run demonstrates that the - - cache- di sabl e option avoids putting the built
hel | 0. o and hel | o filesin the cache, but after using the - - cache- f or ce option, the files have been put in the
cache for the next invocation to retrieve.

24.6. Minimizing Cache Contention: the - - r an-
domOption

If you allow multiple builds to update the shared cache directory simultaneously, two builds that occur at the same
time can sometimes start "racing” with one another to build the same files in the same order. If, for example, you are
linking multiple files into an executable program:

Program(' prog',
["'fl.c', '"f2.c', "f3.c', '"f4.c', '"f5.¢c'])

SCons will normally build the input object files on which the program depends in their normal, sorted order:

% scons -Q

cc -o f2.0 -c f2.c
cc -ofl.o-c fl.c
cc -o f5.0 -c f5.c
cc -o f3.0 -c f3.c
cc -o f4.0 -c f4.c

cc -o prog fl.o f2.0 f3.0 f4.0 f5.0

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time and both
decide that f 1. 0 must be rebuilt and pushed into the shared cache directory, then both decide that f 2. 0 must be
rebuilt (and pushed into the shared cache directory), then both decide that f 3. 0 must be rebuilt... This won't cause
any actual build problems--both builds will succeed, generate correct output files, and populate the cache--but it does
represent wasted effort.

To aleviate such contention for the cache, you can use the - - r andomcommand-line option to tell SCons to build
dependenciesin arandom order:

% scons -Q --random
cc -o f3.0 -c f3.c

cc -o fl.o -c fil.c
cc -o f5.0 -c f5.c
cc -o f2.0 -c f2.c
cc -o f4.0 -c f4.c

cc -o prog fl.o f2.0 f3.0 f4.0 f5.0

Multiple builds using the - - r andomoption will usually build their dependenciesin different, random orders, which
minimizesthe chancesfor alot of contention for same-named filesin the shared cache directory. Multiple simultaneous
builds might still race to try to build the same target file on occasion, but long sequences of inefficient contention
should be rare.

Note, of course, the - - r andomoption will cause the output that SCons prints to be inconsistent from invocation to
invocation, which may be an issue when trying to compare output from different build runs.

Iy
=== SCONS 142

Minimizing Cache Contention: the - - r andomOption

If you want to make sure dependencies will be built in a random order without having to specify the - - r andomon
very command line, you can use the Set Opt i on function to set ther andomoption within any SConscr i pt file

Set Option(' random , 1)

Progran(' prog',
["f1.¢', 'f2.¢', 'f3.¢c', 'f4.¢', 'f5.¢c'])

Iy
=== SCONS 143

25 Alias Targets

We've already seen how you can usethe Al i as function to create atarget namedi nstal | :

env = Environment ()

hello = env. Program(' hello.c")
env.lnstall ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

Y ou can then use this aias on the command line to tell SCons more naturally that you want to install files:

% scons -Q instal

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

Like other Bui | der methods, though, the Al i as method returns an object representing the alias being built. Y ou
can then use this object as input to anothother Bui | der . Thisis especially useful if you use such an object as input
to another call tothe Al i as Bui | der, allowing you to create a hierarchy of nested aliases:

env = Environment ()

p = env. Progran('foo.c')

| = env.Library('bar.c')
env.Install ('/usr/bin', p)

env.Install ('/usr/lib, 1)

ib =env.Alias('install-bin', '/usr/bin")

il =env.Alias('install-lib", '"/usr/lib")

env.Alias('install', [ib, il])

This example defines separatei nstal | ,instal |l -bin,andi nstal | -1i b aliases, allowing you finer control

over what getsinstalled:

% scons -Qinstall-bin

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"
% scons -Qinstall-lib

CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /

Rermoved foo. 0

Rermoved f oo

Rermoved /usr/ bin/foo

Renmoved bar. o

Rermoved |i bbar. a

Rermoved /usr/lib/libbar.a

% scons -Q instal

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"

CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"

Iy
=== SCONS 145

26 Java Builds

So far, we've been using examples of building C and C++ programs to demonstrate the features of SCons. SCons aso
supports building Java programs, but Java builds are handled slightly differently, which reflects the waysin which the
Java compiler and tools build programs differently than other languages tool chains.

26.1. Building Java Class Files: the Java
Builder

The basic activity when programming in Java, of course, is to take one or more . j ava files containing Java source
code and to call the Java compiler to turn them into one or more . cl ass files. In SCons, you do this by giving the
Java Builder atarget directory inwhichtoput the. cl ass files, and asourcedirectory that containsthe. j ava files:

Java(' cl asses', 'src')

If the sr ¢ directory containsthree . j ava sourcefiles, then running SCons might look like this:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanpl e3.java

SCons will actually search the sr ¢ directory tree for all of the . j ava files. The Java compiler will then create the
necessary classfilesinthecl asses subdirectory, based on the class names found inthe . j ava files.

26.2. How SCons Handles Java Dependencies

In addition to searching the source directory for . j ava files, SConsactually runsthe. j ava filesthrough a stripped-
down Java parser that figures out what classes are defined. In other words, SCons knows, without you having to tell
it, what . cl ass fileswill be produced by the javac call. So our one-liner example from the preceding section:

Java(' cl asses', 'src')
Will not only tell you reliably that the. cl ass filesinthecl asses subdirectory are up-to-date:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava

Building Java Archive (. j ar) Files: the Jar Builder

% scons -Q cl asses
scons: "classes' is up to date.

But it will also remove al of the generated . cl ass files, even for inner classes, without you having to specify them
manually. For example, if our Exanpl el. j ava and Exanpl e3. j ava files both define additional classes, and
the class defined in Exanpl e2. j ava has an inner class, running scons - ¢ will clean up al of those . cl ass
filesaswell:

% scons -Q

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanp
% scons -Q -c cl asses

Renoved cl asses/ Exanpl el. cl ass

Renmoved cl asses/ Addi ti onal C assl. cl ass

Renmoved cl asses/ Exanpl e2$l nner 2. cl ass

Renoved cl asses/ Exanpl e2. cl ass

Renoved cl asses/ Exanpl e3. cl ass

Renoved cl asses/ Addi ti onal Cl ass3. cl ass

To ensure correct handling of . ¢l ass dependenciesin al cases, you need to tell SCons which Javaversion isbeing
used. This is needed because Java 1.5 changed the . cl ass file names for nested anonymous inner classes. Use the
JAVAVERSI ON construction variable to specify the version in use. With Java 1.6, the one-liner example can then
be defined like this:

Java(' classes', 'src', JAVAVERSI ON='1.6")

See JAVAVERSI ON in the man page for more information.

26.3. Building Java Archive (.] ar) Files: the
Jar Builder

After building the class files, it's common to collect them into a Java archive (. j ar) file, which you do by calling
the Jar Builder method. If you want to just collect all of the class files within a subdirectory, you can just specify
that subdirectory asthe Jar source:

Java(target = 'classes', source
Jar(target = '"test.jar', source

"src')
'cl asses')

SCons will then pass that directory to the jar command, which will collect all of the underlying . cl ass files:

% scons -Q

| e3.java

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava

jar cf test.jar classes

If you want to keep al of the. cl ass files for multiple programs in one location, and only archive some of them in
each. | ar file, you can passtheJar builder alist of filesasits source. It's extremely simpleto create multiple. j ar
filesthisway, using thelists of target classfilescreated by callstothe Java builder assourcestothevariousJar calls:

progl class files
prog2_cl ass files

Java(tar get
Java(tar get

'cl asses', source
'cl asses', source

' progl’)
' prog2')

Iy
=== SCONS 147

Building C Header and Stub Files: the JavaH Builder

Jar (t arget
Jar (t arget

‘progl.jar’, source
'prog2.jar', source

progl cl ass files)
prog2_cl ass _files)

Thiswill then create pr ogl. j ar and pr og2. j ar next to the subdirectories that contain their . j ava files:

% scons -Q

javac -d classes -sourcepath progl progl/ Exanpl el.java progl/ Exanpl e2.j ava
javac -d cl asses -sourcepath prog2 prog2/ Exanpl e3.java prog2/ Exanpl e4. j ava
jar cf progl.jar -C classes Exanpl el.cl ass -C cl asses Exanpl e2. cl ass

jar cf prog2.jar -C classes Exanpl e3.cl ass -C cl asses Exanpl e4. cl ass

26.4. Building C Header and Stub Files: the
JavaH Builder

Y ou can generate C header and source files for implementing native methods, by using the JavaH Builder. There are
several ways of using the JavaH Builder. One typical invocation might look like:

cl asses = Java(target = 'classes', source = 'src/pkg/sub')
JavaH(target = 'native', source = cl asses)

The sourceis alist of class files generated by the call to the Java Builder, and the target is the output directory in
which we want the C header files placed. The target gets converted into the - d when SCons runs javah:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el. java src/ pkg/ sub/ Exanpl e2.] a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

In this case, the call to javah will generate the header files nati ve/ pkg_sub_Exanpl el. h, na-
tivel/ pkg_sub_Exanpl e2. handnati ve/ pkg_sub_Exanpl e3. h. Notice that SCons remembered that the
class files were generated with atarget directory of cl asses, and that it then specified that target directory as the
- cl asspat h option to the cal to javah.

Although it's more convenient to use the list of class files returned by the Java Builder as the source of acal to the
JavaH Builder, you can specify the list of classfiles by hand, if you prefer. If you do, you need to set the $JAVA-
CLASSDI R construction variable when calling JavaH:

Java(target = 'classes', source = 'src/pkg/sub')
class file_ list = ['classes/pkg/sub/Exanpl el. cl ass',
' cl asses/ pkg/ sub/ Exanpl e2. cl ass',
' cl asses/ pkg/ sub/ Exanpl e3. cl ass']
JavaH(target = 'native', source = class_file_list, JAVACLASSDIR = 'cl asses')

The $JAVACLASSDI R value then gets converted into the - cl asspat h when SCons runsjavah:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/Exanpl el.java src/pkg/ sub/ Exanpl e2.j a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

Lastly, if you don't want a separate header file generated for each source file, you can specify an explicit File Node
asthe target of the JavaH Builder:

Iy
=== SCONS 148

Building RMI Stub and Skeleton Class Files: the RM C
Builder

cl asses = Java(target = 'classes', source = 'src/pkg/sub')
JavaH(target = File('native.h'), source = cl asses)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to use the Fi | e
function to make sure that SCons doesn't create a directory named nat i ve. h. When afile is used, though, SCons
correctly converts the file nameinto the javah - o option:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/pkg/ sub/ Exanpl e2.j a
javah -o native.h -classpath classes pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanpl e3

26.5. Building RMI Stub and Skeleton Class
Files: the RM CBuilder

You can generate Remote Method Invocation stubs by using the RM C Builder. The source is alist of directories,
typicaly returned by acall to the Java Builder, and the target is an output directory wherethe St ub. cl ass and
_Skel . cl ass fileswill be placed:

cl asses = Java(target = 'classes', source = 'src/pkg/sub')
RM C(target = "outdir', source = cl asses)

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the - cl asspat h option
tormic:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/pkg/ sub/ Exanpl e2.j a
rmc -d outdir -classpath classes pkg.sub. Exanpl el pkg. sub. Exanpl e2

This example would generate the files out di r/ pkg/ sub/ Exanpl el _Skel . cl ass, outdir/ pkg/
sub/ Exanpl el_St ub. cl ass, outdi r/ pkg/ sub/ Exanpl e2_Skel . cl ass and out di r/ pkg/ sub/
Exanpl e2_St ub. cl ass.

Iy
=== SCONS 149

27 Miscellaneous Functionali-
ty

SCons supports alot of additional functionality that doesn't readily fit into the other chapters.

27.1. Verifying the Python Version: the En-
sur ePyt honVer si on Function

Although the SCons code itself will run on any 2.x Python version 2.7 or later, you are perfectly free to make use of
Python syntax and modules from later versions when writing your SConscr i pt files or your own local modules.
If you do this, it's usually helpful to configure SCons to exit gracefully with an error message if it's being run with a
version of Python that simply won't work with your code. Thisis especialy true if you're going to use SConsto build
source code that you plan to distribute publicly, where you can't be sure of the Python version that an anonymous
remote user might use to try to build your software.

SCons provides an Ensur ePyt honVer si on function for this. You simply pass it the major and minor versions
numbers of the version of Python you require;

Ensur ePyt honVer si on(2, 5)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of Python:

% scons -Q
Python 2.5 or greater required, but you have Python 2.3.6

27.2. Verifying the SCons Version: the En-
sur eSConsVer si on Function

You may, of course, write your SConscr i pt filesto use features that were only added in recent versions of SCons.
When you publicly distribute software that is built using SCons, it's helpful to have SCons verify the version being
used and exit gracefully with an error message if the user's version of SCons won't work with your SConscr i pt

Explicitly Terminating SCons While Reading SCon-
scri pt Files theExi t Function

files. SCons provides an Ensur eSConsVer si on function that verifies the version of SCons in the same the En-
sur ePyt honVer si on function verifiesthe version of Python, by passing in the major and minor versions numbers
of the version of SCons you require:

Ensur eSConsVer si on(1, 0)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of SCons:

% scons -Q
SCons 1.0 or greater required, but you have SCons 0.98.5

27.3. Explicitly Terminating SCons While Read-
Ing SConscri pt Files: the Exi t Function

SConssupportsan Exi t function which can be used to terminate SConswhilereading the SConscr i pt files, usually
because you've detected a condition under which it doesn't make sense to proceed:

i f ARGUMENTS. get (" FUTURE') :
print "The FUTURE option is not supported yet!"”
Exit(2)

env = Environment ()

env. Progran(' hello.c")

% scons - Q FUTURE=1

The FUTURE option is not supported yet!
% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

TheExi t functiontakesasan argument the (numeric) exit statusthat you want SConsto exit with. If you don't specify
avalue, the default isto exit with O, which indicates successful execution.

Note that the Exi t function is equivalent to calling the Python sys. exi t function (which theit actually calls), but
because Exi t isa SCons function, you don't have to import the Python sys module to use it.

27.4. Searching for Files: the Fi ndFi | e Func-
tion

The Fi ndFi | e function searches for afile in alist of directories. If there is only one directory, it can be given
as a simple string. The function returns a File node if a matching file exists, or None if no file is found. (See the
documentation for the d ob function for an aternative way of searching for entriesin adirectory.)

one directory

Iy
=== SCONS 151

Searching for Files: the Fi ndFi | e Function

pri nt
t = FindFile(' exists',
print t. class_, t

FindFile('mssing' , '.")

N

% scons -Q

None
<cl ass ' SCons. Node. FS. Fi |l e' > exi sts
scons: ' is up to date
several directories
includes = [".', "include', 'src/include']
headers = ['nonesuch.h', "config.h', '"private.h', "dist.h']
for hdr in headers:
print '%12s' % ('%:' %hdr), FindFile(hdr, includes)
% scons -Q
nonesuch. h: None
config. h: config.h
private. h: src/include/private.h
di st. h: i ncl ude/ di st. h
scons: ~.' is up to date

If the file exists in more than one directory, only the first occurrence is returned.

print FindFile('multiple , ['subl', 'sub2',
print FindFile('multiple , ['sub2', 'sub3',
print FindFile('multiple , ['sub3 , 'subl',

% scons -Q
subl/ mul tiple
sub2/ mul tiple

sub3/mul tiple

scons: ' is up to date

'sub3'])
‘subl'])
'sub2'])

In addition to existing files, Fi ndFi | e will also find derived files (that is, non-leaf files) that haven't been built yet.

(Leaf files should already exist, or the build will fail!)

Neither file exists, so build will fail
Conmand(' derived', 'leaf', 'cat >$TARGET $SOURCE')
print FindFile('leaf', '.")

print FindFile('derived , '.")

% scons -Q

| eaf

deri ved

cat > derived | eaf

Only 'leaf' exists
y
=== SCONS 152

Handling Nested Lists: the Fl at t en Function

Command(' derived', 'leaf', 'cat >$TARGET $SOURCE)
print FindFile('leaf', '.")
print FindFile('derived , '.")

% scons -Q

| eaf

derived

cat > derived | eaf

If asourcefileexists, Fi ndFi | e will correctly return the namein the build directory.

Only '"src/leaf' exists
VariantDir('build , "'src')
print FindFile('leaf', '"build)

% scons -Q
bui | d/ | eaf
scons: ~.' is up to date.

27.5. Handling Nested Lists: the Fl att en
Function

SCons supportsa Fl at t en function which takes an input Python sequence (list or tuple) and returns a flattened list
containing just the individual elements of the sequence. This can be handy when trying to examine alist composed of
the lists returned by calls to various Builders. For example, you might collect object files built in different ways into
one call to the Pr ogr amBuilder by just enclosing them in alist, asfollows:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO),
]
Pr ogr an(obj ect s)

Because the Builder callsin SCons flatten their input lists, thisworks just fine to build the program:

% scons -Q

cc -0 progl.o -c progl.c

CC -0 prog2.0 -c -DFQOO prog2.c
cc -0 progl progl.o prog2.o0

But if you were debugging your build and wanted to print the absolute path of each object filein the obj ect s list,
you might try the following simple approach, trying to print each Node'sabspat h attribute:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO),
]
Pr ogr an(obj ect s)

Iy
=== SCONS 153

Finding the Invocation Directory: the Get LaunchDi r
Function

for object file in objects:
print object file.abspath

This does not work as expected because each call to st r is operating an embedded list returned by each Obj ect
call, not on the underlying Nodes within those lists:

% scons -Q
AttributeError: 'NodeList' object has no attribute 'abspath':
File "/home/ ny/ project/SConstruct”, |ine 8:
print object file.abspath

The solutionisto usethe FI at t en function so that you can pass each Nodeto the st r separately:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO),
]
Pr ogr am(obj ect s)

for object file in Flatten(objects):
print object file.abspath

% scons -Q

/ hone/ me/ proj ect/ progl. o

/ honme/ me/ pr oj ect/ prog2. o

cc -0 progl.o -c progl.c

CC -0 prog2.0 -c -DFQO prog2.c
CC -0 progl progl.o prog2.o0

27.6. Finding the Invocation Directory: the
Get LaunchDi r Function

If you need to find the directory from which the user invoked the scons command, you can usethe Get LaunchDi r
function:

env = Environnent (
LAUNCHDI R = Get LaunchDir (),
)
env. Command(' directory build_info',
' SLAUNCHDI R/ bui | d_i nf o
Copy(' $TARGET' , ' $SOURCE'))

Because SCons is usually invoked from the top-level directory in which the SConst ruct file lives, the Python
0s. get cwd() isoften equivalent. However, the SCons- u, - Uand - Dcommand-line options, when invoked from a
subdirectory, will cause SConsto changeto thedirectory inwhichthe SConst r uct fileisfound. When those options

Iy
=== SCONS 154

Finding the Invocation Directory: the Get LaunchDi r
Function

are used, Get LaunchDi r will still return the path to the user's invoking subdirectory, allowing the SConscr i pt
configuration to still get at configuration (or other) files from the originating directory.

Iy
=== SCONS 155

28 Troubleshooting

The experience of configuring any software build tool to build alarge code base usually, at some point, involvestrying
to figure out why thetool isbehaving acertain way, and how to get it to behave theway you want. SConsisno different.
This appendix contains anumber of different waysin which you can get some additional insight into SCons' behavior.

Note that we're always interested in trying to improve how you can troubleshoot configuration problems. If you run
into a problem that has you scratching your head, and which there just doesn't seem to be a good way to debug, odds
are pretty good that someone else will run into the same problem, too. If so, please let the SCons devel opment team
know (preferably by filing a bug report or feature request at our project pages at tigris.org) so that we can use your
feedback to try to come up with a better way to help you, and others, get the necessary insight into SCons behavior
to help identify and fix configuration issues.

28.1. Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

Let'slook at asimple example of a misconfigured build that causes atarget to be rebuilt every time SConsis run:

Intentionally misspell the output file nane in the
comand used to create the file:
Command('file.out', "file.in', 'cp $SOURCE fil e.oout")

(Note to Windows users. The POSIX cp command copies the first file named on the command line to the second file.
In our example, it copiesthefil e. i nfiletothefil e. out file)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

In this example, the underlying cause is obvious: we've intentionally misspelled the output file name in the cp com-
mand, so the command doesn't actually buildthef i | e. out filethat we'vetold SCons to expect. But if the problem

Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

weren't obvious, it would be helpful to specify the - - debug=expl ai n option on the command line to have SCons
tell us very specifically why it's decided to rebuild the target:

% scons -Q --debug=expl ai n
scons: building file.out' because it doesn't exi st
cp file.in file.oout

If this had been a more complicated example involving alot of build output, having SCons tell us that it's trying to
rebuild the target file because it doesn't exist would be an important clue that something was wrong with the command
that we invoked to build it.

Note that you can aso use --warn=target-not-built which checks whether or not expected targets exist after a build
ruleis executed.

% scons -Q --warn=target-not-built
cp file.in file.oout

scons: warning: Cannot find target file.out after buil ding
File "/scons/as_scons/bootstrap/src/script/scons.py”, line 199, in <nmodul e>

The - - debug=expl ai n option also comes in handy to help figure out what input file changed. Given a ssimple
configuration that builds a program from three source files, changing one of the source files and rebuilding with the
- - debug=expl ai n option shows very specifically why SCons rebuilds the files that it does:

% scons -Q

cc -ofilel.o -c filel.c

cc -ofile2.0 -c file2.c

cc -ofile3.0 -c file3.c

cc -o prog filel.o file2.0 file3.0

% [CHANGE THE CONTENTS OF fil e2.c]

% scons -Q --debug=expl ai n

scons: rebuilding "file2. o' because “file2.c' changed
cc -ofile2.0 -c file2.c

scons: rebuilding " prog' because “file2. 0" changed
cc -o prog filel.o file2.0 file3.0

Thisbecomes even more helpful in identifying when afileisrebuilt dueto achangein animplicit dependency, such as
anincuded. hfile. If thefi |l el. c andfi | 3. c filesin our examplebothincluded ahel | o. h file, then changing
that included file and re-running SCons with the - - debug=expl ai n option will pinpoint that it's the change to the
included file that starts the chain of rebuilds:

% scons -Q

cc -o filel.o -c -1. filel.c

cc -o file2.0 -¢c -1. file2.c

cc -o file3.o -c -1. file3.c

cc -o prog filel.o file2.0 file3.0

% [CHANGE THE CONTENTS OF hel | 0. h]

% scons -Q --debug=expl ai n
scons: rebuilding "filel. o' because "hello.h' changed

cc -o filel.o -c -1. filel.c
scons: rebuilding "file3.0" because "hello.h' changed
cc -o file3.o -c -1. file3.c

scons: rebuilding “prog' because:
“filel. o' changed
“file3.0" changed

cc -o prog filel.o file2.0 file3.0

Iy
=== SCONS 157

What's in That Construction Environment? the Dunp
Method

(Notethat the- - debug=expl ai n option will only tell you why SCons decided to rebuild necessary targets. It does
not tell you what files it examined when deciding not to rebuild atarget file, which is often a more valuable question
to answer.)

28.2. What's in That Construction Environ-
ment? the Dunp Method

When you create a construction environment, SCons populatesit with construction variablesthat are set up for various
compilers, linkersand utilitiesthat it finds on your system. Although thisisusually helpful and what you want, it might
befrustrating if SConsdoesn't set certain variablesthat you expect to be set. In situationslikethis, it's sometimes hel pful
to use the construction environment Dunp method to print all or some of the construction variables. Note that the
Dunp method returnsthe representation of the variablesin the environment for you to print (or otherwise manipul ate):

env = Envi ronnent ()
print env. Dunmp()

On aPOSIX system with gcc installed, this might generate:

% scons
scons: Readi ng SConscript files ...
{ "BULDERS : {' _Internallnstall': <function InstallBuil derWapper at 0x700000>, ' _Inte

' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
"CPPSUFFIXES' : ['.c',

- hppI ’
© FPP

. Spp’,
'. SPP",
.sx'1,
"DSUFFI XES' : ['.d'],
"Dir': <SCons.Defaults. Variable Method _Caller object at 0x700000> ; ,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000> ,
"ENV' : { 'PATH : *'/usr/local/bin:/opt/bin:/bin:/usr/bin'},

' ESCAPE' : <function escape at 0x700000> ; ,

"File': <SCons.Defaults. Variable Method Caller object at 0x700000> ,
' HOST_ARCH : None,

Iy
=== SCONS 158

What's in That Construction Environment? the Dunp
Method

' HOST_OS' : None,

| DLSUFFI XES': ['.idl"', '".IDL'],

I NSTALL' : <function copyFunc at 0x700000> ; ,

| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000> ; ,
LI BPREFI X' : "lib",

LI BPREFI XES' : [' $LI BPREFI X'],

LI BSUFFI X' : '.a',

LI BSUFFI XES' : [' $LI BSUFFI X', ' $SHLI BSUFFI X'],

MAXLI NELENGTH : 128072,

' OBJPREFI X' : "',
"OBJSUFFI X' : '.0',

' PLATFORM : ' posi x',
' PROGPREFI X' @ ' ",

' PROGSUFFI X' @ ' ",

PSPAWN : <function pi ped_env_spawn at 0x700000> ;,
"RDirs': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000> ; ,
" SCANNERS' : [],

" SHELL': 'sh',
' SHLI BPREFI X' : ' $LI BPREFI X',
"SHLI BSUFFI X' : ' .so',

' SHOBJPREFI X' : ' $OBJPREFI X',
' SHOBJSUFFI X' : ' $OBJSUFFI X',
' SPAWN : <function subprocess_spawn at 0x700000> ; ,
' TARGET_ARCH : None,
' TARGET_OS' : None,
' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMuinge' >,
' TEMPFI LEPREFI X' : ' @),
"TOOLS : ['install', "install'],
' _CPPDEFFLAGS : ' ${_defi nes(CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env_)}',
' _CPPI NCFLAGS : ' $(${_concat (I NCPREFI X, CPPPATH, | NCSUFFI X, _ _env__, RDirs, TARGET, SOU
' _LIBDI RFLAGS : ' $(${_concat (LI BD RPREFI X, LIBPATH, LIBDH RSUFFIX, __env__, RDirs, TARCE
' _LIBFLAGS : ' ${_concat (LI BLI NKPREFI X, LIBS, LIBLINKSUFFIX, __env_)}',
' __DRPATH : '$_DRPATH ,
' __DSHLI BVERSI ONFLAGS' : "'${__libversionflags(__env__, "DSHLI BVERSI ON', " _DSHLI| BVERSI ONFLAC
' __LDMODULEVERSI ONFLAGS' : " ${__li bversionflags(__env__, " LDMODULEVERSI ON', " _LDMODULEVERSI
' __RPATH : '$_RPATH ,
' __SHLIBVERSI ONFLAGS' : " ${__libversionflags(__env__, "SHLI BVERSI ON', " _SHLI BVERSI ONFLAGS")
' libversionflags': <function _ |ibversionflags at 0x700000> ; ,
_concat': <function _concat at 0x700000> ;,
' _defines': <function _defines at 0x700000> ,
' _stripixes': <function _stripixes at 0x700000> ; }
scons: done readi ng SConscript files.
scons: Building targets ...
scons: ' is up to date.
scons: done buil ding targets.

On aWindows system with Visual C++ the output might look like:

C.\ >scons

scons: Readi ng SConscript files ...

{ "BULDERS : {' _InternallnstallVersionedLib': <function |Install VersionedBuil der W apper at
‘CC: ‘'cl",
' CCCOM : <SCons. Acti on. Functi onActi on obj ect at 0x700000> ; ,
' CCFLAGS' : ['/nol ogo'],

Iy
=== SCONS 159

What's in That Construction Environment? the Dunp
Method

' CCPCHFLAGS' : ['${(PCH and "/Yu%s \\"/Fp%\\""% PCHSTOP or "",File(PCH))) or ""}'1],
' CCPDBFLAGS' : ['${(PDB and "/Zz7") or ""}'],
"CFILESUFFI X' : ".c',
"' CFLAGS' : [],
' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
' CPPDEFPREFI X : '/ D,
' CPPDEFSUFFI X' @ "',
" CPPSUFFI XES': ['.c',
. C,
. CXX",
.cpp’,
. C++'
.cc',
".h',

. hxx',
* hppI 1]

. Spp',
'. SPP',
.sx'1,
"CXX' . '$CC,
' CXXCOM : ' ${ TEMPFI LE(" $CXX $_MSVC OQUTPUT_FLAG /¢ $CHANGED SCQURCES $CXXFLAGS $CCFLAGS $_
" CXXFI LESUFFI X' : ' .cc',
"CXXFLAGS': ['"$(', '/TP, "$)'],
DSUFFI XES': ['.d'],
"Dir': <SCons.Defaults. Variable Method_Caller object at 0x700000> ; ,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000> ,
"ENV' : { 'PATH : ' C \\ W NDOAB\\ Syst enB32' ,
" PATHEXT' : ' . COM . EXE; . BAT; . CMD
' SystenRoot': ' C:\\ WNDONS },
' ESCAPE' : <function escape at 0x700000> ; ,
"File': <SCons.Defaults. Variable Method Caller object at 0x700000> ; ,
"HOST_ARCH : '',
"HOST_OS': 'win32',
| DLSUFFI XES' @ ['.idl', ".I1DL'],
I NCPREFI X' : '/1",
| NCSUFFI X' @ ' ",
"INSTALL' : <function copyFunc at 0x700000> ; ,
| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000> ; ,
LI BPREFI X' : "',
LI BPREFI XES' : [' $LI BPREFI X'],
LIBSUFFI X' : '.lib",
LI BSUFFI XES' : [' $LI BSUFFI X'],
MAXLI NELENGTH : 2048,
MSVC_SETUP_RUN : Tr ue,
' OBJPREFI X @ "',

Iy
=== SCONS 160

What's in That Construction Environment? the Dunp
Method

scons:

" OBJSUFFI X : '.obj",

' PCHCOM : ' CXX / Fo{ TARGETS[1]} $CXXFLAGS $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAG
' PCHPDBFLAGS' : [' ${(PDB and "/Yd") or ""}'],

' PLATFORM : ' wi n32',

' PROGPREFI X' : ' ",

' PROGSUFFI X' : ' . exe',

" PSPAWN : <function piped_spawn at 0x700000> ; ,

"RC: 'rc',

' RCCOM : <SCons. Acti on. Functi onActi on obj ect at 0x700000> ; ,
" RCFLAGS' : [],

"RCSUFFI XES' : ['.rc', '.rc2'],

"RDirs': <SCons. Defaults. Variabl e Method_Cal | er object at 0x700000> ; ,

" SCANNERS' : [],

'SHCC : ' $CC ,

' SHCCCOM : <SCons. Act i on. Functi onActi on obj ect at 0x700000> ; ,

' SHCCFLAGS' : [' $CCFLAGS'],

' SHCFLAGS' : [' $CFLAGS'],

" SHCXX' : ' $CXX'

' SHCXXCOM : ' ${ TEMPFI LE(" $SHCXX $_MSVC_OUTPUT_FLAG / ¢ $CHANGED SOURCES $SHCXXFLAGS $SHCC
' SHCXXFLAGS' : [' $CXXFLAGS'],

" SHELL' : None,

" SHLI BPREFI X' @ "',

"SHLI BSUFFI X' : *.dlI",

' SHOBJPREFI X' : ' $OBJPREFI X',

' SHOBJSUFFI X' : ' $OBJSUFFI X',

' SPAWN : <function spawn at 0x700000> ; ,

' STATI C_AND_SHARED OBJECTS ARE_THE SAME' : 1,

' TARGET_ARCH : None,

' TARGET_OS' : None,

' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMinge' >,

' TEMPFI LEPREFI X' : ' @),

"TOOLS : ['msvc', 'install', 'install'],

' _CCCOMCOM : ' $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $CCPCHFLAGS $CCPDBFLAGS' ,

' _CPPDEFFLAGS : ' ${_defi nes(CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env_)}',

' _CPPI NCFLAGS : ' $(${_concat (I NCPREFI X, CPPPATH, | NCSUFFI X, _ _env__, RDirs, TARGET, SOU
' _LIBDI RFLAGS : ' $(${_concat (LI BD RPREFI X, LIBPATH, LIBDH RSUFFIX, __env__, RDirs, TARCE
' _LIBFLAGS : ' ${_concat (LI BLI NKPREFI X, LIBS, LIBLINKSUFFIX, __env_)}"',

' MBVC QUTPUT_FLAG : <function msvc_output flag at 0x700000> ; ,

' __ DSHLI BVERSI ONFLAGS' : "'${__libversionflags(__env__, "DSHLI BVERSI ON', " _DSHLI| BVERSI ONFLAC
' __LDMODULEVERSI ONFLAGS' : " ${__Ili bversionflags(__env__, " LDMODULEVERSI ON', " _LDMODULEVERSI
' __SHLIBVERSI ONFLAGS' : " ${__libversionflags(__env__, "SHLI BVERSI ON', " _SHLI BVERSI ONFLAGS")
' libversionflags': <function __|ibversionflags at 0x700000> ; ,

_concat': <function _concat at 0x700000> ;,

' _defines': <function _defines at 0x700000> ,

' _stripixes': <function _stripixes at 0x700000> ; }

scons: done readi ng SConscript files.

scons: Building targets ...

“.' is up to date.

scons: done buil ding targets.

The construction environmentsin these exampleshave actually been restricted to just gcc and Visual C++, respectively.
In areal-life situation, the construction environments will likely contain a great many more variables. Also note that
we've massaged the exampl e output above to make the memory address of all objects a constant 0x700000. In redlity,
you would see adifferent hexadecimal number for each object.

Iy
=== SCONS 161

What Dependencies Does SCons Know About? the - -
tree Option

To makeit easier to seejust what you'reinterested in, the Dunp method allows you to specify a specific constrcution
variable that you want to disply. For example, it's not unusual to want to verify the external environment used to
execute build commands, to make sure that the PATH and other environment variables are set up the way they should
be. Y ou can do this asfollows:

env = Environnent ()
print env.Dunp(' ENV')

Which might display the following when executed on a POSI X system:

% scons

scons: Readi ng SConscript files ...

{ "PATH : '/usr/local/bin:/opt/bin:/bin:/usr/bin'}
scons: done readi ng SConscript files.

scons: Building targets ...

scons: ~.' is up to date.

scons: done buil ding targets.

And the following when executed on a Windows system:

C.\ >scons
scons: Readi ng SConscript files ...
{ "PATH : ' C:\\ W NDOAB\ \ Syst enB2',
' PATHEXT' : '.COM . EXE; . BAT; . C\MD
' SystenRoot': ' C:\\ W NDONS' }
scons: done readi ng SConscript files.
scons: Building targets ...
scons: ".' is up to date.
scons: done buil ding targets.

28.3. What Dependencies Does SCons Know
About? the - -t ree Option

Sometimes the best way to try to figure out what SConsisdoing is simply to take alook at the dependency graph that
it constructs based on your SConscri pt files. The- -t r ee option will display all or part of the SCons dependency
graphinan"ASCII art" graphical format that shows the dependency hierarchy.

For example, given the following input SConst r uct file:

env = Environment (CPPPATH = ['."'])
env. Progran('prog', ['fl.c', '"f2.¢c', 'f3.¢c'])

Running SConswith the- -t r ee=al | optionyields:

% scons -Q --tree=all

cc -o fl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o f2.0 f3.0
+- .

IS

'—‘-‘ SCONS 162

What Dependencies Does SCons Know About? the - -
tree Option

+- SConst r uct
+fl.c
+f1l.0
+fl.c
+-inc.h
f2.c
f2.0
+f2.¢c
+-inc.h
f3.c
f3.0
+f3.c
+-inc.h
+-inc.h
+-prog
+fl.0
| +-fl.c
| +inc.h
+f2.0
| +-f2.c
| +inc.h
+f3.0
+f3.c
+-inc.h

|
|
+-
+-
|
|
+-
+-
|
|

The tree will also be printed when the - n (no execute) option is used, which allows you to examine the dependency
graph for a configuration without actually rebuilding anything in the tree.

The - - t r ee option only prints the dependency graph for the specified targets (or the default target(s) if none are
specified on the command line). So if you specify atarget like f 2. 0 on the command ling, the - - t r ee option will
only print the dependency graph for that file:

% scons -Q --tree=all f2.0
cc -o f2.0-c -1. f2.c
+f2.0

+f2.¢c

+-inc.h

This is, of course, useful for restricting the output from a very large build configuration to just a portion in which
you're interested. Multiple targets are fine, in which case a tree will be printed for each specified target:

% scons -Q --tree=all f1.0 f3.0
cc -ofl.o-c -1. fl.c
+-fl.0
+-fl.c
+-inc.h
cc -o f3.0 -c -1. f3.c
+f3.0
+f3.c
+-inc.h

Thest at us argument may be used to tell SConsto print statusinformation about each file in the dependency graph:

% scons -Q --tree=status
cc -ofl.o-c -1. fl.c

Iy
=== SCONS 163

What Dependencies Does SCons Know About? the - -

tree Option
cc -o f2.0 -c -1. f2.c
cc -o f3.0-c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E = exists
R = exists in repository only
b = inplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[ED] +-.
[E C] +-SConstruct
[E C] +fl.c
[EB C] +fl.o
[E C] | +fl.c
[E C] | +inc.h
[E C] +f2c
[EB C] +f2.o0
[E C] | +f2c
[E C] | +inc.h
[E C] +f3.c
[EB C] +f3.0
[E C] | +f3.c
[E C] | +inc.h
[E C] +inc.h
[EB C] +-prog
[EB C] +fl.o
[E C] | +-fl.c
[E C] | +inc.h
[EB C] +-f2.0
[E C] | +-f2.¢c
[E C] | +inc.h
[EB C] +-f3.0
[E C] +-f3.c
[E C] +-inc.h

Note that - -t ree=al | , st at us isequivaent; theal | isassumed if only st at us is present. As an alternative
toal |, you can specify - - t r ee=der i ved to have SCons only print derived targets in the tree output, skipping
sourcefiles (like. ¢ and. h files):

% scons -Q --tree=derived

cc -o fl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o0 f2.0 f3.0
+- .
+fl.0
+f2.0
+f3.0
+-prog

Iy
=== SCONS 164

What Dependencies Does SCons Know About? the - -

tree Option

+-fl.0
+-f2.0
+-f3.0

You can usethe st at us modifier withder i ved aswell:

% scons -Q --tree=derived, st atus

cc -ofl.o-c -1. fl.c
cc -o f2.o0-c -1. f2.c
cc -o f3.0 -c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E exi sts

R

b = inmplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[EDb]+-.
[EB C] +fl.o
[EB C] +-f2o0
[EB C] +-f3.0
[EB C] +-prog
[EB C] +fl.0
[EB C] +-f2.0
[EB C] +-f3.0

exists in repository only

Note that the order of the - - t r ee= arguments doesn't matter; - - t r ee=st at us, deri ved is completely equiv-

dent.

The default behavior of the - -t r ee option is to repeat al of the dependencies each time the library dependency
(or any other dependency file) is encountered in the tree. If certain target files share other target files, such as two

programs that use the same library:

env = Environment (CPPPATH = ['.'],
LIBS = ['fo0'],
LI BPATH = ['."'])

env. Library('foo', ['fl.c',
env. Progran(' progl.c')
env. Progran(' prog2.c')

‘f2.¢c',

"f3.¢c'])

Then there can be alot of repetition in the - - t r ee= outpult:

% scons -Q --tree=all

cc -o fl.o-c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0

ranlib |ibfoo.a

cc -0 progl.o -c -I. progl.c

Iy
=== SCONS

165

What Dependencies Does SCons Know About? the - -
tree Option

ccC
ccC
ccC

-0 progl progl.o -L. -Ifoo
-0 prog2.0 -c -1. prog2.c
-0 prog2 prog2.o0 -L. -lfoo

+- SConst r uct
+-fl.c
+-fl.0

+-inc.h
- progl
+-progl. o
| +-progl.c
| +inc.h
+-1i bf 0o. a
+-fl.0
| +-fl.c
| +inc.h
+-f2.0
| +-f2.c
| +inc.h
+-f3.0
+-f3.c
+-inc.h

+fl.0
| +-fl.c

|
|
|
| +-1ibfoo.a
|
|
| | +inc.h

~

={

=== SCONS

166

What Dependencies Does SCons Know About? the - -
tree Option

In alarge configuration with many internal libraries and include files, this can very quickly lead to huge output trees.
To help make this more manageable, apr une modifier may be added to the option list, in which case SConswill print
the name of atarget that has already been visited during the tree-printingin[squar e br acket s] asanindication
that the dependencies of the target file may be found by looking farther up the tree:

% scons -Q --tree=prune

cc -o fl.o-c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

ar rc libfoo.a fl.0 f2.0 f3.0
ranlib |ibfoo.a
cc -0 progl.o -c -I. progl.c
cc -o progl progl.o -L. -Ifoo
CC -0 prog2.0 -c -l1. prog2.c
CC -0 prog2 prog2.o0 -L. -Ifoo
+-.

+- SConst r uct

+-fl.c

+-fl.0

| +-fl.c

| +inc.h

+-f2.c

+-f2.0

| +-f2.c

| +inc.h

+-f3.c

+-f3.0

| +-f3.c

| +inc.h

+-inc.h

+-1i bf 0o. a
| +[f1.0]
| +-[f2.0]
| +-[f3.0]
+- progl
| +-progl.o
| | +-progl.c
| | +inc.h
| +[libfoo.a]
+-progl.c
+
+
|

-[progl. o]
- prog2
+- prog2. o

=!t=5CcoNs 167

How is SCons Constructing the Command Lines It Exe-
cutes? the - - debug=pr esub Option

| | +-prog2.c
| | +inc.h

| +-[libfoo.a]
+-prog2.c

+- [prog2. o]

Likethe st at us keyword, the pr une argument by itself isequivalentto- -t ree=al | , pr une.

28.4. How is SCons Constructing the Com-
mand Lines It Executes? the - - debug=pr esub
Option

Sometimesit's useful to look at the pre-substitution string that SCons uses to generate the command lines it executes.
This can be done with the - - debug=pr esub option:

% scons -Q --debug=presub
Bui |l di ng prog.o with action:
$CC -0 $TARGET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES
CC -0 prog.o -c -1. prog.c
Bui |l di ng prog with action:
$SMART LI NKCOM
CC -0 prog prog.o

28.5. Where is SCons Searching for Libraries?
the - - debug=fi ndl i bs Option

To get some insight into what library names SCons is searching for, and in which directories it is searching, Use the
- -debug=fi ndl i bs option. Given the following input SConst r uct file:

env = Environment (LI BPATH = ['libsl', 'libs2'])
env. Progran(' prog.c', LIBS=['foo', '"bar'])

Andthelibraries| i bf 0oo. aandl i bbar. ainli bslandli bs2, respectively, useof the- - debug=fi ndl i bs
option yields:

% scons -Q --debug=findlibs

findlibs: |looking for 'libfoo.a" in 'libsl
findlibs: ... FOUND 'libfoo.a" in 'libsl

findlibs: |ooking for 'libfoo.so" in 'libsl
findlibs: |ooking for 'libfoo.so" in 'libs2

findlibs: |looking for 'libbar.a" in 'libsl
findlibs: looking for "libbar.a" in 'libs2
findlibs: ... FOUND 'libbar.a" in 'libs2
findlibs: |ooking for 'libbar.so" in 'libsl
findlibs: |ooking for 'libbar.so" in 'libs2
CC -0 prog.o -c prog.c
CC -0 prog prog.o -LIibsl -LIibs2 -1foo -I bar

Iy
=== SCONS 168

Whereis SCons Blowing Up?the - -
debug=st acktrace Option

28.6. Where is SCons Blowing Up? the - -
debug=st ackt race Option

In general, SConstriesto keep its error messages short and informative. That meanswe usually try to avoid showing the
stack traces that are familiar to experienced Python programmers, since they usually contain much more information
than is useful to most people.

For example, the following SConst r uct file:

Progran(' prog.c')

Generates the following error if the pr og. c file does not exist:

% scons -Q
scons: *** [prog.o] Source "prog.c' not found, needed by target " prog.o'.

Inthis case, the error is pretty obvious. But if it weren't, and you wanted to try to get more information about the error,
the - - debug=st ackt r ace option would show you exactly where in the SCons source code the problem occurs:

% scons -Q --debug=st acktrace
scons: *** [prog.o] Source "prog.c' not found, needed by target " prog.o'.
scons: internal stack trace:

Fil e "boot strap/src/engi ne/ SCons/ Job. py", line 199, in start
t ask. prepare()

File "bootstrap/src/engine/ SCons/ Script/ Min.py", line 173, in prepare
return SCons. Taskmast er. Qut Of Dat eTask. pr epar e(sel f)

Fil e "bootstrap/src/engi ne/ SCons/ Taskmast er. py", line 191, in prepare
execut or. prepare()

Fil e "boot strap/src/engi ne/ SCons/ Execut or. py", line 430, in prepare

rai se SCons. Errors. StopError(nmsg % (s, self.batches[0].targets[0]))

Of course, if you do need to dive into the SCons source code, we'd like to know if, or how, the error messages or
troubleshooting options could have been improved to avoid that. Not everyone has the necessary time or Python skill
to dive into the source code, and we'd like to improve SCons for those people as well...

28.7. How is SCons Making Its Decisions? the
--taskmast ertrace Option

The internal SCons subsystem that handles walking the dependency graph and controls the decision-making about
what to rebuild isthe Taskmast er . SCons supportsa- -t asknmast ert r ace option that tells the Taskmaster to
print information about the children (dependencies) of the various Nodes on its walk down the graph, which specific
dependent Nodes are being evaluated, and in what order.

The- -t asknast er t r ace option takes as an argument the name of afile in which to put the trace output, with -
(asingle hyphen) indicating that the trace messages should be printed to the standard output:

env = Environment (CPPPATH = ['."])
env. Progranm(' prog.c')

Iy
=== SCONS 169

How is SCons Making Its Decisions? the - - t asknas-
tertrace Option

% scons -Q --taskmastertrace=-

Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :

Task. make ready_current ():
Task. prepare():

Task. post process():
Task. post process():

prog

Looki ng for a node to eval uate
Consi deri ng node <no_state 0
<no_state 0 ' prog. o' >
adjusted ref count: <pending 1
Consi deri ng node <no_state 0
<no_state 0 ' prog.c' >
<no_state 0 "“inc.h >
adj usted ref count: <pending 1 ‘prog.o' >, child 'prog.c’
adjusted ref count: <pending 2 "prog.o" >, child '"inc.h'
Consi deri ng node <no_state 0 "prog.c'> and its children

"prog' > and its children

‘prog' >, child '"prog.o
"prog.o' > and its children

Eval uati ng <pendi ng 0 'prog.c' >
node <pendi ng 0 'prog.c' >
node <up_to_date 0O 'prog.c' >

Task. executed_wi th_cal | backs(): node <up_to_date O 'prog.c' >
node <up_to_date 0O 'prog.c' >
renovi ng <up_to_date O 'prog.c' >
adj usted parent ref count <pendi ng 1 ' prog. o' >

Task. post process():

Tasknast er :
Tasknast er :
Tasknast er :

Task. make ready_current ():
Task. prepare():
Task. executed_wi t h_cal | backs() :
Task. post process():
Task. post process():
Task. post process():

Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :

Task. make _ready_current ():
Task. prepare():
Task. execut e() :
ccC -0 prog.o -c -1

Task. post process():
Task. post process():

Looki ng for a node to eval uate

Consi deri ng node <no_state 0 ‘inc.h'> and its children

Eval uati ng <pendi ng 0 "“inc.h >
node <pendi ng 0 "“inc.h >
node <up_to_date 0O "“inc.h >

node <up_to_date 0O "“inc.h >
node <up_to_date 0O "“inc.h >

renovi ng <up_to_date O "“inc.h >

adj usted parent ref count <pendi ng 0 ' prog. o' >
Looki ng for a node to eval uate

Consi deri ng node <pendi ng 0 "prog.o' > and its children

<up_to_date O 'prog.c' >
<up_to_date O "“inc.h >
Eval uati ng <pendi ng 0 ' prog. o' >
node <pendi ng 0 ' prog. o' >
node <executing O ' prog. o' >
node <executing O ' prog. o' >

prog. c

Task. executed_wi th_cal | backs(): node <executing O ' prog. o' >
node <executed 0 ' prog. o' >
renovi ng <execut ed 0 ' prog. o' >
adj usted parent ref count <pendi ng 0 'prog' >

Task. post process():

Taskmast er :
Taskmast er :
Taskmast er :
Taskmast er :

Task. make _ready_current ():
Task. prepare():

Looki ng for a node to eval uate
Consi deri ng node <pendi ng 0
<execut ed 0 ' prog. o' >
Eval uati ng <pendi ng 0 ' prog' >

"prog' > and its children

node <pendi ng 0
node <executing O

' prog' >
' prog' >

Iy
=== SCONS

170

Watch SCons prepare targets for building: the - -
debug=pr epar e Option

Task. execute() : node <executing O ' prog' >

CC -0 prog prog.o

Task. executed_wi th_cal | backs(): node <executing O ' prog' >
Task. post process(): node <executed 0 ' prog' >

Taskmast er: Looking for a node to eval uate
Taskmast er: No candi dat e anynore.

The- -t askmast er t r ace option doesn't provide information about the actual calculations involved in deciding
if afileis up-to-date, but it does show all of the dependencies it knows about for each Node, and the order in which
those dependencies are evaluated. This can be useful as an aternate way to determine whether or not your SCons
configuration, or the implicit dependency scan, has actually identified all the correct dependencies you want it to.

28.8. Watch SCons prepare targets for build-
Ing: the - - debug=pr epar e Option

Sometimes SCons doesn't build the target you want and it's difficult to figure out why. You can use the - -
debug=pr epar e option to see al the targets SConsis considering, whether they are already up-to-date or not. The
message is printed before SCons decides whether to build the target.

28.9. Why is afile disappearing? the --
debug=duplicate Option

When using the Dupl i cat e option to create variant dirs, sometimes you may find files not getting copied to where
you expect (or not at al), or files mysteriously disappearing. These are usually because of a misconfiguration of some
kind in the SConstruct/SConscript, but they can be tricky to debug. The --debug=duplicate option shows each time a
variant fileis unlinked and relinked from its source (or copied, depending on settings), and also shows a message for
removing "stale" variant-dir files that no longer have a corresponding source file. It also prints a line for each target
that's removed just before building, since that can also be mistaken for the same thing.

Iy
=== SCONS 171

Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are potentially available "out of the box"
in this version of SCons. Whether or not setting a construction variable in a construction environment will actually
have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the
construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name when it appears
in the text, but left off the dollar sign in the left-hand column where the name appears for each entry.

__LDMODULEVERSIONFLAGS
This construction variable automatically introduces $_ L DMODUL EVERSI ONFLAGS if $LDMODULEVERSI ON
is set. Othervise it evaluates to an empty string.

__SHLIBVERSIONFLAGS
Thisconstruction variable automatically introduces$_ SHLI BVERSI ONFLAGS if $SHLI BVERSI ONisset. Oth-
ervise it evaluates to an empty string.

AR
The static library archiver.

ARCHITECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisusedtofill inthe Ar chi t ect ur e: fieldinanIpkgcontr ol
file, and as part of the name of a generated RPM file.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ARCOM (the command line) is displayed.

env = Envi ronnent (ARCOMSTR = "Archi vi ng $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language sourcefile.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOVBTR = "Assenbl i ng $TARGET")

ASFLAGS
General options passed to the assembler.

Iy
=== SCONS 172

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOMSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARCGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM
The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOMSTR
The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent (Bl BTEXCOVBTR = "CGenerating bi bl i ography $TARCGET")

BIBTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX struc-
tured formatter and typesetter.

BITKEEPER
The BitKeeper executable.

BITKEEPERCOM
The command line for fetching source files using BitK eeper.

BITKEEPERCOMSTR
The string displayed when fetching a source file using BitKeeper. If thisis not set, then $Bl TKEEPERCOM (the
command line) is displayed.

BITKEEPERGET
The command ($BI TKEEPER) and subcommand for fetching source files using BitK eeper.

BITKEEPERGETFLAGS
Options that are passed to the BitK eeper get subcommand.

BUILDERS
A dictionary mapping the names of the builders available through this environment to underlying Builder objects.
Builders named Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and Program are available by
default. If you initialize this variable when an Environment is created:

Iy
=== SCONS 173

CcC

env = Environment (BU LDERS = {' NewBui |l der' : foo})

the default Builders will no longer be available. To use a new Builder object in addition to the default Builders,
add your new Builder object like this:

env = Environnent ()
env. Append(BU LDERS = {' NewBui | der' : foo})

or this:

env = Environment ()
env[' BU LDERS] [' NewBui | der'] = foo

The C compiler.

CCCOM

The command line used to compile aC sourcefileto a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line.

CCCOMSTR

The string displayed when a C sourcefile is compiled to a (static) object file. If thisis not set, then $CCCOM(the
command line) is displayed.

env = Environnment (CCCOVBTR = "Conpi | i ng static object $TARGET")

CCFLAGS

General options that are passed to the C and C++ compilers.

CCPCHFLAGS

Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS

Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variableis set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallel (- j) builds because it embeds the debug information in the intermediate object files, as
opposed to sharing a single PDB file between multiple object files. Thisis aso the only way to get debug infor-
mation embedded into astatic library. Using the/ Zi instead may yield improved link-time performance, although
parallel builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%" %File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $§CCPDBFLAGS variable as follows:

Iy
=== SCONS 174

env[' CCPDBFLAGS' | = '/Zi /Fd${ TARGET}. pdb'

CCVERSION
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFILESUFFIX
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.1)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons also treats. C (upper case) filesas C files.

CFLAGS
General options that are passed to the C compiler (C only; not C++).

CHANGE_SPECFILE
A hook for modifying the file that controls the packaging build (the . spec for RPM, thecont r ol for Ipkg, the
. wxs for MSl). If set, the function will be called after the SCons template for the file has been written. XXX

CHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See"Variable Substitution,"
below.)

CHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See"Variable Substitution,"
below.)

CHANGELOG
Thename of afile containing the changelogtext to beincluded inthe package. Thisisincluded asthe%e hangel -
0g section of the RPM . spec file.

_concat
A function used to produce variableslike $_CPPI NCFLAGS. It takes four or five arguments: a prefix to concate-
nate onto each element, alist of elements, a suffix to concatenate onto each element, an environment for variable
interpolation, and an optional function that will be called to transform the list before concatenation.

env[' CPPINCFLAGS'] = '$(${_concat (I NCPREFI X, CPPPATH, | NCSUFFIX, __env__

CONFIGUREDIR
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

CONFIGURELOG
The name of the Configure context log file. The default isconf i g. | og in the top-level directory containing
the SConst r uct file.

_CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. The value of $_CPPDEFFLAGS is created by appending $CPPDEFPREFI X and $CPPDEFSUFFI X to
the beginning and end of each definition in $CPPDEFI NES.

CPPDEFINES
A platform independent specification of C preprocessor definitions. The definitions will be added to command
lines through the automatically-generated $_ CPPDEFFLAGS construction variable (see above), which is con-
structed according to the type of value of $CPPDEFI NES:

Iy
=== SCONS 175

RDirs)} $)°

If $CPPDEFI NES isastring, the values of the $CPPDEFPREF| X and $CPPDEFSUFFI X construction variables
will be added to the beginning and end.

WIl add -Dxyz to POSI X conpil er conmand |i nes,
and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Environment (CPPDEFI NES=' xyz')

If $CPPDEFI NES is aligt, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be appended to the beginning and end of each element in the list. If any element is alist or tuple, then the
first item is the name being defined and the second item isits value:

WI|l add -DB=2 -DA to PCSI X conpil er command |i nes,
and /DB=2 /DA to Mcrosoft Visual C++ conmand |i nes.
env = Environment (CPPDEFI NES=[(' B, 2), 'A])

If $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variables will be appended to the beginning and end of each item from the dictionary. The key of each dictionary
item is a name being defined to the dictionary item's corresponding value; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time scons isrun.

WI| add -DA -DB=2 to PCSI X conpil er command |i nes,
and /DA /DB=2 to Mcrosoft Visual C++ conmand |i nes.
env = Environment (CPPDEFI NES={' B' : 2, ' A" : None})

CPPDEFPREFIX
The prefix used to specify preprocessor definitions on the C compiler command line. Thiswill be appended to the
beginning of each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFIX
The suffix used to specify preprocessor definitions on the C compiler command line. This will be appended to
the end of each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable is
automatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C preprocessor, in-
cluding not just compilation of C and C++ sourcefilesviathe $CCCOM $SHCCCOM $CXXCOMand $SHCXXCOM
command lines, but also the SFORTRANPPCOM $SHFORTRANPPCOM $F77PPCOMand $SHF7 7 PPCOMcom-
mand lines used to compile a Fortran source file, and the $ASPPCOMcommand line used to assemble an assem-
bly language source file, after first running each file through the C preprocessor. Note that this variable does
not contain - I (or similar) include search path options that scons generates automatically from $CPPPATH. See
$_CPPI NCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for spec-
ifying directories to be searched for include files. The vaue of $_CPPI NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $CPPPATH.

CPPPATH
The list of directories that the C preprocessor will search for include directories. The C/C++ implicit depen-
dency scanner will search these directories for include files. Don't explicitly put include directory argumentsin

Iy
=== SCONS 176

CCFLAGS or CXXFLAGS bhecause the result will be non-portable and the directories will not be searched by the
dependency scanner. Note: directory namesin CPPPATH will be looked-up relative to the SConscript directory
when they are used in acommand. To force scons to look-up a directory relative to the root of the source tree
use#:

env = Environment (CPPPATH=" #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')

env = Environment (CPPPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ CPPI NCFLAGS con-

struction variable, which is constructed by appending the values of the $| NCPREFI X and $I NCSUFFI X con-

struction variables to the beginning and end of each directory in $CPPPATH. Any command lines you define that

need the CPPPATH directory list should include $_CPPI NCFLAGS:

env = Environnent (CCCOVE"ny_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")
CPPSUFFIXES

The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[*.c", ".C', ".cxx", ".cpp", ".c++", ".cc",
".h", ".H, ".hxx", ".hpp", ".hh",
".F', ".fpp", ".FPP",
".S", ".spp", ".SPP']
CVSs
The CVS executable.
CVSCOFLAGS

Options that are passed to the CV S checkout subcommand.

CVSCOM
The command line used to fetch source files from a CV S repository.

CVSCOMSTR
The string displayed when fetching a source file from a CV S repository. If thisis not set, then $CVSCOM (the
command line) is displayed.

CVSFLAGS
General optionsthat are passed to CVS. By default, thisisset to- d $CVSREPCSI TORY to specify from where
the files must be fetched.

CVSREPOSITORY
The path to the CV Srepository. Thisis referenced in the default $CVSFLAGS value.

CXX
The C++ compiler.

Iy
=== SCONS 177

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line.

CXXCOMSTR
The string displayed when a C++ source file is compiled to a (static) object file. If thisis not set, then $CXXCOM
(the command line) is displayed.

env = Environment (CXXCOVSTR = "Conpi ling static obj ect $TARGET")

CXXFILESUFFIX
The suffix for C++ sourcefiles. Thisisused by theinternal CXXFile builder when generating C++ filesfrom Lex
(1) or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes . cpp, . cxx,
. c++, and . C++ as C++ files, and files with . nmsuffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats . C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS.

CXXVERSION
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
DC.

DCOM
DCOM.

DDEBUG
DDEBUG.

_DDEBUGFLAGS
_DDEBUGFLAGS.

DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFIX
DDEBUGSUFFIX.

DESCRIPTION
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

DESCRIPTION_lang
A language-specific long description for the specified | ang. Thisis used to populate a %descri ption -1
section of an RPM . spec file.

DFILESUFFIX
DFILESUFFIX.

DFLAGPREFIX
DFLAGPREFIX.

Iy
=== SCONS 178

_DFLAGS
_DFLAGS.

DFLAGS
DFLAGS.

DFLAGSUFFIX
DFLAGSUFFIX.

_DINCFLAGS
_DINCFLAGS.

DINCPREFIX
DINCPREFIX.

DINCSUFFIX
DINCSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.

A function that converts a string into a Dir instance relative to the target being built.

Dirs
A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLIB
DLIB.

DLIBCOM
DLIBCOM.

_DLIBDIRFLAGS
_DLIBDIRFLAGS.

DLIBDIRPREFIX
DLIBDIRPREFIX.

DLIBDIRSUFFIX
DLIBDIRSUFFIX.

DLIBFLAGPREFIX
DLIBFLAGPREFIX.

_DLIBFLAGS
_DLIBFLAGS.

DLIBFLAGSUFFIX
DLIBFLAGSUFFIX.

DLIBLINKPREFIX
DLIBLINKPREFIX.

DLIBLINKSUFFIX
DLIBLINKSUFFIX.

DLINK
DLINK.

Iy
=== SCONS 179

DLINKCOM
DLINKCOM.

DLINKFLAGPREFIX
DLINKFLAGPREFIX.

DLINKFLAGS
DLINKFLAGS.

DLINKFLAGSUFFIX
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTML
The default XSLT file for the DocbookHt m builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT _XSL HTMLCHUNKED
Thedefault XSLT filefor theDocbookHt ml Chunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL _SLIDESHTML
Thedefault XSLT filefor the Docbook Sl i desHt ml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK _DEFAULT_XSL SLIDESPDF
The default XSLT file for the Docbook Sl i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer f op or xep.

DOCBOOK_FOPCOMSTR
The string displayed when arenderer likef op or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer f op or xep.

Iy
=== SCONS 180

DOCBOOK_XMLLINT
The path to the external executable xmi | i nt, if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no libxml2 or Ixml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM
The full command-line for the external executablexni | i nt .

DOCBOOK_XMLLINTCOMSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

DOCBOOK_XMLLINTFLAGS
Additonal command-line flags for the external executablexm i nt .

DOCBOOK_XSLTPROC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no libxml2 or Ixml Python binding can be imported in
the current system.

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xsl t pr oc isused to transform an XML fileviaagiven XSLT styleshest.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCPARAMS
Additonal parametersthat are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
DPATH.

DSUFFIXES
Thelist of suffixes of files that will be scanned for imported D package files. The default list is:

[*.d"]

_DVERFLAGS
_DVERFLAGS.

DVERPREFIX
DVERPREFIX.

DVERSIONS
DVERSIONS.

DVERSUFFIX
DVERSUFFIX.

DVIPDF
The TeX DVI file to PDF file converter.

DVIPDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

Iy
=== SCONS 181

DVIPDFCOMSTR
The string displayed when aTeX DVI fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

DVIPSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
A dictionary of environment variables to use when invoking commands. When $ENV is used in a command all
list values will be joined using the path separator and any other non-string values will simply be coerced to a
string. Note that, by default, scons does not propagate the environment in force when you execute scons to
the commands used to build target files. This is so that builds will be guaranteed repeatable regardless of the
environment variables set at the time scons isinvoked.

If you want to propagate your environment variables to the commands executed to build target files, you must
do so explicitly:

i mport os
env = Environnment (ENV = os. environ)

Note that you can choose only to propagate certain environment variables. A common example is the system
PATH environment variable, so that scons uses the same utilities as the invoking shell (or other process):

i mport os
env = Environnent (ENV = {' PATH : os.environ[' PATH]})

ESCAPE
A function that will be called to escape shell special charactersin command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO3
The Fortran 03 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

FO3COM
The command line used to compile a Fortran 03 sourcefileto an object file. Y ou only need to set $F03 COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for al Fortran versions.

FO3COMSTR
The string displayed when a Fortran 03 source file is compiled to an object file. If thisis not set, then $FO3COM
or $FORTRANCOM(the command line) is displayed.

FO3FILESUFFIXES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis['.f03]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See

Iy
=== SCONS 182

$_FO3Il NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_FO3INCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F031 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

FO3PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up adirectory relative to the root of the source tree use #: You
only need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environment (FO3PATH=' #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environnment (FO3PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO31 NCFLAGS con-
struction variable, which is constructed by appending the values of the $| NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $FO3PATH. Any command lines you define that
need the FO3PATH directory list should include $_FO31 NCFLAGS:

env = Environnent (FO3COME"ny_conpi |l er $_FO03I NCFLAGS -c -0 $TARGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO3PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO3PPCOMSTR
The string displayed when a Fortran 03 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F03PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By default,
thisis empty

F08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

Iy
=== SCONS 183

FO8COM
The command line used to compile a Fortran 08 sourcefileto an object file. Y ou only need to set $FO08 COMif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FOBCOMSTR
The string displayed when a Fortran 08 source file is compiled to an object file. If thisis not set, then $FO8COM
or $FORTRANCOM (the command line) is displayed.

FO8FILESUFFIXES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis['.f08]

FOSFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See
$_FO081 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO8FLAGS if
you need to define specific user options for Fortran 08 files. Y ou should normally set the SFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_FO8INCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08| NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FO8PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FOBFLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up a directory relative to the root of the source tree use #: You
only need to set $FO8PATHI if you need to define a specific include path for Fortran 08 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (FOBPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Envi ronnment (FOBPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO81 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $1 NCSUFFI X con-
struction variables to the beginning and end of each directory in $FO8PATH. Any command lines you define that
need the FOBPATH directory list should include $ _F081 NCFLAGS:

env = Envi ronnent (FO8COVE"my_conpi | er $_FO08I NCFLAGS -c -0 $TARGET $SOURCE")

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO8PPCOMif you need to use a specific C-preprocessor command

Iy
=== SCONS 184

line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOSBPPCOMSTR
The string displayed when a Fortran 08 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F08PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile a Fortran 77 sourcefileto an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

F77COMSTR
The string displayed when a Fortran 77 source file is compiled to an object file. If thisis not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES
Thelist of file extensions for which the F77 dialect will be used. By default, thisis['.f77]

F77TFLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up a directory relative to the root of the source tree use #: You
only need to set $F77PATHif you need to define a specific include path for Fortran 77 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (F77PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')

Iy
=== SCONS 185

env = Environnment (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F771 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $F77PATH. Any command lines you define that
need the F77PATH directory list should include$_F771 NCFLAGS:

env = Environnent (F77COVE"ny_conpi |l er $_F771 NCFLAGS -c -0 $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command
line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOMSTR
The string displayed when a Fortran 77 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F77PPCOMor $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By defaullt,
thisis empty

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

F90COM
The command line used to compile aFortran 90 sourcefile to an object file. Y ou only need to set $F90COMif you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

F90COMSTR
The string displayed when a Fortran 90 source file is compiled to an object file. If thisis not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

FOOFILESUFFIXES
Thelist of file extensions for which the FO0 dialect will be used. By default, thisis['.f90]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F90PATH. See
$_F90I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FOOFLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F901 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F9OPATH.

F90PATH
The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in

Iy
=== SCONS 186

$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up adirectory relative to the root of the source tree use #: You
only need to set $FOOPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environnent (FOOPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FOOPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_F901 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $1 NCSUFFI X con-
struction variables to the beginning and end of each directory in $F90PATH. Any command lines you define that
need the FOOPATH directory list should include $_F901 NCFLAGS:

env = Environnent (FOOCOM-"ny_conpi | er $_F90I NCFLAGS -c -0 $TARGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO0FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F9OPPCOMSTR
The string displayed when a Fortran 90 source fileis compiled after first running the file through the C preproces-
sor. If thisis not set, then $FO0PPCOMor $FORTRANPPCOM(the command line) is displayed.

F90PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
thisis empty

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile aFortran 95 sourcefile to an object file. Y ou only need to set $F95 COMIf you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FO95COMSTR
The string displayed when a Fortran 95 source file is compiled to an object file. If thisis not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

F95FILESUFFIXES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis['.f95]

Iy
=== SCONS 187

FO5FLAGS

General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F951 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO5FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F95INCFLAGS

An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

FO95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up adirectory relative to the root of the source tree use #: You
only need to set $F95PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally
set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environnent (FO5PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:
include = Dir('include')

env = Environment (FO5PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_F951 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $F95PATH. Any command lines you define that
need the FOSPATH directory list should include $_F951 NCFLAGS:

env = Envi ronnent (FO95COVE" my_conpi | er $_F95| NCFLAGS -c -0 $TARGET $SOURCE")

F95PPCOM

The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command
line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F95PPCOMSTR

The string displayed when a Fortran 95 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F95PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO5PPFILESUFFIXES

File

Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By defaullt,
thisis empty

A function that converts a string into a File instance relative to the target being built.

~

'—‘—' SCONS 188

A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS
construction variables are included on this command line.

FORTRANCOMSTR

The string displayed when aFortran sourcefileis compiled to an object file. If thisis not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFILESUFFIXES
Thelist of file extensions for which the FORTRAN dialect will be used. By default, thisis['.f', ".for', ".ftn"]

FORTRANFLAGS
General user-specified options that are passed to the Fortran compiler. Note that this variable does not contain -
| (or similar) include or module search path options that scons generates automatically from $FORTRANPATH.
See $_FORTRANI NCFLAGS and $_FORTRANMODFLAG, below, for the variables that expand those options.

_FORTRANINCFLAGS
An automatically-generated construction variabl e containing the Fortran compiler command-line optionsfor spec-
ifying directories to be searched for include files and module files. The value of $ FORTRANI NCFLAGS iscre-
ated by prepending/appending $| NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in
$FORTRANPATH.

FORTRANMODDIR
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

FORTRANMODDIRPREFIX
The prefix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANMODDIRSUFFI X
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for spec-
ifying the directory location where the Fortran compiler should place any modulefilesthat happen to get generated
during compilation. The value of $_FORTRANMODFLAG s created by prepending/appending $FORTRANMOD-
DI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of thedirectory in $SFORTRANMODDI R.

FORTRANMODPREFIX
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the qua
si-standard naming convention for module files of nodul e_name. nod. Asaresult, this variable is left empty,
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFIX
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the qua-
si-standard naming conventionfor modulefilesof nodul e_name. nod. Asaresult, thisvariableissetto".mod",

Iy
=== SCONS 189

by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and (for some compilers) module
files. The Fortran implicit dependency scanner will search these directories for include files (but not module files
since they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly
put include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories
will not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Envi r onnent (FORTRANPATH=" #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environnment (FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ FORTRANI NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FORTRANPATH. Any command lines you
define that need the FORTRANPATH directory list should include $_FORTRANI NCFLAGS:

env = Envi ronnent (FORTRANCOVE" ny_conpi | er $ FORTRANI NCFLAGS -c -0 $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_ CPPDEFFLAGS,
$ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR
The string displayed when a Fortran source file is compiled to an object file after first running the file through the
C preprocessor. If thisis not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis["fpp', ".FPP]

FORTRANSUFFIXES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

[n X f n , n X FII , n X f Or n , n X le , n X f t r]ll , n X FTNI , n X f ppll , n X FPPII ,
“.frrt, “.F77", ".f90", ".F90", ".f95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gec, alist containing the paths to search for frameworks. Used by the compiler to find frame-
work-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks when
linking (see $FRAMEVORKS). For example:

Iy
=== SCONS 190

env. AppendUni que(FRAVNEWORKPATH=" #nyf r anewor kdi r ')

will add

- Fyf r amewor kdi r
to the compiler and linker command lines.

_FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRANVEVWORKPATH.

FRAMEWORKPATHPREFI X
On Mac OS X with gcec, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAVEWORKPATH).
The default valueis- F.

FRAMEWORKPREFI X
On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRAVEVWORKS). The default value
is-framewor k.

_FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env. AppendUni que(FRAMEWORKS=Spl i t (' Syst em Cocoa SystenmConfiguration'))

FRAMEWORKSFLAGS
OnMac OS X with gec, general user-supplied frameworks optionsto be added at the end of acommand line build-
ing aloadable module. (This has been largely superseded by the $FRAVMEVWORKPATH, $ FRAVEWORKPATHPRE-
FI X, $FRAVEWORKPREF| X and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used, e.g. to convert PostScript to PDF files.

GSCOM
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sCQut put Fi | e=$TARGET $SOURCES".

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If thisis not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis“- dNOPAUSE - dBATCH - sDEVI CE=pdf wri te”

HOST_ARCH
The name of the host hardware architecture used to create the Environment. If aplatformis specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

Iy
=== SCONS 191

Sets the host architecture for Visual Studio compiler. If not set, default to the detected host architecture: note that
this may depend on the python you are using. This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect.

Valid values are the same as for $TARGET _ARCH.
Thisis currently only used on Windows, but in the future it will be used on other OSes as well.

HOST_OS
The name of the host operating system used to create the Environment. If a platform is specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

IDLSUFFIXES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

[“.idl", ".1DL"]

IMPLIBNOVERSIONSYMLINKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$L DMODUL ENOVERSI ONSYMLI NKS when creating ver-
sioned import library for ashared library/loadable module. If not defined, then $SHLI BNOVERSI ONSYMLI NKS/
$LDMODUL ENOVERSI ONSYMLI NKS is used to determine whether to disable symlink generation or not.

IMPLIBPREFIX
The prefix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . @) in pair
with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $| MPLI BPREFI X to ' | i b' and $SH-
LI BPREFI Xto' cyg' .

IMPLIBSUFFIX
The suffix used for import library names. For example, cygwin usesimport libraries (1 i bf oo. dl | . @) in pair
with dynamic libraries (cygf 0o. dl I). Thecygl i nk linker sets$l MPLI BSUFFI Xto' . dl | .a"' and $SH
LI BSUFFI Xto' . dl " .

IMPLIBVERSION
Used to override $SHLI BVERSI ON$SLDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the $SHLI BVERSI ON$LDMODULEVERSI ON is used to deter-
mine the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target animplicit dependency on the command represented by thefirst argument
on any command line it executes. The specific file for the dependency is found by searching the PATH variable
in the ENV environment used to execute the command.

If the construction variable $I MPLI CI T_COVVAND_DEPENDENCI ESisset to afasevaue (None, Fal se, 0,
etc.), then the implicit dependency will not be added to the targets built with that construction environment.

env = Environnent (1 MPLI CI T_COVVAND DEPENDENCI ES = 0)

INCPREFIX
The prefix used to specify an include directory on the C compiler command line. This will be appended to the
beginning of each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CP-
Pl NCFLAGS and $_FORTRANI NCFLAGS variables are automatically generated.

Iy
=== SCONS 192

INCSUFFIX
The suffix used to specify an include directory on the C compiler command line. Thiswill be appended to the end
of each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS
and $_FORTRANI NCFLAGS variables are automatically generated.

INSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefil€'s). The function takes
the following arguments:

def install (dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

INSTALLSTR
The string displayed when afileisinstalled into a destination file name. The default is:

Install file: "$SOURCE"' as "$TARCET"

INTEL_C_COMPILER_VERSION
Set by the "intelc" Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

The Java archive tool.

JARCHDIR
The directory to which the Java archive tool should change (using the - C option).

The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

The command line used to call the Java archive toal.
JARCOMSTR
The string displayed when the Java archive tool is called If thisis not set, then $J ARCOM (the command line)
is displayed.
env = Envi ronnent (JARCOVSTR = "JARchi vi ng $SOURCES i nto $TARGET")
The string displayed when the Java archive tool is called If thisis not set, then $J ARCOM (the command line)
isdisplayed.
env = Envi ronnment (JARCOVSTR = "JARchi vi ng $SOURCES i nto $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

Iy
=== SCONS 193

General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

JARSUFFIX
The suffix for Javaarchives: . j ar by default.

The suffix for Javaarchives: . j ar by default.

JAVABOOTCLASSPATH
Specifiesthelist of directories that will be added to the javac command line viathe - boot cl asspat h option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Javaclassfiles. If this
is not set, then $J AVACCOM (the command line) is displayed.

env = Envi ronnment (JAVACCOMSTR = "Conpiling class files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDIR
The directory in which Java class files may be found. Thisis stripped from the beginning of any Java .classfile
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java . cl ass file. The directories in this list will be
added to the javac and javah command lines via the - cl asspat h option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - cl asspat h option. SCons does not currently
search the $J AVACLASSPATH directories for dependency . cl ass files.

JAVACLASSSUFFIX
The suffix for Javaclassfiles; . ¢l ass by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Javaclasses. If thisisnot set, then $J AVAH-
COM(the command line) is displayed.

Iy
=== SCONS 194

env = Environnment (JAVAHCOVSTR = "CGenerati ng header/stub file(s) $TARGETS from $SOURCES"

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVASOURCEPATH
Specifiesthelist of directoriesthat will be searched for input . j ava file. Thedirectoriesin thislist will be added
to the javac command line viathe - sour cepat h option. The individual directory names will be separated by
the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - sour cepat h option. SCons does not currently
search the $J AVASOURCEPATH directories for dependency . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERSION
Specifies the Java version being used by the Java builder. Thisis not currently used to select one version of
the Java compiler vs. another. Instead, you should set thisto specify the version of Java supported by your javac
compiler. The defaultis 1. 4.

Thisis sometimes necessary because Java 1.5 changed the file names that are created for nested anonymous inner
classes, which can cause a mismatch with the files that SCons expects will be generated by the javac compiler.
Setting $JAVAVERSI ONto 1. 5 (or 1. 6, as appropriate) can make SCons redlize that a Java 1.5 or 1.6 build
isactually up to date.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If thisis not set, then SLATEX-
COM(the command line) is displayed.

env = Environnment (LATEXCOVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES
The maximum number of times that LaTeX will be re-run if the . | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default is to try to resolve undefined references by re-running
LaTeX up to threetimes.

LATEXSUFFIXES
Thelist of suffixesof filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\ i npor t files).
The default listis:

[".tex", ".Itx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, thisis the same as $SHLI NK.

Iy
=== SCONS 195

LDMODULECOM
The command linefor building loadable modules. On Mac OS X, this usesthe $L DMODUL E, $L DMODUL EFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

LDMODULECOMSTR
The string displayed when building loadable modules. If this is not set, then $L DMODUL ECOM (the command
line) is displayed.

LDMODULEFLAGS
General user options passed to the linker for building |oadable modules.

LDMODULENOVERSIONSYMLINKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

L DM ODUL EPREFIX
The prefix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLI BPREFI X.

_LDMODULESONAME
A macro that automatically generates loadable module's SONAME based on $STARGET, $LDMODULEV-
ERSION and $LDMODULESUFFIX. Used by Loadabl eModul e builder when the linker tool supports SON-
AME (e.g. gnul i nk).

LDMODULESUFFIX
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSION
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activatesthe $_LDMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L. DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

LDMODULEVERSIONFLAGS
Extra flags added to $L DMODULECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ONis set.

_LDMODULEVERSIONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned Loadabl e-
Mbdul e (that is when $SLDMODULEVERSI ON is set). _ LDMODULEVERSI ONFLAGS usually adds $SHLI B-
VERSI ONFLAGS and some extradynamically generated options (suchas- W , - sonane=$_L DMODULESON-
AME). It isunused by plain (unversioned) |oadable modules.

LEX
Thelexical analyzer generator.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOMSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM(the command line) is displayed.

Iy
=== SCONS 196

env = Environnent (LEXCOMSTR = "Lex'ing $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator.

_LIBDIRFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying di-
rectories to be searched for library. The value of $_L1 BDI RFLAGS is created by appending $LI BDI RPREFI X
and $LI BDI RSUFFI X to the beginning and end of each directory in $L1 BPATH.

LIBDIRPREFIX
The prefix used to specify alibrary directory on the linker command line. Thiswill be appended to the beginning
of each directory in the $L1 BPATH construction variable whenthe $_ LI BDI RFLAGS variable is automatically
generated.

LIBDIRSUFFIX
The suffix used to specify a library directory on the linker command line. This will be appended to the end of
each directory in the $LI BPATH construction variable when the $_LI BDI RFLAGS variable is automatically
generated.

LIBEMITTER
TODO

_LIBFLAGS
An automatically-generated construction variable containing the linker command-line options for specify-
ing libraries to be linked with the resulting target. The value of $ LI BFLAGS is created by appending
$LI BLI NKPREFI X and $LI BLI NKSUFFI X to the beginning and end of each filenamein $LI BS.

LIBLINKPREFIX
The prefix used to specify alibrary to link on the linker command line. Thiswill be appended to the beginning of
each library in the $LI BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LIBLINKSUFFIX
The suffix used to specify alibrary to link on the linker command line. Thiswill be appended to the end of each
library in the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LIBPATH
Thelist of directoriesthat will be searched for libraries. The implicit dependency scanner will search these direc-
tories for include files. Don't explicitly put include directory arguments in $L1 NKFLAGS or $SHLI NKFLAGS
because the result will be non-portable and the directories will not be searched by the dependency scanner. Note:
directory namesin LIBPATH will be looked-up relative to the SConscript directory when they are used in acom-
mand. To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment (LI BPATH=" #/11i bs")

The directory look-up can also be forced using the Di r () function:

libs = Dir('libs")
env = Envi ronnent (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $_LI BDI RFLAGS con-
struction variable, which is constructed by appending the values of the $L1 BDI RPREFI X and $L1 BDI RSUF-
FI X construction variables to the beginning and end of each directory in $L1 BPATH. Any command lines you
define that need the LIBPATH directory list should include $_ LI BDI RFLAGS:

Iy
=== SCONS 197

env = Environnent (LI NKCOVE"ny_I| i nker $_LI BDI RFLAGS $_LI BFLAGS -0 $TARGET $SOURCE")

LIBPREFIX
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBPREFIXES
A list of al legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixesin the $LI1 BSUFFI XES list.

LIBS
A list of one or more libraries that will be linked with any executable programs created by this environment.

Thelibrary list will be added to command lines through the automatically-generated $_ L1 BFLAGS construction
variable, which is constructed by appending the values of the $L1 BLI NKPREFI X and $L1 BLI NKSUFFI X con-
struction variables to the beginning and end of each filenamein $LI BS. Any command lines you define that need
the LIBS library list should include $_L| BFLAGS:

env = Environnment (LI NKCOVE"ny_| i nker $ LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

If you add a File object to the $L1 BS list, the name of that file will be added to $_ L1 BFLAGS, and thus the link
ling, asis, without $L1 BLI NKPREFI X or $LI BLI NKSUFFI X. For example:

env. Append(LIBS=File('/tnmp/ nylib.so"))
In all cases, sconswill add dependencies from the executable program to all the librariesin thislist.

LIBSUFFIX
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBSUFFIXES
A list of al legal suffixes for library file names. When searching for library dependencies, SCons will look for
fileswith prefixes, in the $L1 BPREFI XES list, the base library name, and these suffixes.

LICENSE
The abbreviated name of the license under which this project is released (gpl, Ipgl, bsd etc.). See http://
www.opensource.org/licenses/alphabetical for alist of license names.

LINESEPARATOR
The separator used by the Subst fi | e and Text f i | e builders. Thisvalue is used between sources when con-
structing the target. It defaults to the current system line separator.

LINGUAS FILE
The $L1 NGUAS_FI LE defines file(s) containing list of additional linguas to be processed by PO ni t , POUp-
dat e or MOFi | es builders. It also affects Tr ansl at e builder. If the variable contains astring, it defines name
of thelist file. The $L1 NGUAS_FI LE may be alist of file names aswdll. If $LI NGUAS _FI LE issetto Tr ue
(or non-zero numeric value), the list will be read from default file named L1 NGUAS.

LINK
Thelinker.

Iy
=== SCONS 198

LINKCOM
The command line used to link object files into an executable.

LINKCOMSTR
The string displayed when object files are linked into an executable. If thisis not set, then $L1 NKCOM(the com-
mand line) is displayed.

env = Environnment (LI NKCOVSTR = "Li nki ng $TARGET")

LINKFLAGS
General user options passed to the linker. Note that this variable should not contain - | (or similar) options for
linking with the libraries listed in $L1 BS, nor - L (or similar) library search path options that scons generates
automatically from $LI1 BPATH. See $_LI BFLAGS above, for the variable that expands to library-link options,
and $_LI BDlI RFLAGS above, for the variable that expandsto library search path options.

M4
The M4 macro preprocessor.

M4COM
The command line used to pass files through the M4 macro preprocessor.

MA4COMSTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $MACOM
(the command line) is displayed.

M4FLAGS
General options passed to the M4 macro preprocessor.

MAKEINDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then SMAKEI NDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLINELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM
The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR
The string displayed when the Microsoft IDL copmiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

Iy
=== SCONS 199

MIDLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFIX
Suffix used for MOfiles (default: * . mo'). Seersgf nt tool and MOFi | es builder.

MSGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSGFMTCOM
Complete command line to run msgfmt(1) program. See nsgf nt tool and MOFi | es builder.

MSGFMTCOMSTR
String to display when msgfmt(1) is invoked (default: * ', which means ™ print $MSGFMICOM'). See nsgf nt
tool and MOFi | es builder.

MSGFMTFLAGS
Additional flagsto msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSGINIT
Path to msginit(1) program (found viaDet ect ()). Seensgi ni t tool and PO ni t builder.

MSGINITCOM
Complete command line to run msginit(1) program. Seersgi ni t tool and PO ni t builder.

MSGINITCOMSTR
String to display when msginit(1) isinvoked (default: ' ' , which means print SMSA NI TCOM'). Seenrsgi ni t
tool and POl ni t builder.

MSGINITFLAGS
List of additional flags to msginit(1) (default: []). Seenrsgi ni t tool and POl ni t builder.

_MSGINITLOCALE
Internal “macro". Computes locae (language) name based on target filename (default:
"${ TARGET. fil ebase}').

Seensgi nit tool and PA ni t builder.

MSGMERGE
Absolute path to msgmer ge(1) binary as found by Det ect () . See nsgmer ge tool and POUpdat e builder.

MSGMERGECOM
Complete command line to run msgmer ge(1) command. See msgrer ge tool and POUpdat e builder.

MSGMERGECOMSTR
String to be displayed when msgmer ge(1) isinvoked (default: ' ', which means ™ print $MSGVERGECOM'). See
nsgmner ge tool and POUpdat e builder.

MSGMERGEFLAGS
Additional flags to msgmerge(1) command. See nsgner ge tool and POUpdat e builder.

MSSDK_DIR
Thedirectory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

Iy
=== SCONS 200

MSVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle cal to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj) does not match the source file base name will be
compiled separately.

MSVC_USE_SCRIPT
Use a batch script to set up Microsoft Visual Studio compiler

$MSVC_USE_SCRI PT overrides $MSVC_VERSI ON and $TARGET_ARCH. If set to the name of a Visual Stu-
dio .bat file (e.g. vevars.bat), SConswill run that bat file and extract the relevant variables from the result (typical-
ly %INCLUDE%, %L1B%, and %PATH%). Setting MSVC_USE_SCRIPT to None bypasses the Visual Studio
autodetection entirely; usethisif you are running SConsin aVisua Studio cmd window and importing the shell's
environment variables.

MSVC_VERSION
Sets the preferred version of Microsoft Visual C/C++ to use.

If SMBVC _VERSI ONis not set, SCons will (by default) select the latest version of Visual C/C++ installed on
your system. If the specified versionisn't installed, tool initialization will fail. This variable must be passed as an
argument to the Environment() constructor; setting it later has no effect.

Valid values for Windows are 12. 0, 12. OExp, 11. 0, 11. OExp, 10. 0, 10. OExp, 9. 0, 9. OExp, 8.0,
8. 0Exp,7.1,7.0,and 6. 0. Versions ending in Exp refer to "Express' or "Express for Desktop" editions.

MSVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVS_VERSI ON)

VERSIONS
the available versions of MSVSinstalled

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted |atest to oldest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

Iy
=== SCONS 201

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various mod-
ules, and the values are 2-tuples where the first is the rel ease date, and the second is the version number.

If avalueisn't set, it wasn't available in the registry.

MSVS ARCH
Sets the architecture for which the generated project(s) should build.

The default value is x86. and64 is also supported by SCons for some Visual Studio versions. Trying to set
$MBVS_ARCH to an architecture that's not supported for agiven Visual Studio version will generate an error.

MSVS PROJECT_GUID
The string placed in agenerated Microsoft Visual Studio project file asthe value of the Pr oj ect GUI Dattribute.
Thereis no default value. If not defined, anew GUID is generated.

MSVS SCC_AUX_PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPat h
attribute if the MSVS_SCC_PROVI DER construction variable is also set. Thereis no default value.

MSVS SCC_CONNECTION_ROOT

The root path of projects in your SCC workspace, i.e the path under which all project and solu-
tion files will be generated. It is used as a reference path from which the relative paths of the gen-
erated Microsoft Visua Studio project and solution files are computed. The relative project file path
is placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFr onConnecti on[i] (where [i] ranges from O to the number
of projects in the solution) attributes of the @ obal Sect i on(Sour ceCodeCont rol) section of the Mi-
crosoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
A obal Secti on(Sour ceCodeCont r ol) section of the Microsoft Visua Studio solution file. Thisis used
only if the MSBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MSVS SCC_PROJECT_NAME
The project name placed in a generated Microsoft Visual Studio project file as the value of the SccPr oj ect -
Nane attribute if the MSVS_SCC_PROVI DER construction variable is also set. In this case the string is also
placedinthe SccPr oj ect NaneO attribute of the@ obal Sect i on(Sour ceCodeCont r ol) section of the
Microsoft Visual Studio solution file. Thereis no default value.

MSVS_SCC_PROVIDER
The string placed in agenerated Microsoft Visual Studio project file asthe value of the SccPr ovi der attribute.
The string isalso placed inthe SccPr ovi der 0 attribute of the G obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visua Studio solution file. Thereis no default value.

MSVS VERSION
Setsthe preferred version of Microsoft Visual Studio to use.

If $MBVS_VERSI ONisnot set, SConswill (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the MSVS_VERSI ON variable in the Environment initialization, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSI ON instead. If $MSVS_ VERSI ON is set and $MSVC_VERSI ON is not,
$MBVC_VERSI ONwill be set automatically to $MSVS_VERSI ON. If both are set to different values, scons will
raise an error.

Iy
=== SCONS 202

MSVSBUILDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified build targets.

MSVSCLEANCOM
The clean command line placed in a generated Microsoft Visua Studio project file. The default isto have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding W n-
dows- 1252,

MSVSPROJECTCOM
The action used to generate Microsoft Visual Studio project files.

M SVSPROJECT SUFFI X
The suffix used for Microsoft Visual Studio project (DSP) files. Thedefault valueis. vepr oj whenusing Visual
Studio version 7.x (.NET) or later version, and . dsp when using earlier versions of Visual Studio.

MSVSREBUILDCOM
Therebuild command line placed in agenerated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MSVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

M SVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

M SVSSCONSCRIPT
The sconscript file (that is, SConst ruct or SConscr i pt file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOMvariable). The default is the same sconscript file that contains the call to
MSVSPr oj ect to build the project file.

MSVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM
The action used to generate Microsoft Visual Studio solution files.

M SVSSOLUTIONSUFFIX
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET), and . dswwhen using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See aso
$W NDOWNS_EMBED MANI FEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHLI BCOM

MTFLAGS
Flags passed to the $MTI' manifest embedding program (Windows only).

MTSHLIBCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

Iy
=== SCONS 203

MWCW_VERSION
The version number of the Metrowerks CodeWarrior C compiler to be used.

MWCW_VERSIONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME
Specfies the name of the project to package.

no_import_lib
When set to non-zero, suppresses creation of acorresponding Windows static import lib by the Shar edLi brary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (.exp) file when using Microsoft Visua Studio.

OBJPREFIX
The prefix used for (static) object file names.

OBJSUFFIX
The suffix used for (static) object file names.

P4
The Perforce executable.

PACOM
The command line used to fetch source files from Perforce.

PACOMSTR
The string displayed when fetching a source file from Perforce. If thisis not set, then $P4COM (the command
line) is displayed.

PAFLAGS
General options that are passed to Perforce.

PACKAGEROOT
Specifies the directory where al files in resulting archive will be placed if applicable. The default value is
"$NAME-$VERSION".

PACKAGETYPE
Selects the package type to build. Currently these are available;

* ms - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2
- compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz -
compressed tar source* src_zip - zip file source

This may be overridden with the "package type" command line option.

PACKAGEVERSION
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

Iy
=== SCONS 204

env[' PCH] = ' St dAfx. pch’

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR
The string displayed when generating a precompiled header. If thisis not set, then $PCHCOM (the command line)
is displayed.

PCHPDBFLAGS
A construction variablethat, when expanded, addsthe/ y Dflag to the command line only if the $PDB construction
variableis set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variableisnot being used. When thisvariableis defineit must be astring
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' St dAf x. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. Thisvariableisignored by tools other than Microsoft Visual C++. When thisvariable is defined SCons
will add options to the compiler and linker command line to cause them to generate external debugging informa-
tion, and will also set up the dependencies for the PDB file. Example:

env[' PDB'] = 'hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallel (- j) builds because it embeds the debug information in the intermediate object files, as
opposed to sharing a single PDB file between multiple object files. Thisis aso the only way to get debug infor-
mation embedded into astatic library. Usingthe/ Zi instead may yield improved link-time performance, athough
paralel builds will no longer work. You can generate PDB files with the / Zi switch by overriding the default
$CCPDBFLAGS variable; seethe entry for that variable for specific examples.

PDFCOM
A deprecated synonym for $DVI PDFCOM

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If thisis not set, then $PDFLATEXCOM(the command line)
isdisplayed.

env = Environnment (PDFLATEX; COVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

Iy
=== SCONS 205

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMSTR
The string displayed when calling the pdftex utility. If thisis not set, then $PDFTEXCOM (the command line)
is displayed.

env = Envi ronnent (PDFTEXCOVSTR = "Bui | di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGA NFO) to look for installed
versions of the Sun PRO C++ compiler. The default is/ usr/ sbi n/ pgkchk.

PKGINFO
On Solaris systems, the package informati on program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkgi nf o.

PLATFORM
The name of the platform used to create the Environment. If no platform is specified when the Environment is
created, scons autodetects the platform.

env = Environnment(tools = [])
if env[' PLATFORM] == 'cygw n':
Tool (' m ngw) (env)
el se:
Tool (' nsvc') (env)

POAUTOINIT
The$PQAUTA NI T variable, if set to Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, POl ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALIAS
Common alias for all POfiles created with POl ni t builder (default: ' po- cr eat e'). Seensgi ni t tool and
PA ni t builder.

POSUFFIX
Suffix used for POfiles (default: * . po') Seensgi ni t tool and PO ni t builder.

POTDOMAIN
The $POTDOVAI N defines default domain, used to generate POT filename as $POTDOVAI N. pot when no POT
filenameis provided by the user. This appliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,

Iy
=== SCONS 206

that usethem, e.g. Tr ansl at e). Normally (if $POTDOMVAI Nis not defined), the buildersuse messages. pot
as default POT file name.

POTSUFFIX
Suffix used for PO Template files (default: ' . pot '). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALIAS
Common aliasfor all POfilesbeing defined with POUpdat e builder (default: ' po- updat e'). Seensgner ge
tool and POUpdat e builder.

PRINT_CMD_LINE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - g or - s options or their equivalents). The function should take four arguments: s, the command
being executed (astring), t ar get , thetarget being built (file node, list, or string name(s)), sour ce, the source(s)
used (file node, list, or string name(s)), and env, the environment being used.

The function must do the printing itself. The default implementation, used if thisvariableisnot set or isNone, is:

def print_cnd_|ine(s, target, source, env):
sys.stdout.wite(s + "\n")

Here's an example of amore interesting function:

def print_cnd_|ine(s, target, source, env):
sys.stdout. wite("Building % -> 9%...\n" %
(' and '".join([str(x) for x in source]),
'"and '.join([str(x) for x in target])))
env=Envi ronment (PRI NT_CVD LI NE_FUNC=print_cnd_| i ne)
env. Program(' foo', 'foo.c')

Thisjust prints"Buildingt ar get nanme fromsour cenane..." instead of the actual commands. Such afunction
could also log the actual commandsto alog file, for example.

PROGEMITTER
TODO

PROGPREFIX
The prefix used for executable file names.

PROGSUFFIX
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOMSTR
The string displayed when aTeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFIX
The prefix used for PostScript file names.

Iy
=== SCONS 207

PSSUFFI X
The prefix used for PostScript file names.

QT_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify filesto run moc on.

QT_BINPATH
The path where the gt binaries are installed. The default value is '$QTDI R/bin'.

QT_CPPPATH
The path where the gt header files are installed. The default value is '$QTDI Rlinclude. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

QT_LIB
Default value is 'qt’. You may want to set this to 'gt-mt'. Note: If you set this variable to None, the tool won't
change the $L1 BS variable.

QT_LIBPATH
The path where the gt libraries are installed. The default value is '$QTDI R/lib'. Note: If you set this variable to
None, the tool won't change the $L1 BPATH construction variable.

QT_MOC
Default valueis'$QT_BlI NPATH/moc'.

QT_MOCCXXPREFIX
Default valueis™. Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX
Default value is'.moc'. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCXXCOM
Command to generate amoc file from a cpp file.

QT_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from a cpp file. If thisis not set, then $QT_ MOCFROMCXXCOM
(the command line) is displayed.

QT_MOCFROMCXXFLAGS
Default value is'-i'. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROMHCOM
Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR
The string displayed when generating amoc file from acpp file. If thisis not set, then $QT_ MOCFROVHCOM(the
command line) is displayed.

QT_MOCFROMHFLAGS
Default value is ™. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX
Default valueis'moc . Prefix for moc output files, when source is a header.

Iy
=== SCONS 208

QT_MOCHSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for moc output files, when source is a header.

QT UIC
Default valueis'$QT_BI NPATHuic'.

QT_UICCOM
Command to generate header files from .ui files.

QT_UICCOMSTR
The string displayed when generating header files from .ui files. If thisis not set, then $QT_ Ul CCOM (the com-
mand line) is displayed.

QT_UICDECLFLAGS
Default value is ™. These flags are passed to uic, when creating aa h file from a.ui file.

QT_UICDECLPREFIX
Default valueis". Prefix for uic generated header files.

QT_UICDECL SUFFIX
Default valueis'.h'. Suffix for uic generated header files.

QT_UICIMPLFLAGS
Default value is ™. These flags are passed to uic, when creating a cxx file from a..ui file.

QT_UICIMPLPREFIX
Default valueis'uic_'. Prefix for uic generated implementation files.

QT _UICIMPL SUFFIX
Default value is'$CXXFI LESUFFI X'. Suffix for uic generated implementation files.

QT_UISUFFIX
Default valueis'.ui'. Suffix of designer input files.

QTDIR
The gt tool triesto take thisfrom os.environ. It alsoinitializesall QT_* construction variableslisted below. (Note
that all paths are constructed with python's os.path.join() method, but are listed here with the '/' separator for
easier reading.) In addition, the construction environment variables $CPPPATH, $LI BPATH and $L1 BS may
be modified and the variables SPROGEM TTER, $SHLI BEM TTERand $LI BEM TTER are modified. Because
the build-performance is affected when using this tool, you have to explicitly specify it at Environment creation:

Envi ronnent (tool s=["' default', ' qt'])
The qt tool supports the following operations:

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are afew preconditions to do so: Y our header file must have the same filebase as your
implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh.
You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding
Moc () builder method.

Automatic moc file generation from cxx files. As stated in the qt documentation, include the moc file at
the end of the cxx file. Note that you have to include the file, which is generated by the transformation
${QT_MOCCXXPREFI X} <basename>${ QT _MOCCXXSUFFIX}, by default <basename>.moc. A warning is
generated after building the moc file, if you do not include the correct file. If you are using VariantDir, you may

Iy
=== SCONS 209

need to specify duplicate=1. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0.
See also the corresponding Moc builder method.

Automatic handling of .ui files. Theimplementation files generated from .ui files are handled much the same as
yacc or lex files. Each .ui file given as asource of Program, Library or SharedLibrary will generate threefiles, the
declaration file, the implementation file and a moc file. Because there are also generated headers, you may need
to specify duplicate=1 in callsto VariantDir. See also the corresponding Ui ¢ builder method.

RANLIB
The archive indexer.

RANLIBCOM
The command line used to index a static library archive.

RANLIBCOMSTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnment (RANLI BCOVBTR = "I ndexi ng $TARGET")

RANLIBFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then SRCCOM(the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by appending $RCI NCPREFI X
and $RCI NCSUFFI X to the beginning and end of each directory in $CPPPATH.

RCINCPREFIX
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be ap-
pended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

RCINCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.

RCS
The RCS executable. Note that this variable is not actually used for the command to fetch source files from RCS;
see the $RCS_CO construction variable, below.

RCS CO
The RCS "checkout" executable, used to fetch source files from RCS.

Iy
=== SCONS 210

RCS COCOM
The command line used to fetch (checkout) source files from RCS.

RCS COCOMSTR
The string displayed when fetching a source file from RCS. If thisis not set, then $RCS_COCOM (the command
line) is displayed.

RCS COFLAGS
Options that are passed to the $RCS_ CO command.

RDirs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi br ary
builder is passed a keyword argument of r egi st er =1.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the Shar edLi -
br ary builder is passed a keyword argument of r egi st er =1.

REGSVRCOMSTR
The string displayed when registering anewly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library isregistered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RMIC
The Java RMI stub compiler.

RMICCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI implementa-
tions. Any options specified in the $RM CFLAGS construction variable are included on this command line.

RMICCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RM1 implemen-
tations. If thisis not set, then $RM CCOM(the command line) is displayed.

env = Envi ronnment (RM CCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOU

RMICFLAGS
General options passed to the Java RMI stub compiler.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by appending $SRPATHPREFI X and $SRPATHSUFFI X
to the beginning and end of each directory in $RPATH.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and tool chains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

Iy
=== SCONS 211

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable
isautomatically generated.

RPATHSUFFIX
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is au-
tomatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLIENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the sections "Builder
Objects" and " Scanner Objects," below, for more information.

SCCS
The SCCS executable.

SCCSCOM
The command line used to fetch source files from SCCS.

SCCSCOMSTR
The string displayed when fetching a source file from a CVS repository. If thisis not set, then $SCCSCOM ((the
command line) is displayed.

SCCSFLAGS
General optionsthat are passed to SCCS.

SCCSGETFLAGS
Optionsthat are passed specifically to the SCCS "get" subcommand. This can be set, for example, to - e to check
out editable files from SCCS.

SCONS HOME
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisisused to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visua Studio project files.

Iy
=== SCONS 212

SHCC
The C compiler used for generating shared-library objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line.

SHCCCOMSTR
The string displayed when a C source file is compiled to a shared object file. If thisis not set, then $SHCCCOM
(the command line) is displayed.

env = Environnment (SHCCCOVETR = " Conpi | i ng shared obj ect $TARCGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects.

SHCXX
The C++ compiler used for generating shared-library objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line.

SHCXXCOMSTR
The string displayed when a C++ sourcefileis compiled to ashared object file. If thisis not set, then $ SHCXXCOM
(the command line) is displayed.

env = Environment (SHCXXCOMSTR = " Conpi | i ng shared obj ect $TARGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects.

SHDC
SHDC.

SHDCOM
SHDCOM.

SHDLINK
SHDLINK.

SHDLINKCOM
SHDLINKCOM.

SHDLINKFLAGS
SHDLINKFLAGS.

SHELL
A string naming the shell program that will be passed to the $SPAVN function. See the $SPAVWN construction
variable for more information.

Iy
=== SCONS 213

SHFO03
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO3COMSTR
The string displayed when a Fortran 03 source file is compiled to a shared-library object file. If thisis not set,
then $SHF03COMor $SHFORTRANCOM (the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHFO3PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO3PPCOMif you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOMSTR
The string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFO3PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHFO08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO08COMSTR
The string displayed when a Fortran 08 source file is compiled to a shared-library object file. If thisis not set,
then $SHF08COMor $SHFORTRANCOM (the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF08PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific

Iy
=== SCONS 214

C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOMSTR
The string displayed when a Fortran 08 sourcefileis compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFO8PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMIif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF77COMSTR
The string displayed when a Fortran 77 source file is compiled to a shared-library object file. If thisis not s,
then $SHF77 COMor $SHFORTRANCOM(the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific
C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR
The string displayed when a Fortran 77 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF77PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMIif you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF90COMSTR
The string displayed when a Fortran 90 source file is compiled to a shared-library object file. If thisis not s,
then $SHF90COMor $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the

Iy
=== SCONS 215

$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFOOFLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
The string displayed when a Fortran 90 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF90PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMif you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
The string displayed when a Fortran 95 source file is compiled to a shared-library object file. If thisis not s,
then $SHF95COMor $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for al Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFI95FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMif you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for al Fortran versions.

SHF95PPCOMSTR
The string displayed when a Fortran 95 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF95PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOMSTR
The string displayed when a Fortran source file is compiled to a shared-library object file. If thisis not set, then
$SHFORTRANCOM (the command line) is displayed.

Iy
=== SCONS 216

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the file
through the C preprocessor. Any options specified in the $SHFORTRANFLAGS and $CPPFLAGS construction
variables are included on this command line.

SHFORTRANPPCOMSTR
The string displayed when a Fortran source file is compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER
TODO

SHLIBNOVERSIONSYMLINKS
Instructs the Shar edLi br ary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX
The prefix used for shared library file names.

_SHLIBSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLIBSUFFIX
The suffix used for shared library file names.

SHLIBVERSION
When this construction variable is defined, a versioned shared library is created by Shar edLi br ar y builder.
Thisactivatesthe$ SHLI BVERSI ONFLAGS and thus modifies the $SHLI NKCOMas required, adds the version
number to the library name, and creates the symlinks that are needed. $SHLI BVERSI ON versions should exist
as apha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example $SH-
LI BVERSI ONvauesinclude'1’, '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). SHLI BVERSI ONFLAGS usually adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - soname=$_SHLI BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used when
$SHLI BVERSI ONis set.

SHLINK
The linker for programs that use shared libraries.

SHLINKCOM
The command line used to link programs using shared libraries.

SHLINKCOMSTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM (the
command line) is displayed.

Iy
=== SCONS 217

env = Environnment (SHLI NKCOVBTR = "Li nki ng shared $TARGET")

SHLINKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain- | (or similar) options for linking with the libraries listed in $L1 BS, nor - L (or similar) include search
path options that scons generates automatically from $L1 BPATH. See $_ L1 BFLAGS above, for the variable that
expandsto library-link options, and $_LI| BDI RFLAGS above, for the variable that expandsto library search path
options.

SHOBJPREFIX
The prefix used for shared object file names.

SHOBJSUFFIX
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")
Thevariableis used, for example, by gnul i nk linker tool.

SOURCE
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. Thisisused tofill inthe Sour ce:
field in the controlling information for |pkg and RPM packages.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See "V ariable Substitution,"
below.)

SPAWN
A command interpreter function that will be called to execute command line strings. The function must expect
the following arguments:

def spawn(shell, escape, cnd, args, env):

sh is astring naming the shell program to use. escape is afunction that can be called to escape shell special
characters in the command line. cnd is the path to the command to be executed. ar gs is the arguments to the
command. env isadictionary of the environment variables in which the command should be executed.

STATIC_AND_SHARED_OBJECTS ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DICT
The dictionary used by the Subst fi | e or Text fi | e builders for substitution values. It can be anything ac-
ceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX
The prefix used for Subst fi | e file names, the null string by default.

Iy
=== SCONS 218

SUBSTFILESUFFIX
The suffix used for Subst fi | e file names, the null string by default.

SUMMARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descr i pti on: fieldin MSI packages.

SWIG
The scripting language wrapper and interface generator.

SWIGCFILESUFFIX
The suffix that will be used for intermediate C source files generated by the scripting language wrapper and
interface generator. The default valueis_wr ap$CFl LESUFFI X. By default, this value is used whenever the -
c++ option is not specified as part of the $SW GFLAGS construction variable.

SWIGCOM
The command line used to call the scripting language wrapper and interface generator.

SWIGCOMSTR
The string displayed when calling the scripting language wrapper and interface generator. If thisis not set, then
$SW GCOM (the command line) is displayed.

SWIGCXXFILESUFFIX
The suffix that will be used for intermediate C++ source files generated by the scripting language wrapper and
interface generator. The default valueis_wr ap$CFI LESUFFI X. By default, this value is used whenever the -
c++ option is specified as part of the $SW GFLAGS construction variable.

SWIGDIRECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by the scripting language wrapper and
interface generator. These are only generated for C++ code when the SWIG 'directors feature is turned on. The
default valueis_wr ap. h.

SWIGFLAGS
General options passed to the scripting language wrapper and interface generator. Thisis where you should set -
pyt hon, - per| 5, -t cl , or whatever other optionsyou want to specify to SWIG. If you set the- c++ optionin
thisvariable, scons will, by default, generate a C++ intermediate source file with the extension that is specified
asthe $CXXFI LESUFFI X variable.

_SWIGINCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specify-
ing directories to be searched for included files. The value of $_SW G NCFLAGS is created by appending
$SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each directory in $SW GPATH.

SWIGINCPREFI X
The prefix used to specify an include directory on the SWIG command line. Thiswill be appended to the begin-
ning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variable is auto-
matically generated.

SWIGINCSUFFIX
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable whenthe $_ SW G NCFLAGS variable is automatically
generated.

SWIGOUTDIR
Specifies the output directory in which the scripting language wrapper and interface generator should place gen-
erated language-specific files. This will be used by SCons to identify the files that will be generated by the swig
cal, and trandlated into the swi g - out di r option on the command line.

Iy
=== SCONS 219

SWIGPATH
Thelist of directoriesthat the scripting language wrapper and interface generate will search for included files. The
SWIG implicit dependency scanner will search thesedirectoriesfor includefiles. The default valueisan empty list.

Don't explicitly put include directory argumentsin SWIGFLAGS; the result will be non-portable and the direc-
tories will not be searched by the dependency scanner. Note: directory namesin SWIGPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environnment (SW GPATH=' #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Envi r onnment (SW GPATH=i ncl ude)

Thedirectory list will be added to command lines through the automatically-generated $_ SW G NCFLAGS con-
struction variable, whichis constructed by appending the values of the$SW G NCPREFI Xand $SW G NCSUF-

FI X construction variables to the beginning and end of each directory in $SW GPATH. Any command lines you
define that need the SWIGPATH directory list should include $_SW G NCFLAGS:

env = Environnent (SW GCOVF"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SWIGVERSION
The version number of the SWIG tool.

TAR
Thetar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOMSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Environnment (TARCOVSTR = "Archi vi ng $TARCET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

TARGET_ARCH
The name of the target hardware architecture for the compiled objects created by this Environment. This defaults
to the value of HOST_ARCH, and the user can override it. Currently only set for Win32.

Sets the target architecture for Visual Studio compiler (i.e. the arch of the binaries generated by the compiler). If
not set, default to $HOST _ARCH, or, if that is unset, to the architecture of the running machine's OS (note that

Iy
=== SCONS 220

the python build or architecture has no effect). This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect. Thisis currently only used on Windows, but in the future it will be used
on other OSes as well.

Vaid values for Windows are x86, i 386 (for 32 bits); and64, ent 64, x86_64 (for 64 bits); andi a64 (Ita
nium). For example, if you want to compile 64-bit binaries, you would set TARGET_ARCH=' x86_64" inyour
SCons environment.

TARGET_OS
The name of the target operating system for the compiled objects created by this Environment. This defaults to
the value of HOST_QOS, and the user can override it. Currently only set for Win32.

TARGETS
A reserved variable name that may not be set or used in a construction environment. (See "V ariable Substitution,"
below.)

TARSUFFIX
The suffix used for tar file names.

TEMPFILEPREFI X
The prefix for atemporary file used to execute lines longer than $SMAXLINELENGTH. The default is'@'. This
may be set for toolchains that use other values, such as'-@' for the diab compiler or -via for ARM toolchain.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
The string displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

env = Environnent (TEXCOMSTR = "Bui |l di ng $TARGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXINPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFILEPREFIX
The prefix used for Text f i | e file names, the null string by default.

TEXTFILESUFFIX
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See"Variable Substitution,"
below.)

Iy
=== SCONS 221

UNCHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See "V ariable Substitution,"
below.)

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er: field in the controlling information for
MSI packages.

VERSION
The version of the project, specified as a string.

WIN32_INSERT_DEF
A deprecated synonym for $W NDOWS_| NSERT _DEF.

WIN32DEFPREFIX
A deprecated synonym for $W NDOASDEFPREFI X.

WIN32DEFSUFFI X
A deprecated synonym for $W NDONSDEFSUFFI X.

WIN32EXPPREFIX
A deprecated synonym for $W NDOASEXPSUFFI X.

WIN32EXPSUFFI X
A deprecated synonym for $W NDOASEXPSUFFI X.

WINDOWS EMBED_MANIFEST
Set this variable to True or 1 to embed the compiler-generated manifest (normally ${ TARGET} . mani f est)
into all Windows exes and DLLs built with this environment, as a resource during their link step. Thisis done
using $Mr and SMIrEXECOMand $MI'SHLI BCOM

WINDOWS INSERT_DEF
When thisis set to true, alibrary build of a Windows shared library (. dI | file) will also build a corresponding
. def file at the sametime, if a. def fileisnot aready listed as a build target. The default is O (do not build
a. def file).

WINDOWS _INSERT_MANIFEST
When thisis set to true, scons will be aware of the. mani f est files generated by Microsoft Visua C/C++ 8.

WINDOWSDEFPREFI X
The prefix used for Windows . def file names.

WINDOWSDEFSUFFI X
The suffix used for Windows . def file names.

WINDOW SEXPPREFI X
The prefix used for Windows . exp file names.

WINDOW SEXPSUFFI X
The suffix used for Windows . exp file names.

WINDOWSPROGMANIFESTPREFIX
The prefix used for executable program . mani f est files generated by Microsoft Visual C/C++.

WINDOWSPROGM ANIFEST SUFFI X
The suffix used for executable program . mani f est files generated by Microsoft Visual C/C++.

Iy
=== SCONS 222

WINDOWSSHL IBMANIFESTPREFIX
The prefix used for shared library . mani f est files generated by Microsoft Visual C/C++.

WINDOWSSHLIBMANIFEST SUFFIX
The suffix used for shared library . mani f est files generated by Microsoft Visual C/C++.

X_IPK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

X_IPK_DESCRIPTION
Thisis used to fill in the Descri pti on: field in the controlling information for Ipkg packages. The default
valueis $SUMVARY\ n$DESCRI PTI ON

X_IPK_MAINTAINER
Thisisused to fill inthe Mai nt ai ner : field in the controlling information for |pkg packages.

X_IPK_PRIORITY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

X_IPK_SECTION
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MSI_LANGUAGE
Thisisused to fill inthe Language: attribute in the controlling information for MSI packages.

X_MSI_LICENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill bereplaced with the RTF equivalent
\\par.

X_MSI_UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused to fill inthe Aut oReqPr ov: fieldinthe RPM . spec file.

X _RPM_BUILD
internal, but overridable

X_RPM_BUILDREQUIRES
Thisisused tofill inthe Bui | dRequi r es: fieldinthe RPM . spec file.

X_RPM_BUILDROOT
internal, but overridable

X_RPM_CLEAN
internal, but overridable

X_RPM_CONFLICTS
Thisisusedtofill inthe Conf | i cts: fieldinthe RPM . spec file.

X_RPM_DEFATTR
This value is used as the default attributes for the files in the RPM package. The default value is
(-,root,root).

X_RPM_DISTRIBUTION
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

Iy
=== SCONS 223

X_RPM_EPOCH

Thisisused to fill inthe Epoch: field inthe controlling information for RPM packages.

X_RPM_EXCLUDEARCH

Thisisusedto fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

X_RPM_EXLUSIVEARCH

Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_GROUP
Thisisusedtofill inthe Gr oup: fieldinthe RPM . spec file.

X_RPM_GROUP _lang

Thisisused tofill inthe G- oup(| ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should

be replaced by the appropriate language code.

X_RPM_ICON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X_RPM _INSTALL
internal, but overridable

X_RPM_PACKAGER
Thisisused tofill inthe Packager : fieldinthe RPM . spec file

X_RPM_POSTINSTALL
Thisisused to fill inthe %post : sectioninthe RPM . spec file.

X_RPM_POSTUNINSTALL
Thisisused to fill inthe %post un: sectioninthe RPM . spec file.

X_RPM_PREFIX
Thisisusedtofill inthe Pr ef i x: fieldinthe RPM . spec file.

X_RPM_PREINSTALL
Thisisusedto fill inthe %pr e: sectioninthe RPM . spec file.

X _RPM_PREP
internal, but overridable

X_RPM_PREUNINSTALL
Thisisused tofill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM_PROVIDES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM_REQUIRES
Thisisusedto fill inthe Requi r es: fieldinthe RPM . spec file.

X_RPM_SERIAL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.

X_RPM_URL
Thisisusedtofill intheUr | : fieldinthe RPM . spec file.

XGETTEXT

Path to xgettext(1) program (found viaDet ect ()). Seexget t ext tool and POTUpdat e builder.

Iy
=== SCONS

XGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.

XGETTEXTCOMSTR
A string that is shown when xgettext(1) command is invoked (default: ' ', which means "print $XCGET-
TEXTCOM'). Seexget t ext tool and POTUpdat e builder.

_XGETTEXTDOMAIN
Internal "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XGETTEXTFLAGS
Additional flags to xgettext(1). Seexget t ext tool and POTUpdat e builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFI LES. i n so they
will inmost cases set XGETTEXTFROME" POTFI LES. i n" here. The $XGET TEXTFROM(files have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_XGETTEXTFROMFLAGS
Internal "macro”. Genrateslist of - D<di r > flags from the $XCETTEXTPATH list.

XGETTEXTFROMPREFI X
Thisflag is used to add single $XGETTEXTFROMfile to xgettext(1)'s commandline (default: * - f ').

XGETTEXTFROM SUFFI X
(default: " *)

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generateslist of - f <f i | e> flags from $XGETTEXTFROM

XGETTEXTPATHPREFIX
Thisflag is used to add single search path to xgettext(1)'s commandline (default: ' - D').

XGETTEXTPATHSUFFIX
(default: ' ')

YACC
The parser generator.

YACCCOM
The command line used to call the parser generator to generate a source file.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

Iy
=== SCONS 225

env = Environnent (YACCCOMSTR = "Yacc'ing $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. If $YACCFLAGS contains a - d option, SCons assumes that the
call will also create a.hfile (if the yacc source file ends in a .y suffix) or a.hpp file (if the yacc source file ends
ina.yy suffix)

YACCHFILESUFFIX
The suffix of the C header file generated by the parser generator when the - d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default valueis. h.

YACCHXXFILESUFFIX
The suffix of the C++ header file generated by the parser generator when the - d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of itsown accord. The default valueis. hpp, except
on Mac OS X, where the default is ${ TARGET. suf fi x} . h. because the default bison parser generator just
appends. h to the name of the generated C++ file.

YACCVCGFILESUFFIX
The suffix of the file containing the VCG grammar automaton definition when the - - gr aph= option is used.
Note that setting this variable does not cause the parser generator to generate aV CG file with the specified suffix,
it exists to alow you to specify what suffix the parser generator will use of its own accord. The default value
is. vcg.

ZIP
The zip compression and file packaging utility.

ZIPCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

ZIPCOMPRESSION
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e module is unavailable.

ZIPCOMSTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Envi ronnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

ZIPFLAGS
General options passed to the zip utility.

ZIPROOT
An optional zip root directory (default empty). Thefilenamesstored in the zip file will berelativeto thisdirectory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environnent ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel', Zl PROOT='subdirl")

will produceazipfilef 0o. zi p containing afilewiththenamesubdi r 2/ fi | el ratherthansubdi r 1/ sub-
dir2/filel.

Iy
=== SCONS 226

ZIPSUFFIX
The suffix used for zip file names.

Iy
=== SCONS 227

Appendix B. Builders

This appendix contains descriptions of all of the Buildersthat are potentially available "out of the box" in thisversion
of SCons.

Crile(),

env. CFi |l e()
Builds a C source file given alex (. |) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c

env.CFile(target = 'foo.c', source = 'foo.l")
builds bar.c
env.CFile(target = 'bar', source = 'bar.y')

Command() ,

env. Conmand()
The Command "Builder" is actually implemented as a function that looks like a Builder, but actually takes an
additional argument of the action from which the Builder should be made. See the Commrand function description
for the calling syntax and details.

CXXFile() ,

env. CXXFi | e()
Buildsa C++ sourcefilegivenalex (. I 1) or yacc (. yy) input file. The suffix specified by the $CXXFI LESUF-
FI X construction variable (. cc by default) is automatically added to the target if it is not already present. Ex-
ample:

builds foo.cc
env. CXXFil e(target = 'foo.cc', source = 'foo.ll")
builds bar.cc

env. CXXFi | e(t ar get

"bar', source = 'bar.yy')

DocbookEpub() ,
env. DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' nanual ')

DocbookHt m () ,
env. DocbookHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment (t ool s=[' docbhook'])
env. DocbookH m (' manual . htm *, ' manual . xm ")

or simply

env = Environnent (t ool s=[' docbhook'])

Iy
=== SCONS 228

env. DocbookHt m (' nmanual ')

DocbookHt m Chunked() ,

env. DocbookHt m Chunked()
A pseudo-Builder, providing a Docbook toolchain for chunked HTML output. It supports the base. di r para
meter. The chunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Envi ronnent (t ool s=[' docbook'])
env. DocbookH m Chunked(' nanual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' mymanual . html ', 'manual ', xsl='htnl chunk. xsl")

Some basic support for the base. di r isprovided. You can add the base_di r keyword to your Builder call,
and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' manual ', xsl ="htm chunk. xsl', base_dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p() ,
env. DocbookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

where manual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(* mymanual . ht ', 'manual ', xsl='htnl hel p. xsl ")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(* manual ', xsl="htm hel p. xsl', base_dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan() ,
env. DocbookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookMan("' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

Iy
=== SCONS 229

DocbookPdf () ,
env. DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environnent (tool s=[' dochook'])
env. DocbookPdf (' manual . pdf ', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookPdf (' manual ')

DocbookSl i desHtm () ,
env. DocbookSl i desHt m ()
A pseudo-Builder, providing a Dochook toolchain for HTML slides output.

env = Environment (t ool s=[' docbhook'])
env. DocbookSl i desHt m (' manual ')

If youusethetit| efoil.htnl parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=["' dochook'])
env. DocbookSl i desHt m (' mymanual . ht i ', ' manual ', xsl='"slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])

env. DocbookSl i desHt M (' manual ', xsl="slideshtm .xsl', base dir="output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf () ,
env. DocbookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF slides outpuit.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ')

or simply

env = Environment (t ool s=[' docbook'])
env. DocbookS| i desPdf (' nanual ')

DocbookXI ncl ude() ,
env. DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=["' dochook'])
env. DocbookXl ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DocbookXslt () ,
env. DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environnent (t ool s=[' dochook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt')

Note, that this builder requiresthe xs| parameter to be set.

Iy
=== SCONS 230

bvi() .

env. DVI ()
Buildsa. dvi filefroma.tex,.|ltx or. | atex input file. If the source file suffix is. t ex, scons will
examine the contents of the file; if the string \ docunent cl ass or \ docunent st yl e isfound, the file is
assumed to be a LaTeX file and the target is built by invoking the SLATEXCOM command line; otherwise, the
$TEXCOMcommand lineisused. If thefileisaLaTeX file, theDVI builder method will aso examine the contents
of the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX
to generateanindex if a. i nd fileisfound and will examine the contents. | og file and re-run the $L ATEXCOM
command if thelog file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex

env.DVI (target = 'aaa.dvi', source = 'aaa.tex')
bui | ds bbb. dvi
env. DVI (target = 'bbb', source = 'bbb.ltx")
builds fromccc. | atex
env.DVI (target = 'ccc.dvi', source = 'ccc.latex')
Gs() ,
env. Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs,
gsos2 and gswi n32c aretried.

env = Environment (tool s=['gs'])

env. Gs(' cover.jpg','scons-scons. pdf',
GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi rst Page=1 -dLast Page=1 -q')
)

Install () ,

env.Install ()
Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as astring or as anode returned by a builder.

env.Install ('/usr/local/bin', source = ['foo', '"bar'])

Instal | As() ,

env. Install As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of files or directories.

env. I nstall As(tar get "/usr/local /bin/foo',

source = 'foo_debug')
env.Install As(target = ['../lib/libfoo.a', '../lib/libbar.a'],
source = ['libFOO. a', "libBAR a'])

I nstal | Versi onedLi b() ,

env. I nstal | Versi onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on sym-
links of the source library.

Iy
=== SCONS 231

env. I nst al | Ver si onedLi b(target = '/usr/| ocal/bin/foo'
source = "libxyz.1.5.2.50")

Jar () ,

env. Jar ()
Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass files by calling the
Java Builder.

If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefile is assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar’,
source = ['barl.java', 'bar2.java'])

Java() ,

env. Java()
Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
treeswhich will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed underneath the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; theresulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r/ Foo. cl ass classfile.

Examples:

'cl asses', source
'cl asses', source
'cl asses', source

env. Java(t ar get
env. Java(t ar get
env. Java(t ar get

‘src')
['srcl', 'src2'])
['"Filel.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compilesin ssmple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment ()
env['ENV']['LANG] = 'en_GB. UTF-8'

JavaH() ,

env. JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source

Iy
=== SCONS 232

can be the names of . cl ass files, the names of . j ava filesto be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:

builds java_native.h
cl asses = env.Java(target = 'classdir', source = 'src')
env. JavaH(target = 'java_native.h', source = cl asses)

buil ds incl ude/ package_foo. h and i ncl ude/ package_bar. h
env. JavaH(target = 'incl ude',
source [' package/ foo. cl ass', 'package/bar.class'])

buil ds export/foo.h and export/bar.h

env. JavaH(target = 'export',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

Li brary() ,
env. Li brary()
A synonym for the St at i cLi br ar y builder method.

Loadabl eModul e() ,

env. Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

MA() .

env. MA()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc() ,

env. Moc()
Builds an output file from amoc input file. Moc input files are either header files or cxx files. Thisbuilder isonly
available after using the tool 'gt'. See the $QTDI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo. cc
env. Moc(' foo.cpp') # generates foo. noc

MOFi | es() ,
env. MOFi | es()
This builder belongsto nsgf nt tool. The builder compiles POfilesto MOfiles.

Example 1. Create pl . no and en. no by compiling pl . po and en. po:

...
env. MOFi les(['pl', "en'])

Iy
=== SCONS 233

Example 2. Compilefiles for languages defined in L1 NGUAS file:

...
env. MOFi | es(LI NGUAS_FI LE = 1)

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:

...
env. MOFi les(['pl', 'en'], LINGUAS FILE = 1)

Example 4. Compilefiles for languages defined in L1 NGUAS file (another version):

...
env['LINGUAS FILE'] =1
env. MOFi | es()

MSVSPr oj ect () ,
env. MBVSPr oj ect ()
Builds a Microsoft Visua Studio project file, and by default builds a solution file as well.

Thisbuilds aVisual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the Environment constructor). For Visua
Studio 6, it will generatea. dsp file. For Visual Studio 7 ((NET) and later versions, it will generatea. vcpr oj

file.

By default, this also generates a solution file for the specified project, a. dswfilefor Visual Studio6ora. sl n
file for Visual Studio 7 (.NET). This behavior may be disabled by specifying aut o_bui | d_sol uti on=0
when you call MSVSPr oj ect , in which case you presumably want to build the solution file(s) by calling the
MBVSSol ut i on Builder (see below).

The MBVSPr oj ect builder takes several lists of filenames to be placed into the project file. These are currently
limitedtosrcs,i ncs,| ocal i ncs, resour ces, and n sc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are al optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target . dsp or . vcpr oj file. The correct suffix for the version of Visual Studio must
be used, but the $SMSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These aretypically thingslike "Debug" or "Release”, but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a| (vertical pipe)
character: Debug| Xbox. The default target platform is Win32. Multiple calls to MSVSPr oj ect with dif-
ferent variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

Iy
=== SCONS 234

cmdargs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

buildtar get
An optiona string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entriesmust match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visua Studio project file. If this is not specified, the default is the same as
the specified bui | dt ar get value.

Note that because SCons always executesits build commands from the directory in which the SConst r uct file
islocated, if you generate aproject filein adifferent directory than the SConst r uct directory, userswill not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ / FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp'],

barincs = ['bar.h'],

barl ocalincs = [' StdAfx. h']
barresources = ['bar.rc','resource. h']
barmi sc = [' bar_readne. txt"']

dll = env. SharedLi brary(target = '"bar.dll",
source = barsrcs)
env. MSVSProj ect (target = 'Bar' + env[' MSBVSPRQIECTSUFFI X'],

srcs = barsrcs,

i ncs = barincs,

| ocalincs = barl ocalincs,
resources = barresources,
m sc = barm sc,

bui |l dtarget = dl I,
variant = 'Rel ease')

Starting with version 2.4 of SConsiit's also possible to specify the optional argument DebugSet t i ngs, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the . vcpr oj . user or the. vexpr oj . user file, de-
pending onthe versioninstalled. Asit is donefor cmdargs (see above), you can specify aDebugSet t i ngs
dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visua Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Iy
=== SCONS 235

Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version

if msvcver == "'9' or nsvcver == "11':
env = Environment (MSVC_VERSI ON=nsvcver +' . 0', MSVC BATCH=Fal se)
el se:

env = Environnent ()

AddOption('--userfile', action="store_true', dest="userfile', default=False,
hel p="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the |ist
of allowed options, for instance if you want to create a user file to |l aunch
a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSetti ngs = {
" Command' : ' c:\\ nyapp\\using\\thisdll.exe',
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',
"Attach':'false',
Debugger Type' : ' 3",
'Renote’ ;' 1",
' Renot eMachi ne' : None,
' Renot eConmand’ : None,
HtpUrl®': None,
PDBPat h' : None,
SQLDebuggi ng' : None,
Environnent': '',
Envi ronnent Merge' : " true',
Debugger Fl avor' : None,
VPl RunConmand' : None,
MPI RunAr gunment s' : None,
MPI RunWor ki ngDi rectory' : None,
Appl i cati onCommand’ : None,
Appl i cati onArgunments': None,
' Shi nConmand' : None,
MPI Accept Mbde' : None,
MPlI Accept Filter': None,

SR H H HH H HHH H HHHHHH R R

2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft
Vi sual Studio 2012 (v11):

H HOHHH HH

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdlIl.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",
' Local Debugger CommandAr gunents': ' -p password',

Iy
=== SCONS 236

Local Debugger Envi ronnent' : None,
Debugger Fl avor' : ' W ndowsLocal Debugger ',
Local Debugger Att ach' : None,

Local Debugger Debugger Type' : None,
Local Debugger Mer geEnvi ronment ' : None,
Local Debugger SQLDebuggi ng' : None,
Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,
Renot eDebugger Wor ki ngDi rectory' : None,
Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,
Renot eDebugger Att ach' : None,

' Renot eDebugger SQLDebuggi ng' : None,

' Depl oynent Di rectory': None

" Addi tional Files': None,

' Renot eDebugger Depl oyDebugCppRunti me' : None,
' WebBr owser Debugger Ht t pUr | ' : None,

' WebBr owser Debugger Debugger Type' : None,
" WebSer vi ceDebugger Ht t pUrl ' : None,

" WebSer vi ceDebugger Debugger Type' : None,
" WebSer vi ceDebugger SQLDebuggi ng' : None,

SO H H HH O HH HH HHHHEHH R HHHHH

3. Select the dictionary you want dependi ng on the version of visual Studio
Files you want to generate

TR H W R

f not env.CGet Option('userfile'):
dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0':
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']
barincs = ['targetver.h']

barl ocal i ncs = [' St dAf x. h']
barresources = ['bar.rc','resource. h']
barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target = 'bar.dll",
source = barsrcs)
env. MBVSProj ect (target = 'Bar' + env[' MSVSPRQIECTSUFFI X'],

srcs = barsrcs,
incs = barincs,
| ocal i ncs = barl ocal i ncs,
resources = barresources,

b4

SCONS 237

m sc = barm sc,

bui l dtarget = [dII[0]] * 2,

variant = (' Debug| Wn32', 'Rel ease|]Wn32'),
cndargs = 'vc=%' % nsvcver,
DebugSettings = (dbgSettings, {}))

MBVSSol ution() ,
env. M5VSSol uti on()
Builds aMicrosoft Visua Studio solution file.

ThisbuildsaVisual Studio solution file, based on the version of Visua Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the construction environment). For Visual
Studio 6, it will generatea. dswfile. For Visual Studio 7 (.NET), it will generatea. sl n file.

The following values must be specified:

tar get
The name of the target .dsw or .sIn file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSOLUTI ONSUFFI X will be defined to the correct value (see example below).

variant
The name of this particular variant, or alist of variant names (the latter is only supported for MSV S 7 solu-
tions). These are typically things like "Debug" or "Release", but really can be anything you want. For MSVS
7 they may also specify target platform, like this " Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SSOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Example Usage:
env. M5VSSol uti on(target = 'Bar' + env[' MSVSSOLUTI ONSUFFI X'], projects = ['bar'
+ env[' MSVSPRQIECTSUFFI X']], variant = 'Rel ease')

bj ect () ,

env. Qbj ect ()
A synonym for the St at i cObj ect builder method.

Package() ,
env. Package()
Builds a Binary Package of the given sourcefiles.

env. Package(source = Findlnstall edFiles())

Builds software distribution packages. Packages consist of filesto install and packaging information. The former
may be specified with the sour ce parameter and may be left out, in which casethe Fi ndl nst al | edFi | es
function will collect all filesthat have an I nst al | or | nst al | As Builder attached. If thet ar get is not
specified it will be deduced from additional information given to this Builder.

The packaging information is specified with the help of construction variables documented below. Thisinforma
tioniscalled atag to stress that some of them can also be attached to files with the Tag function. The mandatory
ones will complain if they were not specified. They vary depending on chosen target packager.

Iy
=== SCONS 238

The target packager may be selected with the "PACKAGETY PE" command line option or with the $PACK-
AGETYPE construction variable. Currently the following packagers available;

* ms - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2
- compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz -
compressed tar source* src_zip - zip file source

An updated list is aways available under the "package type" option when running "scons --help" on a project
that has packaging activated.

env = Environnment (tool s=["'default', 'packaging'])
env.Install ('/bin/', 'ny_progran)

env. Package(NAVE = 'foo',
VERSI ON ='1.2.3",
PACKAGEVERSI ON = 0,
PACKAGETYPE = 'rpm,
LI CENSE = 'gpl',
SUMVARY = 'bal al alalal ',
DESCRI PTI ON = 'this should be really really |ong',
X_RPM _GROUP = "Application/fu',
SOURCE_URL = 'http://foo.org/foo-1.2.3.tar.gz'
)
PCH()
env. PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns alist of two targets: the
PCH asthefirst element, and the object file asthe second element. Normally the object fileisignored. Thisbuilder
method is only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder method
is generally used in conjunction with the PCH construction variable to force object files to use the precompiled
header:

env[' PCH] = env. PCH("' St dAf x. cpp')[0]

PDF() ,

env. PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, .| t x, or. | at ex input file). The suffix
specified by the SPDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. Example:

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi')

PO nit(),

env. PO nit ()

This builder belongs to megi ni t tool. The builder initializes missing PO file(s) if SPOAUTO NI T is set. If
$POAUTA NI Tisnot set (default), PO ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQUpdat e chooses intelligently between msgmer ge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Iy
=== SCONS 239

Target nodesdefined through PAOl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (" po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.

Example 1. Initializeen. po and pl . po from messages. pot :

...
env.POnit(['en'", "pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

...
env.POnit(['en', "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initidlizeen. po and pl . po fromf 00. pot but using $POTDOMAI N construction variable:

...
env.POnit(['en'", "pl'], POTDOVAI N='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The files will be initialized from template
nessages. pot:

...
env. PO nit (LI NGUAS FILE = 1) # needs 'LINGUAS file

Example5. Initializeen. po andpl . pl POfilesplusfilesfor languagesdefined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

...
env.PAnit(['en", 'pl'], LINGUAS FILE = 1)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

...

env[' POAUTON T] =1
env['LINGUAS FILE'] =1
env[' POTDOVAIN] = 'foo'
env. PO nit ()

which has same efect as:

...
env. PO nit (POAUTONIT = 1, LINGUAS FILE = 1, POTDOMAIN = 'fo0')

Post Script() ,

env. Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

Iy
=== SCONS 240

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
bui |l ds bbb. ps from bbb. dvi
env. Post Script(target = 'bbb', source = 'bbb.dvi")

POTUpdat e() ,

env. POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . "), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
adlias (pot - updat e by default, see $POTUPDATE_ALI| AS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1) being invoked by the xget t ext tool even if there is no rea change in in-
ternationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environment(tools = ['default', 'xgettext'])
env. POTUpdate(["foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(["bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

user @ost:$ scons # Does not create foo.pot nor bar. pot
user @ost: $ scons foo. pot # Updates or creates foo. pot

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nmessages. pot will beused. The default target may also be overridden by setting $POTDOMAI N construction
variable or providing it as an override to POTUpdat e builder:

SConstruct script

env = Environment(tools = ['default', 'xgettext'])

env[' POTDOVAIN] = "foo"

env. POTUpdat e(source = ["a.cpp", "b.cpp"]) # Creates foo.pot

env. POTUpdat e(POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

Iy
=== SCONS 241

../ b.cpp
end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n')

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

POTFILES.in in 'po/' subdirectory

a.cpp

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='../"')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dirl',
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XGETTEXTPATH=['../', '../[../1"'])

and 0/ 1/ po/ POTFI LES. i n:

POTFILES.in in '0/1/po/' subdirectory
a.cpp

end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:
/* 0/ a.cpp */
gettext("Hello from../../a.cpp")

and the secondis0/ 1/ a. cpp:

/[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1l o from../a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

Iy
=== SCONS 242

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../../', '../"'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnmsgi d "Hel | o
from../a.cpp".

PQUpdat e() ,

env. POUpdat e()
The builder belongs to nsgmrer ge tool. The builder updates PO files with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas PO ni t does.

Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed
through the SPOUPDATE_AL| AS construction variable. Y ou can easily update POfilesin your project by scons
po-update.

Example 1. Updateen. po and pl . po fromnessages. pot template (see also $POTDOVAI N), assuming that

the later one exists or thereisrule to build it (see POTUpdat e):

...
env. POQUpdate(['en',"'pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

...

env. POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]
Example 3. Updateen. po and pl . po fromf 0o. pot (another version):

...

env. POUpdate(['en', 'pl'], POIDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]
Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

...

env. POUpdat e(LI NGQUAS FILE = 1) # needs 'LINGUAS' file
Example 5. Same as above, but update from f 00. pot template:

...

env. POUpdat e(LI NGQUAS FILE = 1, source = ['fo0'])
Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated

fromnessages. pot template:

produce 'en.po', 'pl.po’" + files defined in 'LINGUAS :

Iy
=== SCONS 243

env. POUpdate(['en', "pl"], LINGUAS FILE = 1)

Example 7. Use $POAUTO NI T to automatically initialize POfileif it doesn't exist:

o
env. POUpdat e(LI NGUAS FILE = 1, POAUTONIT = 1)

Example 8. Update POfiles for languages defined in L1 NGUAS file. The files are updated from f 00. pot tem-
plate. All necessary settings are pre-configured via environment.

...

env[' POAUTONIT] =1
env['LINGUAS FILE'] =1
env[' POTDOMAIN'] = 'foo'
env. POUpdat e()

Program() ,
env. Progrant()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix (specified by the $PROGPREFI X construction variable; nothing
by default) and suffix (specified by the $PROGSUFFI X construction variable; by default, . exe on Windows
systems, nothing on POSIX systems) are automatically added to the target if not already present. Example:

env. Program(target = 'foo', source = ['fo00.0', "bar.c', 'baz.f'])

RES() ,

env. RES()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

RM () ,

env. RM ()
Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target = 'classdir', source = "src')
env. RM C(target = "outdirl', source = classes)
env. RM C(target = 'outdir2',
source = [' package/foo.class', 'package/bar.class'])

Iy
=== SCONS 244

env. RM C(target = '"outdir3',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

RPCGend i ent () ,

env. RPCGend i ent ()
Generates an RPC client stub (_cl nt . ¢) file from a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenClient ('src/rpcif.x")

RPCGenHeader () ,

env. RPCGenHeader ()
Generates an RPC header (. h) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
inthe local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCCenSer vi ce() ,

env. RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent ('src/rpcif.x")

RPCGenXDR() ,

env. RPCGenXDR()
Generatesan RPC XDRroutine (_xdr . c) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the sourcefile's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenCl i ent (' src/rpcif.x")

Shar edLi brary() ,

env. Shar edLi brary()
Buildsashared library (. so onaPOSIX system, . dI | on Windows) given one or more object filesor C, C++, D
or Fortran source files. If any source files are given, then they will be automatically compiled to object files. The
static library prefix and suffix (if any) are automatically added to thetarget. Thetarget library file prefix (specified
by the $SHL |1 BPREFI X construction variable; by default, | i b on POSIX systems, nothing on Windows systems)
and suffix (specified by the $SHLI BSUFFI X construction variable; by default, . dI | onWindows systems, . so
on POSIX systems) are automatically added to the target if not already present. Example:

env. Shar edLi brary(target = 'bar', source = ['bar.c', 'fo0.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import (. | i b) library in
addition to the shared (. dl |) library, adding a. | i b library with the same basename if there is not aready a
. I'i b fileexplicitly listed in the targets.

Iy
=== SCONS 245

On Cygwin systems, the Shar edLi br ary builder method will always build an import (. dl | . a) library in
addition to the shared (. dl |) library, adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Any object fileslisted inthesour ce must have been built for ashared library (that is, usingthe Shar edhj ect
builder method). scons will raise an error if there is any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

When the $SHLI BVERSI ON construction variableis defined aversioned shared library is created. This modifies
the $SHLI NKFLAGS as required, adds the version number to the library name, and creates the symlinks that are
needed.

env. Shar edLi brary(target = 'bar', source = ['bar.c', 'foo.0'], SHLIBVERSION='1.5.2")

On a POSIX system, versions with a single token create exactly one symlink: libbar.so0.6 would have symlinks
libbar.so only. On aPOSIX system, versionswith two or more tokens create exactly two symlinks: libbar.s0.2.3.1
would have symlinks libbar.so and libbar.s0.2; on a Darwin (OSX) system the library would be libbar.2.3.1.dylib
and the link would be libbar.dylib.

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built using
REGSVR32. The command that isrun ("regsvr32" by default) is determined by $REGSVR construction variable,
and the flags passed are determined by $REGSVRFLAGS. By default, SREGSVRFLAGS includes the/ s option,
to prevent dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS,
be sureto include the/ s option. For example,

env. Shar edLi brary(target = 'bar',
source = ['bar.cxx', 'foo.obj'],
regi ster=1)

will register bar . dl | asaCOM object when it is done linking it.

Shar edCbj ect () ,

env. Shar edoj ect ()
Builds an object file for inclusion in a shared library. Source files must have one of the same set of extensions
specified above for the St at i cCObj ect builder method. On some platforms building a shared object requires
additional compiler option (e.g. - f PI C for gcc) in addition to those needed to build a normal (static) object,
but on some platforms there is no difference between a shared object and a normal (static) one. When thereisa
difference, SCons will only allow shared objects to be linked into a shared library, and will use a different suffix
for shared objects. On platforms where there is no difference, SCons will alow both normal (static) and shared
objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix (specified by the $SHOBJPREFI X construction variable; by default, the same as
$OBIPREFI X) and suffix (specified by the $SHOBJ SUFFI X construction variable) are automatically added to
the target if not already present. Examples:

env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get

'ddd', source = 'ddd.c')
'eee.0', source = 'eee.cpp')
"fff.obj', source = 'fff.for")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the section "Scanner Objects," below, for more information.

Iy
=== SCONS 246

StaticLibrary() ,

env. StaticLi brary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files are
given, then they will be automatically compiled to object files. The static library prefix and suffix (if any) are au-
tomatically added to thetarget. Thetarget library file prefix (specified by the $LI BPREFI X construction variable;
by default, | i b on POSIX systems, nothing on Windows systems) and suffix (specified by the $LI BSUFFI X
construction variable; by default, . | i b on Windows systems, . a on POSIX systems) are automatically added
to the target if not already present. Example:

env. StaticLibrary(target = 'bar', source = ['bar.c', 'foo0.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, using the St at i cCbj ect
builder method). scons will raise an error if there is any mismatch.

StaticCObject(),

env. Stati cOoj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbly | anguage file
. ASM assenbly | anguage file

. C Cfile

.C W ndows: Cfile
POsI X;: C++ file

. CC C++ file

. cpp C++ file

. CXX C++ file

. CXX C++ file

. C++ C++ file

. G C++ file

.d Dfile

f Fortran file

F W ndows: Fortran file

PCSI X: Fortran file + C pre-processor
for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
FPP Fortran file + C pre-processor
m hject Cfile
nm oj ect C++ file

.S assenbly | anguage file
.S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

Thetarget object file prefix (specified by the $OBIPREF| X construction variable; nothing by default) and suffix
(specified by the $OBJ SUFFI X construction variable; . obj on Windows systems, . 0 on POSIX systems) are
automatically added to the target if not already present. Examples:

Iy
=== SCONS 247

Sub
env

env. StaticObject (target = 'aaa', source = 'aaa.c')
env. Stati cObject (target = 'bbb.o', source = 'bbb.c++")
env. StaticObject(target = 'ccc.obj', source = 'ccc.f')

Note that the source files will be scanned according to the suffix mappings in Sour ceFi | eScanner object.
See the section "Scanner Objects," below, for more information.

stfile() ,

. Substfile()

The Subst fi | e builder creates a single text file from another file or set of files by concatenating them with
$LI NESEPARATOR and replacing text using the $SUBST_DI CT construction variable. Nested lists of source
filesareflattened. Seealso Text fi |l e.

If asingle sourcefileis present with an . i n suffix, the suffix is stripped and the remainder is used as the default
target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(the null string by default in both cases) are automatically added to the target if they are not already present.

If a construction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence
of (key,value) tuples. If it isadictionary it is converted into alist of tuplesin an arbitrary order, so if one key is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools = ['default', "textfile'])

env['prefix'] = "'/usr/bin'
script _dict = {' @refix@: '/bin', @xec_prefix@ '$prefix'}
env. Substfile('script.in', SUBST DI CT = script_dict)

conf_dict = {' WERSION% : '1.2.3", '%BASE%: 'M/Prog'}
env. Substfile('config.h.in", conf_dict, SUBST DI CT = conf_dict)

UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile('foo.in', SUBST DI CT = bad_f o00)

PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT = good_f 00)

UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile('bar.in', SUBST D CT = bad_bar)

PREDI CTABLE - substitutions are expanded in order
good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile('bar.in', SUBST DI CT = good_bar)

the SUBST DI CT may be in conmon (and not an override)
substutions = {}

~

'—‘-‘ SCONS 248

subst = Environment(tools = ["textfile'], SUBST DI CT = substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' |[' @ar@] = 'bar'
subst. Substfile(' pgnil.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),
"conmon. i n",
"pgml.in"
1)
subst. Substfile(' pgn2.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),
"conmon. i n",
"pgnR.in"
1)

Tar () ,

env. Tar ()
Buildsatar archive of the specified filesand/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardliess of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

Create the stuff.tar file.

env. Tar('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environnment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' .tgz')

env. Tar (' foo')

Textfile(),

env. Textfil e()
TheText fi | e builder generates asingle text file. The source strings constitute the lines; nested lists of sources
areflattened. $LI NESEPARATOR is used to separate the strings.

If present, the $SUBST_DI CT construction variable is used to modify the strings before they are written; see the
Subst fi | e description for details.

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(the null string and . t xt by default, respectively) are automatically added to the target if they are not already
present. Examples:

builds/wites foo.txt
env. Textfile(target = 'foo.txt', source = [' Goethe', 42, "Schiller'])

Iy
=== SCONS 249

builds/wites bar.txt

env. Textfile(target = 'bar',
source = ['lalala', "tanteratei'],
LI NESEPARATOR=" | **)

nested lists are flattened automatically
env. Textfil e(target = 'blob',
source = ['lalala', ['CGoethe', 42 'Schiller'], 'tanteratei'])

files may be used as input by waping themin File()

env. Textfile(target = 'concat’', # concatenate files with a marker between
source = [File('concatl'), File('concat2')],
Ll NESEPARATOR = ' ====================\n')
Results are
f 0o. t xt
ce .. 8<%
CGoet he
42
Schi l | er
....8<---- (no linefeed at the end)
bar .t xt:
ce .. 8<%
| al al a] *t ant er at ei
....8<---- (no linefeed at the end)
bl ob. t xt
ce .. 8<%
I al al a
CGoet he
42
Schi l | er
tant er at ei
....8<---- (no linefeed at the end)

Transl ate() ,

env. Transl at e()
This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trandations (if necessary). If $POAUTA NI T
is set, missing POfiles will be automatically created (i.e. without tranglator person intervention). The variables
$LI NGUAS_FI LE and $POTDOMAI N are taken into acount too. All other construction variables used by PO
TUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

SConscript in 'po/' directory

env = Environnment(tools = ["default", "gettext"])
env[' POAUTONIT'] =1
env. Translate(['en',"'pl"], ['../a.cpp',"'../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and LI NGUAS files

Iy
=== SCONS 250

LI NGUAS
en pl
#end

POTFI LES. i n

a.cpp

b. cpp
end

SConscri pt

env = Environnment(tools = ["default", "gettext"])
env[' POAUTONIT] =1

env[' XGETTEXTPATH] =['../"]

env. Transl at e(LI NGQUAS_FI LE = 1, XGETTEXTFROM = ' POTFI LES.in")

The last approach is perhaps the recommended one. It alows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for trandations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfilesto and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandators, and they may work with the project in their usual

way.

Example 3. Let's prepare a devel opment tree as below

pr oj ect/
+ SConst ruct
+ buil d/
+ src/
+ po/

+

SConscri pt
SConscri pt.i 18n
POTFI LES. i n

LI NGUAS

+ 4+ +

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

SConst ruct

env = Environment(tools = ["default", "gettext"])
VariantDir("build , 'src', duplicate = 0)

env[' POAUTONT] =1

SConscri pt (" src/ po/ SConscript.i18n', exports = "env')
SConscri pt (' bui | d/ po/ SConscript', exports = 'env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n
| mport (' env')

env. Transl at e(LI NGUAS_FI LE=1, XGETTEXTFROVE' POTFI LES. in',

XGETTEXTPATHE[' .. /'])

Iy
=== SCONS

251

and thesr ¢/ po/ SConscr i pt

src/ po/ SConscri pt
| mport (' env')
env. MOFi | es(LI NGUAS FI LE = 1)

Such setup produces POT and PO files under source treein sr ¢/ po/ and binary MOfiles under variant treein
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Note

In above example, the POfiles are not updated, nor created automatically when you issue scons'.' com-
mand. The files must be updated (created) by hand via scons po-update and then MOfiles can be com-
piled by running scons".".

TypelLi brary() ,

env. TypelLi brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the . i dI file. For example,

env. TypelLi brary(source="foo.idl")
Will createf 0o. t1 b,foo. h,foo_i.c,foo_p.candfoo_data. c files.

Uic() ,

env. U c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodes in
the above order. This builder is only available after using the tool 'gt'. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names
of built files; if you don't want prefixes, you may set themto). See the $QTDI R variable for more information.
Example:

env.U c('foo.ui') # ->['"foo.h', "uic_foo.cc', 'noc_foo.cc']
env. U c(target = Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
source = 'foo.ui') # -> ["include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']
Zip() ,
env. Zi p()

Buildsazip archive of the specified filesand/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zi p('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p('stuff', 'another')

Iy
=== SCONS 252

Appendix C. Tools

This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this version of
SCons.

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixct+
Sets construction variables for the IMB xIc / Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI ON, $SHCXX, $SHOBJ SUFFI X.

aixcc
Sets construction variables for the IBM xlc/ Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Agelinker.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

appldink
Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $FRAVEVWORKPATHPREF| X, $L DMODUL ECOM $L DMODUL EFLAGS, $LDMODULEPREFI X, $L.DMOD-
ULESUFFI X, $L1 NKCOM $SHLI NKCOM $SHLI NKFLAGS, $_ FRAVEWORKPATH, $_ FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $ CPPDEFFLAGS, $ CPPI NCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$I NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Iy
=== SCONS 253

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

BitK eeper
Sets construction variables for the BitK eegper source code control system.

Sets: $Bl TKEEPER, $Bl TKEEPERCOM $BI TKEEPERGCET, $Bl TKEEPERGETFLAGS.
Uses: $BI TKEEPERCOMSTR.

cc
Sets construction variables for generic POSIX C copmilers.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$FRAVEVORKPATH, $FRAVEWORKS, $1 NCPREFI X, $1 NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS,
$SHCFLAGS, $SHOBJ SUFFI X.

Uses: $PLATFORM

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X, $FORTRANMOD-
DI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

CVs
Sets construction variables for the CV S source code management system.

Sets: $CVS, $CVSCOFLAGS, $CVSCOM $CVSFLAGS.
Uses: $CVSCOMBTR.

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $O0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOMBTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $1 MPLI BPREFI X, $I MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $LI NKFLAGS, $RPATHPRE-
FI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS, $SHLI NKCOM
$SHLI NKFLAGS, $_LDMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

default
Sets variables by calling adefault list of Tool modules for the platform on which SCons is running.

dmd
Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF| X, $DDEBUGSURFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-

Iy
=== SCONS 254

FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGS, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X,
$RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS,
$_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS, $_DLI BDI RFLAGS, $_DLI BFLAGS, $_DLI BFLAGS,
$_DVERFLAGS, $_RPATH.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet ut i | s/ xm depend. xs| by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (t ool s=["' dochook'])

On its startup, the Docbook toal triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. f op. So
make sure that these are added to your system's environment PATH and can be called directly, without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

e thePython| xm bindingtol i bxm 2, or

« thedirect Python bindingsfor | i bxm 2/ 1i bxslt,or

» astandalone XSLT processor, currently detected are xsl t pr oc, saxon, saxon- xsl t and xal an.
Rendering to PDF requires you to have one of the applicationsf op or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (tool s=[' dochook'])
env. DocbookHt m (' manual . html ', ' manual . xm ')
env. DocbookPdf (' manual . pdf ', ' manual . xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual ')
env. DocbookPdf (' manual ')

and get the same result. Target and source lists are a so supported:

env = Environnent (t ool s=["' dochook'])
env. DocbookHt M ([manual . htm "' ,'reference. htm '], ['manual .xm ', 'reference.xm'])

or even

env = Environment (t ool s=[' docbook'])

Iy
=== SCONS 255

env. DocbookHt m ([' manual ', ' reference'])

I mportant

Whenever you leave out the list of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHt m , DocbookPdf , DocbookEpub, Doc-
bookSl i desPdf and DochookXI ncl ude. For the DocbookMan transformation you can specify a target
name, but the actual output names are automatically set from ther ef nanme entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt m hel pandDocbookSl i desHt ml arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themaintarget isalwaysnamedi ndex. ht n , i.e. the output name for the XSL transformation is not picked
up by the styleshests.

As aresult, there is ssimply no use in specifying a target HTML name. So the basic syntax for these buildersis
always:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(* manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt m (" other.html ', 'manual .xm ", xsl="htm .xsl")

Sincethismay get tediousif you always usethe samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM.HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environment (tool s=[' dochook'],
DOCBOOK_DEFAULT_XSL_HTML=' ht ml . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf . xsl ')
env. DocbookHt m (' manual ') # now uses html . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XMLLI NTCOM
$DOCBOOK_XMLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Iy
=== SCONS 256

Uses: $DOCBOOK_FOPCOMSTR, $DOCBOOK_XML_LI NTCOMSTR, $DOCBOOK_XSL TPROCCOVSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.
Uses: $DVI PDFCOMBTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.
Uses: $PSCOVSTR.

f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO03FLAGS, $FO3PPCOM $SHF03, $SHFO3COM $SHFO03FLAGS, $SHFO3PPCOM
$_F03I NCFLAGS.

Uses: $FO3COVBTR, $FO3PPCOVBTR, $SHFO3COVBTR, $SHFO3PPCOMSTR.

f08
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM $FO8FLAGS, $F08PPCOM $SHF08, $SHF08COM $SHFO8FLAGS, $SHF08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COVBTR, $FO8PPCOVSTR, $SHFO8COVBTR, $SHFO8PPCOMSTR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses: $F77COVBTR, $F77PPCOVBTR, $FORTRANCOMSTR, $FORTRANPPCOVSTR, $SHF77COVSTR,
$SHF77PPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOVSTR.

fa0
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FI0FLAGS, $F90PPCOM $SHF90, $SHF90COM $SHF90FLAGS, $SHF90PPCOM
$_F90!l NCFLAGS.

Uses: $F90COMBTR, $F90PPCOVSTR, $SHF90COVBTR, $SHFO0PPCOMSTR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM $FI5FLAGS, $F95PPCOM $SHFI5, $SHFI5COM $SHFIS5FLAGS, $SHFO5PPCOM
$_F951 NCFLAGS.

Iy
=== SCONS 257

Uses: $F95COMBTR, $F95PPCOVSTR, $SHF95COVBTR, $SHFO5PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM $SHFORTRAN-
FLAGS, $SHFORTRANPPCOM

Uses: $FORTRANCOVSTR, $FORTRANPPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOMSTR.

g++
Set construction variables for the gXX C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

gr77
Set construction variables for the g77 Fortran compiler. Callsthef 77 Tool module to set variables.

gas
Sets construction variables for the gas assembler. Callsthe as module.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSI ON, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPRE-
FI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BFLAG
PREFI X, $DLI BFLAGSUFFI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NK-
FLAGSUFFI X, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, $RPATHPREFI X, $RPATHSUF-
FI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS,
$_DI NCFLAGS, $_DLI BFLAGS, $_DVERFLAGS, $_RPATH.

gettext
Thisisactually atoolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

e Xxgettext -toextract internationalized messages from source code to POT file(s),
e nBQi ni t - may beoptionally used to initialize POfiles,

e nsgner ge - to update POfiles, that already contain translated messages,

e nsgf mt -to compiletextual POfileto binary installable MOfile.

When you enable get t ext , it internally loads all abovementioned tools, so you're encouraged to see their indi-
vidual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related
to software internationalization. Y ou may be however interested in top-level builder Tr ansl at e described few
paragraphs later.

Touseget t ext toolsadd' gett ext' tool to your environment;

Iy
=== SCONS 258

env = Environment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSI ONFLAGS, $RPATHPREFI X, $RPATHSURFI X, $SHLI BVERSI ONFLAGS, $SH-
LI NKFLAGS, $_ L DMODULESONAME, $_SHLI BSONAME.

gs
This Tool setsthe required construction variables for working with the Ghostscript command. It also registers an
appropriate Action with the PDF Builder (PDF), such that the conversion from PS/EPS to PDF happens automat-
ically for the TeX/LaTeX toolchain. Finaly, it adds an explicit Ghostscript Builder (Gs) to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOVBTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for the aCC on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM $CXXFI LESUF-
FI X, $| NCPREFI X, $| NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM
Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Iy
=== SCONS 259

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $L1 BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $I NSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc
or nsvc (on Linux and Windows, respectively) to set underlying variables.

Sets: $AR, $CC, $CXX, $I NTEL_C_COWVPI LER_VERSI ON, $L1 NK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $IJARCOM $JARFLAGS, $JARSUFFI X.
Uses: $JARCOVETR.

javac
Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS, $JAVACLASSPATH, $JAVA-
CLASSSUFFI X, $J AVASOURCEPATH, $JAVASUFFI X.

Uses: $JAVACCOMBTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $JAVAHFLAGS.
Uses: $JAVACLASSPATH, $JAVAHCOVETR.

latex
Sets construction variables for the latex utility.

Sets: SLATEX, SLATEXCOM $LATEXFLAGS.
Uses: SLATEXCOVBTR.

Idc
Sets construction variables for the D language compiler LDC2.

Iy
=== SCONS 260

link

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF! X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-
FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH,
$DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, $RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHD-
COM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS,
$_DLI BDI RFLAGS, $_DLI BFLAGS, $_DL| BFLAGS, $_DVERFLAGS, $_RPATH.

Sets construction variables for the lex lexical analyser.
Sets: SLEX, $LEXCOM $LEXFLAGS.

Uses: SLEXCOVBTR.

Sets construction variables for generic POSIX linkers.

Sets: $LDMODULE, $L DMODUL ECOM $L DMODUL EFLAGS, $LDMODUL ENOVERSI ONSYMLI NKS, $LDMOD-
ULEPREFI X, $L DMODULESUFFI X, $L DMODUL EVERSI ON, $LDMODUL EVERS| ONFLAGS, $L1 BDI RPRE-
FI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM $LI NKFLAGS,
$SHLI BSUFFI X, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS, $_LDMODULEVERSI ONFLAGS, $__SH
LI BVERSI ONFLAGS.

Uses: $LDMODUL ECOVETR, $L1 NKCOVBTR, $SHLI NKCOMSTR.

linkloc

m4

Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $L1 NKCOVBTR, $SHLI NKCOMSTR.

Sets construction variables for the m4 macro processor.
Sets: $M4, $MACOM $MAFLAGS.

Uses: SMACOVBTR.

masm

Sets construction variables for the Microsoft assembler.
Sets: $AS, SASCOM $ASFLAGS, SASPPCOM $ASPPFLAGS.

Uses: $ASCOVETR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl

Sets construction variables for the Microsoft IDL compiler.
Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOVBTR.

mingw

Sets construction variables for MinGW (Minimal Gnu on Windows).

~

'—‘—' SCONS 261

Sets: $AS, $CC, $CXX, $LDMODULECOM $LI BPREFI X, $LI BSUFFI X, $0BJSUFFI X, $RC, $RCCOM
$RCFLAGS, $RCI NCFLAGS, $RCI NCPREFI X, $RCl NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS, $SH-
LI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDOASDEFPREFI X, $W NDOASDEFSUFRFI X.

Uses: SRCCOMSTR, $SHLI NKCOMSTR.

msgfmt
This scons toal is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual translation description (PO).

Sets: $MOSUFFI X, $MSGFMT, $MSGFMTCOM $MSGFMTCOVBTR, $MSGFMIFLAGS, $POSUFFI X.
Uses: $LI NGUAS_FI LE.

msginit
This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which
creates new POfile, initializing the metainformation with values from user's environment (or options).

Setss. $MBANIT, $MSG NITCOM $MsG NI TCOMSTR, $MSA NI TFLAGS, $POAUTO NI T,
$POCREATE_AL| AS, $POSUFFI X, $POTSUFFI X, $_M5G NI TLOCALE.

Uses: $LI NGUAS_FI LE, $POAUTA NI T, $POTDOMAI N.

msgmer ge
Thissconstool isapart of sconsget t ext toolset. It provides sconsinterface to msgmer ge(1) command, which
merges two Uniform style . po files together.

Sets: $MSGVERCE, $MSGVERGECOM $MSGVERCGECOVSTR, $MSGVERCGEFLAGS, $PCSUFRFI X, $POT SUF-
Fl X, $SPOUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $POAUTO NI T, $POTDOVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, SARCOM $ARFLAGS, $LI BPREFI X, $LI BSUFFI X.
Uses: $ARCOVSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS,
$W N32DEFPREFI X, $W N32DEFSUFFI X, $W N32EXPPREFI X, $W N32EXPSUFFI X, $W NDOWSDEF-
PREFI X, $W NDOASDEFSUFFI X, $W NDOASEXPPREFI X, $W NDOASEXPSUFFI X, $W NDONSPROG-
MANI FESTPREFI X, $W NDOASPROGVANI FESTSUFFI X, $W NDOASSHLI BVANI FESTPREFI X, $W N-
DOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT _DEF.

Uses: $LDMODULECOVSTR, $L1 NKCOVBTR, $REGSVRCOMSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %4 NCLUDE% %41 B% %_1 BPATH%and %PATHY%

Uses: $MSSDK_DI R, $MSSDK_VERSI ON, $MSVS_VERSI ON.

Iy
=== SCONS 262

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS, $CFI LESUFFI X,
$CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $OBJPREFI X, $0BJ SUFFI X, $PCHCOM $PCHPDBFLAGS, $RC, $RCCOM
$RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS,
$SHOBJIPREFI X, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $CXXCOMSTR, $PCH, $PCHSTOPR, $PDB, $SHCCCOVBTR, $SHCXXCOVSTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUI LDCOM $IMSVSCLEANCOM $MSVSENCCDI NG, $MBVSPROJECTCOM $MSVSREBUI LD-
COM $MSVSSCONS, $MSVSSCONSCOM $MSVSSCONSCRI PT, $MSVSSCONSFLAGS, $MSVSSOLUTI ON-
cov

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOVMBTR, $CXXCOMSTR, $SHCCCOVSTR, $SHCXXCOVBTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
SLINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVETR, $ASPPCOVSTR.

Packaging
Sets construction variables for the Package Builder.

packaging
A framework for building binary and source packages.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFI X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.

Uses: $PDFLATEXCOMSTR.

Iy
=== SCONS 263

pdftex
Sets construction variables for the pdftex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM

$PDFTEXFLAGS.
Uses: $PDFLATEXCOVSTR, $PDFTEXCOVSTR.

Perforce
Sets construction variables for interacting with the Perforce source code management system.

Sets: $P4, $P4COM $PAFLAGS.
Uses: $PACOVBTR.

qt
Sets construction variables for building Qt applications.

Sets: $QTDI R, $QT_AUTOSCAN, $QT_BI NPATH, $QT_CPPPATH, $QT_LI B, $QT_LI BPATH, $QT_MOXC,
$QT_MOCCXXPREFI X, $QT_MOCCXXSUFFI X, $QT_MOCFROMCXXCOM $QT_MOCFROVCXXFLAGS,
$QT_MOCFROVHCOM $QT_MOCFROVHFLAGS, $QT_MOCHPREFI X, $QT_MOCHSUFFI X,
$QT_UIC, $QT_UI CCOM $QT_Ul CDECLFLAGS, $QT Ul CDECLPREFI X, $QT Ul CDECLSUFFI X,

$QT_UI CI MPLFLAGS, $QT_Ul Cl MPLPREFI X, $QT_UI CI MPLSUFFI X, $QT_UI SUFFI X.

RCS
Sets construction variables for the interaction with the Revision Control System.

Sets; $RCS, $RCS_CO, $RCS_COCOM $RCS_COFLAGS.
Uses: $RCS_COCOMBTR.

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOMBTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets. $RPCCEN, $RPCGENCLI ENTFLAGS, $RPCCENFLAGS, $RPCGENHEADERFLAGS,
GENSERVI CEFLAGS, $RPCGENXDRFLAGS.

SCCS
Sets construction variables for interacting with the Source Code Control System.

Sets: $SCCS, $SCCSCOM $SCCSFLAGS, $SCCSGETFLAGS.

Uses: $SCCSCOMBTR.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, SARCOMBTR, $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.

Uses: $ARCOVBTR, $SHLI NKCOVSTR.

$RPC-

Iy
=== SCONS

264

sgicH+
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBJI SUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBJ SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Sets: $L1 NK; $RPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM $SARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJI PREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, SFORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHFI0FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunfos
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig
Sets construction variables for the SWIG interface generator.
Sets: $SW G $SW CCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW CGDI RECTORSUF-

FIX, $SW GFLAGS, $SW G NCPREFI X, $SW G NCSUFFI X, $SW GPATH, $SW GVERSI ON,
$_SW G NCFLAGS.

Iy
=== SCONS 265

Uses: $SW GCOMSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.
Uses: $STARCOVETR.

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $BlI BTEXCOM $BI BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $Bl BTEXCOVSTR, $LATEXCOVSTR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile
Set construction variables for the Text f i | e and Subst fi | e builders.

Sets: $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X, $TEXTFI LEPREFI X,
$TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

tlib
Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $LI BSUFFI X.
Uses: $ARCOVSTR.

Xgettext
This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdat e builder to make PO Tem-

platefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XGETTEXTCOM $XGETTEXTCOMSTR, $XCETTEXTFLAGS,
SXCGETTEXTFROM $XGETTEXTFROWPREFI X, $XCETTEXTFROVSUFFI X, $XGETTEXTPATH, $XGET-
TEXTPATHPREFI X, $XCETTEXTPATHSUFFI X, $_XCGETTEXTDOVAI N, $_XGETTEXTFROVFLAGS,
$_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X, $YAC-
CVCGFI LESUFFI X.

Uses: $YACCCOVBTR.

zip
Sets construction variables for the zip archiver.

Sets: $Z1 P, $Z1 PCOM $ZI PCOVPRESSI ON, $ZI PFLAGS, $ZI PSUFFI X.

Uses: $ZI PCOVBTR.

Iy
=== SCONS 266

Appendix D. Functions and
Environment Methods

This appendix contains descriptions of al of the function and construction environment methods in this version of
SCons

Action(action, [cmd/str/fun, [var, ...]] [option=value, ...]),

env. Action(action, [cmd/str/fun, [var, ...]] [option=value, ...])
Creates an Action object for the specified act i on. See the section "Action Objects,” below, for a complete
explanation of the arguments and behavior.

Note that theenv. Act i on() form of theinvocation will expand construction variablesin any argument strings,
including theact i on argument, at thetimeit is called using the construction variablesin the env construction
environment through whichenv. Act i on() wascalled. The Act i on() form delays al variable expansion until
the Action object is actually used.

AddMet hod(obj ect, function, [nane]) ,

env. AddMet hod(function, [nane])
When called with the AddMet hod() form, adds the specified f unct i on to the specified obj ect as the spec-
ified method name. When called with the env. AddMet hod() form, adds the specified f unct i on to the con-
struction environment env as the specified method nane. In both cases, if nane is omitted or None, the name
of the specified f unct i on itself is used for the method name.

Examples:

Note that the first argunent to the function to
be attached as a net hod nust be the object through
which the nmethod will be called; the Python
convention is to call it 'self'.
def ny_nethod(sel f, arg):
print "ny_nethod() got", arg

Use the gl obal AddMet hod() function to add a net hod
to the Environnment class. This

AddMet hod(Envi r onnent, my_net hod)

env = Environnent ()

env. ny_net hod('arg')

Add the function as a nethod, using the function
nane for the nmethod call.

env = Environnent ()

env. AddMet hod(ny_net hod, ' ot her nethod nane')

env. ot her _nmet hod_nane(' anot her arg')

AddOpt i on(ar gunent s)
This function adds a new command-line option to be recognized. The specified ar gunment s are the same as
supported by the standard Python opt par se. add_opt i on() method (with afew additional capabilities noted
below); see the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by the opt par se. add_opt i on() method, the SCons Ad-
dOpt i on function alows you to set the nar gs keyword valueto' ?' (astring with just the question mark) to
indicate that the specified long option(s) take(s) an optional argument. When nargs = ' ?' ispassed to the

Iy
=== SCONS 267

AddOpt i on function, the const keyword argument may be used to supply the "default" value that should be
used when the option is specified on the command line without an explicit argument.

If nodef aul t = keyword argument is supplied when calling AddOpt i on, the option will have a default value
of None.

Once a new command-line option has been added with AddQpt i on, the option value may be accessed using
Get Opti on orenv. Get Opt i on(). Thevalue may also be set, using Set Opt i on or env. Set Opt i on(), if
conditionsinaSConscri pt require overriding any default value. Note, however, that a value specified on the
command line will always override avalue set by any SConscript file.

Any specified hel p= stringsfor the new option(s) will be displayed by the - Hor - h options (thelatter only if no
other help text is specified in the SConscript files). The help text for the local options specified by AddOpt i on
will appear below the SCons options themselves, under a separate Local Opt i ons heading. The options will
appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOption(' --prefix",
dest='prefix"',
nargs=1, type='string',
action='store',
metavar='DI R,
hel p="'installation prefix')
env = Environment (PREFI X = Get Option(' prefix'))

AddPost Action(target, action),
env. AddPost Acti on(target, action)

Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may be an Action object, or anything that can be converted into an Action object (see below).

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

AddPr eActi on(target, action),
env. AddPreActi on(target, action)

Arrangesfor the specified act i on to be performed before the specifiedt ar get isbuilt. The specified action(s)
may be an Action aobject, or anything that can be converted into an Action object (see below).

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source . ¢ fileviaan intermediate object file:

foo = Program(' foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pr e_act i on would be executed before scons calls the link command that actually generates
the executable program binary f 0o, not before compiling thef 0o. ¢ fileinto an object file.

Alias(alias, [targets, [action]]) ,
env. Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns

'—‘—' SCONS 268

the Node object representing the alias, which exists outside of any file system. ThisNode object, or the aliasname,
may be used as a dependency of any other target, including another dias. Al i as can be called multiple timesfor
the same alias to add additional targetsto the alias, or additional actionsto thelist for thisalias.

Examples:

Alias('install")

Alias('install', "/usr/bin")

Alias(['install', "install-lib"'], "/usr/local/lib")
env.Alias('install', ['/usr/local/bin', '"/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', '"file2'], "update_database $SOURCES")

Al | owSubst Excepti ons([exception, ...])
Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate aNaneEr r or or | ndexEr r or exceptionwill expandtoa' ' (anull string)
and not cause scons to fail. All exceptions not in the specified list will generate an error message and terminate
processing.
If Al l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.
Example:
Requires that all construction variabl e names exist.
(You may wish to do this if you want to enforce strictly
that all construction variables nust be defined before use.)
Al | owSubst Except i ons()
Also allow a string containing a zero-division expansi on
like "${1/ 0}' to evalute to "'
Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
Al waysBui l d(target, ...),
env. Al waysBui | d(target, ...)

Marks each given t ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env. Append(key=val, [...])

Appends the specified keyword arguments to the end of construction variables in the environment. If the Envi-
ronment does not have the specified construction variable, it is simply added to the environment. If the values of
the construction variable and the keyword argument are the same type, then the two values will be simply added
together. Otherwise, the construction variable and the value of the keyword argument are both coerced to lists,
and the lists are added together. (See also the Prepend method, below.)

Example:

env. Append(CCFLAGS = ' -g', FOO = ['foo0.yyy'])

~

'—‘-‘ SCONS 269

env. AppendENVPat h(nane, newpath, [envname, sep, delete_existing])
Thisappends new path elementsto the given path in the specified external environment (ENV by default). Thiswill
only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path order),
and to help assurethis, will normalize all paths (using 0s. pat h. nor npat h and os. pat h. nor ntase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If del et e_exi sti ngisO, then adding a path that already exists will not move it to the end; it will stay where
itisinthelist.

Example:

print 'before:',env['ENV][' | NCLUDE]

i ncl ude _path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print "after:',env['ENV'][' | NCLUDE']

yi el ds:
bef ore: /foo:/biz
after: /biz:/fool/bar:/foo

env. AppendUni que(key=val, [...], delete_existing=0)
Appends the specified keyword arguments to the end of construction variablesin the environment. If the Environ-
ment does not have the specified construction variable, it is simply added to the environment. If the construction
variable being appended to is alist, then any value(s) that already exist in the construction variable will not be
added again to the list. However, if delete_existing is 1, existing matching values are removed first, so existing
valuesin the arg list move to the end of thelist.

Example:

env. AppendUni que(CCFLAGS = '-g', FOO = ['foo0.yyy'])

env. Bi t Keeper ()
A factory function that returns a Builder object to be used to fetch source files using BitKeeper. The returned
Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Example:

env. Sour ceCode('."', env.BitKeeper())

BuildDir(build_dir, src_dir, [duplicate]),

env.BuildDir(build _dir, src_dir, [duplicate])
Deprecated synonyms for Var i ant Di r and env. Vari ant Di r (). Thebui | d_di r argument becomes the
vari ant _di r argument of Vari ant Di r orenv. Vari ant Di r ().

Bui | der (action, [argunments]) ,

env. Bui | der (acti on, [argunents])
Creates a Builder object for the specified act i on. See the section "Builder Objects," below, for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetime it is called using the construction variables in the env construction

Iy
=== SCONS 270

environment through whichenv. Bui | der () wascalled. TheBui | der formdelaysall variable expansion until
after the Builder object is actualy called.

CacheDir(cache_dir) ,
env. CacheDir (cache_dir)

Specifies that scons will maintain a cache of derived filesin cache_di r . The derived filesin the cache will
be shared among all the builds using the same CacheDi r call. Specifying a cache_di r of None disables
derived file caching.

Cdlling env. CacheDi r () will only affect targets built through the specified construction environment. Calling
CacheDi r setsaglobal default that will be used by all targets built through construction environments that do
not have an env. CacheDi r () specified.

When aCacheDi r () isbeing used and scons finds a derived file that needs to be rebuilt, it will first look in
the cache to see if aderived file has already been built from identical input files and an identical build action (as
incorporated into the MD5 build signature). If so, scons will retrieve the file from the cache. If the derived file
is not present in the cache, scons will rebuild it and then place a copy of the built file in the cache (identified
by its MD5 build signature), so that it may be retrieved by other builds that need to build the same derived file
fromidentical inputs.

Use of aspecified CacheDi r may be disabled for any invocation by using the - - cache- di sabl e option.

If the - - cache- f or ce option isused, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisis useful to populate a cache the first time CacheDi r
isadded to abuild, or after using the - - cache- di sabl e option.

When using CacheDi r, scons will report, "Retrieved “file' from cache," unlessthe- - cache- showoptionis
being used. When the - - cache- showoptionisused, scons will print the action that would have been used to
build the file, without any indication that the file was actually retrieved from the cache. Thisis useful to generate
build logs that are equivalent regardless of whether a given derived file has been built in-place or retrieved from
the cache.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool areimpossible to predict or prohibitively large.

Clean(targets, files_or_dirs),

env

.Clean(targets, files_or_dirs)

This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

Therelated NoCl ean function overrides calling Cl ean for the same target, and any targets passed to both func-
tionswill not be removed by the - ¢ option.

Examples:
Clean('foo', ['bar', '"baz'])
Clean('dist', env.Program('hello', 'hello.c"))

Clean(['foo', '"bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

~

=!l=5CoNs 271

env

wx_env = env. C one(parse _flags = 'lw-config --cflags --cxxflags')
Conmand(target, source, action, [key=val, ...]),
env. Command(target, source, action, [key=val, ...])

Cl ean(docdir, os.path.join(docdir, projectnane))

.Cone([key=val, ...])

Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are

added to the returned copy, overwriting any existing values for the keywords.

Example:

env2
env3

env. Cl one()
env. Cl one(CCFLAGS = '-@g')

Additionally, alist of tools and atoolpath may be specified, asin the Environment constructor:

def MyTool (env): env['FOO] = 'bar'
env4d = env.C one(tools = ['msvc', MyTool])

Thepar se_fl ags keyword argument is also recognized:

create an environment for conpiling prograns that

use wxW dgets

Executes a specific action (or list of actions) to build atarget file or files. Thisis more convenient than defining

a separate Builder object for a single specia -case build.

As aspecial case, the sour ce_scanner keyword argument can be used to specify a Scanner object that will
be used to scan the sources. (The global Di r Scanner object can be used if any of the sourceswill be directories
that must be scanned on-disk for changes to files that aren't already specified in other Builder of function calls.)

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see "Action Objects,"
below, for more complete information. Also note that a string specifying an external command may be preceded
by an @(at-sign) to suppress printing the command in question, or by a - (hyphen) to ignore the exit status of

the external command.

Examples:
env. Command(' foo. out', 'foo.in',

"$FCO BUI LD < $SOURCES > $TARGET")
env. Command(' bar.out', "bar.in',

["rm-f $TARGET",
"$BAR BU LD < $SOURCES > $TARGET"],
ENV = {' PATH : '/usr/local/bin/'})

def rename(env, target, source):
i mport os
os.renane('.tnmp', str(target[0]))

env. Command(' baz.out', "baz.in',

~

'—‘-‘ SCONS

272

["$BAZ_BUI LD < $SOURCES > .tnp",
rename])

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifieswhat type of entry it is. If necessary, you can explicitly specify
that targets or source nodes should be treated as directoriese by using the Di r or env. Di r () functions.

Examples:

env. Command(' ddd.list', Dir('ddd"), '"Is -1 $SOURCE > $TARCET')

env[' DISTDIR] = 'destination/directory’
env. Conmand(env.Dir (' $DI STDIR)), None, make_distdir)

(Also note that SCons will usually automatically create any directory necessary to hold atarget file, so you nor-
mally don't need to create directories by hand.)

Configure(env, [customtests, conf _dir, log file, config_h]),

env. Configure([customtests, conf _dir, log file, config h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the section " Configure Con-
texts," below, for a complete explanation of the arguments and behavior.

env. Copy([key=val, ...])
A now-deprecated synonym for env. Cl one().

env. CVS(reposi tory, nodul e)
A factory function that returns a Builder object to be used to fetch source files from the specified CVSr epos-
i t ory. Thereturned Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

The optional specified modul e will be added to the beginning of all repository path names; this can be used, in
essence, to strip initial directory names from the repository path names, so that you only have to replicate part of
the repository directory hierarchy in your local build directory.

Examples:

WIIl fetch foo/bar/src.c
from/usr/l ocal / CYSROOT/ f oo/ bar/src. c.
env. Sour ceCode("'."', env.CVS('/usr/I| ocal /CVSROOT'))

WIIl fetch bar/src.c
from/usr/l ocal / CYSROOT/ f oo/ bar/src. c.
env. Sour ceCode('."', env.CVS('/usr/local/CVSROOT', 'foo0'))

WIIl fetch src.c
from/usr/l ocal / CVSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/local/CVSROOT', 'fool/bar'))

Deci der (function) ,

env. Deci der (functi on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. Thef unct i on can be one of the following strings that specify the type of decision
function to be performed:

Iy
=== SCONS 273

ti mest anp- newer
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
thetarget file's timestamp. Thisisthe behavior of the classic Make utility, and nake can be used a synonym
forti mest anp- newer.

ti mest anp- mat ch
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed
sine the last time the target was built, as determined be performing an MD5 checksum on the dependency's
contents and comparing it to the checksum recorded the |ast time the target was built. cont ent can be used
as a synonym for MD5.

MD5-t i mest anp

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed sine
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
VD5 behavior of always checksumming file contents, with an optimization of not checking the contents of
files whose timestamps haven't changed. The drawback is that SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runsthe build again, all within a single second.

Examples:

Use exact timnmestanp matches by default.
Deci der (' ti mestanp-mat ch')

Use MD5 content signatures for any targets built
with the attached construction environment.
env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be an actual Python function
that takes the following three arguments:;

dependency
The Node (file) which should causethet ar get to berebuilt if it has "changed" sincethelast tmet ar get
was built.

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

Thef unct i on shouldreturnaTr ue (non-zero) valueif thedependency has"changed" sincethelast timethe
t ar get was built (indicating that the target should be rebuilt), and Fal se (zero) otherwise (indicating that the
target should not be rebuilt). Note that the decision can be made using whatever criteria are appopriate. Ignoring
some or all of the function argumentsis perfectly normal.

Iy
=== SCONS 274

Def
env

Def

Dep
env

Example:
def ny_deci der (dependency, target, prev_ni):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

ault(targets) ,
. Defaul t(targets)

Thisspecifiesalist of default targets, which will bebuilt by scons if no explicit targets are given on the command

line. Multiple callsto Def aul t arelegal, and add to the list of default targets.

Multiple targets should be specified as separate arguments to the Def aul t method, or asalist. Def aul t will

also accept the Node returned by any of a construction environment's builder methods.

Examples:

Default('foo', 'bar', 'baz')

env. Default(['a'", '"b', 'c'])

hello = env. Program(' hello', "hello.c")
env. Def aul t (hel | 0)

An argument to Def aul t of None will clear all default targets. Later callsto Def aul t will add to the (now

empty) default-target list like normal.

The current list of targets added using the Def aul t function or method is availablein the DEFAULT_TARGETS

list; see below.

aul t Envi ronnent ([args])

Creates and returns a default construction environment object. This construction environment is used internally
by SConsin order to execute many of the global functionsin thislist, and to fetch source files transparently from

source code management systems.

ends(target, dependency) ,
. Depends(target, dependency)

Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usually the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for

cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env.Library('mylib.c")
installed |ib = env.Install('lib", nylib)
bar = env. Program(' bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real” library

dependency woul d normal Iy be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

~

'—‘-‘ SCONS

275

env. Depends(bar, installed_lib)

env. Di ctionary([vars])
Returns a dictionary object containing copies of al of the construction variables in the environment. If there are
any variable names specified, only the specified construction variables are returned in the dictionary.

Example:

dict = env.Dictionary()
cc _dict = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

Dir(name, [directory]),

env.Dir(nane, [directory])
This returns a Directory Node, an object that represents the specified directory name. name can be arelative or
absolute path. di r ect ory isan optional directory that will be used as the parent directory. If no di r ect ory
is specified, the current script's directory is used as the parent.

If nane isalist, SConsreturns alist of Dir nodes. Construction variables are expanded in nane.
Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see "File and Directory
Nodes," below.

env. Dump([key])
Returns a pretty printable representation of the environment. key, if not None, should be a string containing the
name of the variable of interest.

This SConstruct:

env=Envi r onnment ()
print env. Dunp(' CCCOM)

will print:

'$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $SOURCES'

While this SConstruct:

env=Envi r onnent ()
print env. Dunmp()

will print:
{ "AR: 'ar',

' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS S$ASFLAGS -0 $TARGET $SCURCES',

' ASFLAGS : [],

Iy
=== SCONS 276

Ensur ePyt honVer si on(naj or, mnor) ,

env. Ensur ePyt honVer si on(nmaj or, ni nor)
Ensure that the Python version is at least maj or .nmi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(maj or, minor, [revision]),

env. Ensur eSConsVer si on(naj or, minor, [revision])
Ensure that the SCons version is at least maj or . i nor, or maj or. m nor. revi si on. if revi si on is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Ensur eSConsVer si on(0, 14)
Ensur eSConsVer si on(0, 96, 90)

Envi ronnent ([key=val ue, ...]),
env. Envi ronment ([key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs.

Execut e(action, [strfunction, varlist]),

env. Execute(action, [strfunction, varlist])
Executes an Action object. The specified act i on may be an Action object (see the section "Action Objects,”
below, for a complete explanation of the arguments and behavior), or it may be a command-line string, list of
commands, or executable Python function, each of which will be converted into an Action object and then exe-
cuted. The exit value of the command or return value of the Python function will be returned.

Note that scons will print an error message if the executed act i on fals--that is, exits with or returns a non-
zerovalue. scons will not, however, automatically terminate the build if the specifiedact i on fails. If you want
the build to stop in response to afailed Execut e call, you must explicitly check for a non-zero return value:

Execut e(Copy('file.out', "file.in"))

i f Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit (1)

Exit([val ue]) ,

env. Exi t ([val ue])
This tells scons to exit immediately with the specified val ue. A default exit value of 0 (zero) is used if no
valueis specified.

Export (vars) ,

env. Export (vars)
Thistellsscons to export alist of variables from the current SConscript file to all other SConscript files. The
exported variables are kept in aglobal collection, so subsequent callsto Expor t will over-write previous exports
that have the same name. Multiple variable names can be passed to Export as separate arguments or as a list.

Iy
=== SCONS o77

Keyword arguments can be used to provide names and their values. A dictionary can be used to map variablesto
adifferent name when exported. Both local variables and global variables can be exported.

Examples:

env = Environnent ()
Make env avail able for all SConscript files to Inport().
Export ("env")

package = 'ny_nang'
Make env and package available for all SConscript files:.
Export ("env", "package")

Make env and package available for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the name debug:
Export (debug = env)

Make env avail abl e using the name debug:
Export ({"debug": env})

Notethat the SConscri pt function supportsan expor t s argument that makesit easier to to export avariable
or set of variables to a single SConscript file. See the description of the SConscr i pt function, below.

File(nane, [directory]) ,

env. Fil e(name, [directory])
This returns a File Node, an object that represents the specified file nane. nane can be a relative or absolute
path. di r ect ory isan optional directory that will be used as the parent directory.

If name isalist, SConsreturns alist of File nodes. Construction variables are expanded in nane.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see "File and Directory Nodes," below.

FindFile(file, dirs),

env. FindFile(file, dirs)
Search for f i | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl", "dir2'])

Fi ndl nstal | edFi | es() ,
env. Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install ("/bin", ['executable a', 'executable b'"])

Iy
=== SCONS 278

wll return the file node |i st

['/bin/executable a', '/bin/executable b]
Fi ndl nstal | edFi | es()

Install ("/lib", ["some_library'])

wll return the file node |i st
['/bin/executable a', '/bin/executable b', '/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi rs(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthe pat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
etc.).

Note that use of Fi ndPat hDi r s isgenerally preferable to writing your own pat h_f unct i on for thefollow-
ing reasons: 1) Thereturned list will contain all appropriate directoriesfound in sourcetrees (whenVar i ant Di r

isused) or in code repositories (when Reposi t or y or the- Y option are used). 2) sconswill identify expansions
of vari abl e that evaluate to the same list of directories as, in fact, the same list, and avoid re-scanning the
directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (nane = 'nyscanner',
function = my_scan,
pat h_function = Fi ndPat hDi rs(' MYPATH))

Fi ndSour ceFi | es(node=""."") ,
env. Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.
Example:

Program('src/main_a.c')

Program('src/main_b.c')

Program('main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c']
Fi ndSourceFil es('src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Iy
=== SCONS 279

Fl att en(sequence) ,

env. Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by
callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

Because "foo' and “bar' are lists returned by the Cbject() Buil der,
“objects' will be a list containing nested |ists:
objects = ['fl.0', foo, 'f2.0', bar, 'f3.0']

Passing such a list to another Builder is all right because
the Builder will flatten the |ist automatically:
Pr ogr am(source = obj ects)

If you need to nmanipulate the list directly using Python, you need to
call Flatten() yourself, or otherw se handl e nested lists:
for object in Flatten(objects):

print str(object)

Get Bui | dFai | ures()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (Thisis often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fil ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r/ t ar get fails becausethesub/
di r directory could not be created, then the . node attribute will besub/ di r/t ar get butthe. fil enanme
attribute will be sub/ di r .

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the con-
struction environment used for the failed action.

.acti on The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actua expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will dwaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

Iy
=== SCONS 280

i mport atexit

def print_build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():
print "% failed: %" % (bf.node, bf.errstr)

atexit.register(print_build_fail ures)

GetBui |l dPat h(file, [...]),

env. GetBui | dPat h(file, [...])
Returns the scons path name (or names) for the specified f i | e (or files). The specified f i | e or files may be
scons Nodes or strings representing path names.

Get LaunchbDir () ,

env. Get LaunchbDir ()
Returnsthe absol ute path name of the directory from which scons wasinitialy invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opti on(nane) ,

env. Get Opt i on(nane)
This function provides a way to query the value of SCons options set on scons command line (or set using the
Set Opt i on function). The options supported are:

cache_debug
which corresponds to --cache-debug;

cache_di sabl e
which corresponds to --cache-disable;

cache_force
which corresponds to --cache-force;

cache_show
which corresponds to --cache-show;

cl ean
which corresponds to -c, --clean and --remove;

config
which corresponds to --config;

directory
which corresponds to -C and --directory;

di skcheck
which corresponds to --diskcheck

duplicate
which corresponds to --duplicate;

file
which corresponds to -f, --file, --makefile and --sconstruct;

hel p
which corresponds to -h and --help;

Iy
=== SCONS 281

i gnore_errors
which corresponds to --ignore-errors,

i mplicit_cache
which corresponds to --implicit-cache;

implicit_deps_changed
which corresponds to --implicit-deps-changed;

i mplicit_deps_unchanged
which corresponds to --implicit-deps-unchanged;

interactive
which corresponds to --interact and --interactive;

keep_goi ng
which corresponds to -k and --keep-going;

max_drift
which corresponds to --max-drift;

no_exec
which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

no_site dir
which corresponds to --no-site-dir;

num j obs
which corresponds to -j and --jobs;

profile_file
which corresponds to --profile;

guestion
which corresponds to -q and --question;

random
which corresponds to --random;

repository
which correspondsto -Y, --repository and --srcdir;

si | ent
which corresponds to -s, --silent and --quiet;

site_dir
which corresponds to --site-dir;

stack_si ze
which corresponds to --stack-size;

taskmastertrace_file
which corresponds to --taskmastertrace; and

war n
which corresponds to --warn and --warning.

Iy
=== SCONS 282

See the documentation for the corresponding command line object for information about each specific option.

d ob(pattern, [ondisk, source, strings, exclude]),

env. G ob(pattern, [ondisk, source, strings, exclude])
Returns Nodes (or strings) that match the specified pat t er n, relative to the directory of the current SCon-
scri pt file. Theenv. @ ob() form performs string substition on pat t er n and returns whatever matches the
resulting expanded pattern.

The specified pat t er n uses Unix shell style metacharacters for matching:

* mat ches ever yt hi ng

? mat ches any singl e character
[seq] mat ches any character in seq
['seq] matches any char not in seq

If thefirst character of afilenameisadot, it must be matched explicitly. Character matches do not span directory
separators.

The d ob knows about repositories (see the Reposi t or y function) and source directories (seethe Var i ant -
Di r function) and returnsaNode (or string, if so configured) inthelocal (SConscript) directory if matching Node
isfound anywhere in a corresponding repository or source directory.

The ondi sk argument may be set to Fal se (or any other non-true value) to disable the search for matches
on disk, thereby only returning matches among already-configured File or Dir Nodes. The default behavior isto
return corresponding Nodes for any on-disk matches found.

The sour ce argument may be set to Tr ue (or any equivalent value) to specify that, when the local directory is
aVari ant Di r, the returned Nodes should be from the corresponding source directory, not the local directory.

Thest ri ngs argument may be set to Tr ue (or any equivalent value) to havethe G ob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local (SCon-
script) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if the
returned strings are passed to a different SConscri pt file, any Node trandation will be relative to the other
SConscri pt directory, not the original SConscr i pt directory.)

The excl ude argument may be set to a pattern or alist of patterns (following the same Unix shell semantics)
which must befiltered out of returned elements. Elements matching aleast one pattern of thislist will be excluded.

Examples:

Progran(' foo', Qob('*.c'))
Zip('/tmp/everything', Gob('.??*") + Gob('*"))
sources = Gob("*.cpp', exclude=['os_*_specific_*.cpp']) + G ob('os_%_specific_*.cpp' %

Hel p(text, append=Fal se) ,

env. Hel p(text, append=Fal se)
This specifies help text to be printed if the - h argument isgivento scons. If Hel p iscalled multiple times, the
text is appended together in the order that Hel p iscalled. With append set to False, any Hel p text generated with
AddOpt i on isclobbered. If append is True, the AddOption help is prepended to the help string, thus preserving
the - h message.

I gnore(target, dependency) ,
env. |l gnore(target, dependency)
The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

Iy
=== SCONS 283

You can also use | gnor e to remove atarget from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:

env. Il gnore(' foo', 'foo.c')
env.lgnore('bar', ['barl.h', "bar2.h'])
env. |l gnore('.',"' foobar.obj"')

env. | gnore(' bar', ' bar/foobar. obj")

| mport (vars) ,

env. | mport (vars)
Thistellsscons toimport alist of variablesinto the current SConscript file. Thiswill import variables that were
exported with Expor t or inthe export s argument to SConscri pt . Variables exported by SConscr i pt
have precedence. M ultiplevariable namescan be passedtol npor t asseparateargumentsor asalist. Thevariable
"** can be used to import all variables.

Examples:

| mport ("env")

| mport ("env", "variable")
| mport (["env", "variable"])
[mport ("*")

Literal (string),
env. Literal (string)
The specified st r i ng will be preserved as-is and not have construction variables expanded.

Local (targets) ,

env. Local (targets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

env. MergeFl ags(arg, [unique])
Merges the specified ar g values to the construction environment's construction variables. If the ar g argument
isnot adictionary, it is converted to one by calling env. Par seFl ags on the argument before the values are
merged. Note that ar g must be a single value, so multiple strings must be passed in as a list, not as separate
argumentsto env. Mer geFl ags.

By default, duplicate values are eliminated; you can, however, specify uni que=0 to alow duplicate values to
be added. When eliminating duplicate values, any construction variables that end with the string PATH keep the
left-most unique value. All other construction variables keep the right-most unique value.

Examples:

Add an optinization flag to $CCFLAGS.

env. Mer geFl ags(' - 33')

Conbi ne the flags returned fromrunni ng pkg-config with an optim zation

Iy
=== SCONS 284

flag and nerge the result into the construction vari abl es.
env. MergeFl ags([' ! pkg-config gtk+-2.0 --cflags', '-Q3'])

Combi ne an optim zation flag with the flags returned fromrunni ng pkg-config
twice and nmerge the result into the construction vari abl es.
env. MergeFl ags([' - 33",

"I pkg-config gtk+2.0 --cflags --libs',

' I'pkg-config |ibpngl2 --cflags --libs'])

NoCache(target, ...),

env. NoCache(target, ...)
Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will aso accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache(' foo. el f')
NoCache(env. Progranm(' hello', 'hello.c"))

NoCl ean(target, ...),

env. NoCl ean(target, ...)
Specifies alist of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the- ¢ command line option. The specified targetsmay bealist or anindividual target. Multiple
callsto NoCl ean are legal, and prevent each specified target from being removed by callsto the - ¢ option.

Multiple files or directories should be specified either as separate argumentsto the NoCl ean method, or asalist.
NoCl ean will also accept the return value of any of the construction environment Builder methods.

CallingNoCl ean for atarget overridescallingCl ean for the sametarget, and any targets passed to both functions
will not be removed by the - ¢ option.

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran{' hell o', "hello.c'))

env. ParseConfi g(command, [function, unique])
Calls the specified f unct i on to modify the environment as specified by the output of conmand. The default
functionisenv. Mer geFl ags, which expects the output of atypical *-config command (for example, gtk-
config) and adds the options to the appropriate construction variables. By default, duplicate values are not added
to any construction variables; you can specify uni que=0 to allow duplicate values to be added.

Interpreted options and the construction variables they affect are as specified for theenv. Par seFl ags method
(which this method calls). See that method's description, below, for atable of options and construction variables.

Par seDepends(fil enane, [nust_exist, only_one]) ,

env. Par seDepends(fil enanme, [nust_exist, only_one])
Parses the contents of the specified f i | enane as alist of dependencies in the style of Make or mkdep, and
explicitly establishes all of the listed dependencies.

Iy
=== SCONS 285

env

By default, it is not an error if the specified f i | enane does not exist. The optional nust _exi st argument
may be set to a non-zero value to have scons throw an exception and generate an error if the file does not exist,
or is otherwise inaccessible.

Theoptional onl y_one argument may be set to anon-zero valueto have sconsthrown an exception and generate
an error if the file contains dependency information for more than one target. This can provide a small sanity
check for files intended to be generated by, for example, the gcc - Mflag, which should typically only write
dependency information for one output file into a corresponding . d file.

Thef i | enane and al of thefileslisted therein will be interpreted relative to the directory of the SConscr i pt
file which calls the Par seDepends function.

. ParseFl ags(flags, ...)

Parses one or more strings containing typical command-line flags for GCC tool chains and returns a dictionary
with theflag values separated into the appropriate SCons construction variables. Thisisintended asacompanionto
theenv. Mer geFl ags method, but allowsfor the valuesin the returned dictionary to be modified, if necessary,
before merging them into the construction environment. (Note that env. Mer geFl ags will call this method if
itsargument isnot adictionary, soitisusualy not necessary to call env. Par seFl ags directly unlessyou want
to manipulate the values.)

If thefirst character in any string isan exclamation mark (1), therest of the string is executed asacommand, and the
output from the command is parsed as GCC tool chain command-line flags and added to the resulting dictionary.

Flag values are translated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- f ramewor k FRANVEWORKS

- f ramewor kdi r= FRANVEWORKPATH
-incl ude CCFLAGS

-i sysr oot CCFLAGS, LI NKFLAGS
- CPPPATH

- LI BS

-L LI BPATH

- Mmo- cygw n CCFLAGS, LI NKFLAGS
- mvi ndows LI NKFLAGS

- pt hr ead CCFLAGS, LI NKFLAGS
-std= CFLAGS

-\, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W,-R RPATH

-W,-R RPATH

-W, LI NKFLAGS

-\, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFl ags('-O2 -Df oo -Dbar=1")

~

'—‘-‘ SCONS 286

dict = env.ParseFlags('-O', '-Dfoo', '-Dbar=1")
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-', 'lecho -Dfoo -Dbar=1")

env. Perforce()
A factory function that returns a Builder object to be used to fetch source files from the Perforce source code
management system. The returned Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Example:

env. Sour ceCode('."', env.Perforce())

Perforce uses a number of external environment variables for its operation. Conseguently, this function adds
the following variables from the user's external environment to the construction environment's ENV dictionary:
PACHARSET, PACLIENT, PALANGUAGE, PAPASSWD, PAPORT, PAUSER, SystemRoot, USER, and USER-
NAME.

Pl at form(string)
The Pl at f or mform returns a callable object that can be used to initialize a construction environment using the
platform keyword of the Envi r onnment function.

Example:

env = Environnent(platform= Platforn('w n32'))

The env. Pl at f or mform applies the callable object for the specified platform st ri ng to the environment
through which the method was called.

env. Pl at f or n{' posi x")

Note that the wi n32 platform adds the Syst enDr i ve and Syst enRoot variables from the user's external
environment to the construction environment's SENV dictionary. Thisis so that any executed commands that use
sockets to connect with other systems (such as fetching source files from external CV S repository specifications
like: pserver: anonynous@vs. sour cef orge. net:/ cvsroot/ scons) will work on Windows sys-
tems.

Preci ous(target, ...),

env. Preci ous(target, ...)
Marks each givent ar get as precious so it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed into asingle call to Pr eci ous.

env. Prepend(key=val , [...])
Appends the specified keyword arguments to the beginning of construction variables in the environment. If the
Environment does not have the specified construction variable, it is simply added to the environment. If the values
of the construction variable and the keyword argument are the same type, then the two valueswill be simply added
together. Otherwise, the construction variable and the value of the keyword argument are both coerced to lists,
and the lists are added together. (See also the Append method, above.)

Example:

Iy
=== SCONS 287

env

env

Pro
Pro
Pro

env. Prepend(CCFLAGS = '-g ', FOO = ['foo.yyy'])

. PrependENVPat h(nane, newpath, [envnane, sep, del ete_existing])

This appends new path elements to the given path in the specified externa environment (SENV by default). This
will only add any particular path once (leaving thefirst oneit encounters and ignoring the rest, to preserve path or-
der), and to help assure this, will normalize all paths (using os. pat h. nor npat h andos. pat h. nor ntase).
This can also handle the case where the given old path variable is alist instead of a string, in which case a list
will be returned instead of a string.

If del et e_exi sti ngis0, then adding a path that already exists will not move it to the beginning; it will stay
whereitisinthelist.

Example:

print 'before:',env['ENV][' | NCLUDE]

i ncl ude_path = '/foo/bar:/foo'

env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)
print "after:',env[' ENV'][' | NCLUDE]

The above example will print:

before: /biz:/foo
after: /fool/bar:/foo:/biz

. PrependUni que(key=val, delete_existing=0, [...])

Appends the specified keyword arguments to the beginning of construction variables in the environment. If the
Environment does not have the specified construction variable, it is smply added to the environment. If the con-
struction variable being appended to is alist, then any value(s) that already exist in the construction variable will
not be added again to the list. However, if delete existing is 1, existing matching values are removed first, so
existing values in the arg list move to the front of the list.

Example:

env. PrependUni que(CCFLAGS = '-g', FOO = ['fo0.yyy'])
gress(callable, [interval]),

gress(string, [interval, file, overwite]),

gress(list_of _strings, [interval, file, overwite])
Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (afunction or an object that hasa___cal | __ () method), the
functionwill becalled onceeveryi nt er val timesaNodeisevaluated. The callablewill be passed the evaluated
Node as its only argument. (For future compatibility, it'sagood ideato also add * ar gs and * * kw as arguments
to your function or method. Thiswill prevent the code from breaking if SCons ever changes the interface to call
the function with additional arguments in the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:
def my_progress_function(node, *args, **kw):

print 'Evaluating node %!' % node
Progress(ny_progress_function, interval =10)

~

'—‘-‘ SCONS 288

A more complicated example of acustom progress display object that prints a string containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself on adisplay:

i mport sys
cl ass ProgressCount er (object):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite('Eval uated % nodes\r' % sel f.count)
Pr ogress(ProgressCounter(), interval =100)

If the first argument Pr ogr ess isastring, the string will be displayed every i nt er val evaluated Nodes. The
default is to print the string on standard output; an aternate output stream may be specified with the fi | e=
argument. The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARGET, it will be replaced with the Node. Note that, for perfor-
mance reasons, this is not a regular SCons variable substition, so you can not use other variables or use curly
braces. The following example will print the name of every evaluated Node, using a\ r (carriage return) to cause
each line to overwritten by the next line, and the over wr i t e= keyword argument to make sure the previous-
ly-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARGET\r', overwite=True)

If thefirstargumentto Pr ogr ess isalist of strings, then each string inthelist will bedisplayed inrotating fashion
every i nt er val evaluated Nodes. This can be used to implement a"spinner” on the user's screen as follows:

Progress(['-\r", "\\\r', "|\r", "/\r'], interval =5)
Pseudo(target, ...),
env. Pseudo(target, ...)

This indicates that each given t ar get should not be created by the build rule, and if the target is created, an
error will be generated. Thisis similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Al i as ismore appropriate. Multiple targets can be passed in to asingle call to Pseudo.

env. RCS()
A factory function that returns a Builder object to be used to fetch source files from RCS. The returned Builder
isintended to be passed to the Sour ceCode function:

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Examples:

env. Sour ceCode('."', env.RCS())

Note that scons will fetch source files from RCS subdirectories automatically, so configuring RCS as demon-
strated in the above example should only be necessary if you are fetching from RCS,v filesin the same directory
as the sourcefiles, or if you need to explicitly specify RCS for a specific subdirectory.

Iy
=== SCONS 289

env

Rep
env

Req
env

Ret

. Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env. Repl ace(CCFLAGS = '-g', FOO = 'fo00.xxx")

ository(directory) ,

. Reposi tory(directory)

Specifiesthat di r ect or y isarepository to be searched for files. Multiple callsto Reposi t or y arelegal, and
each one adds to the list of repositories that will be searched.

Toscons, arepository isacopy of the sourcetree, from the top-level directory on down, which may contain both
sourcefilesand derived filesthat can be used to build targetsin thelocal sourcetree. The canonical examplewould
be an officia source tree maintained by an integrator. If the repository contains derived files, then the derived
files should have been built using scons, so that the repository contains the necessary signature information to
allow scons to figure out when it is appropriate to use the repository copy of a derived file, instead of building
one locally.

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that alocal copy will be made, usethe Local method.

uires(target, prerequisite),

.Requires(target, prerequisite)

Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
urn([vars..., stop=])

By default, this stops processing the current SConscript file and returns to the calling SConscript file the values
of the variables named in the var s string arguments. Multiple strings contaning variable names may be passed
to Ret ur n. Any strings that contain white space

Theoptional st op=keyword argument may be set to afal sevalueto continue processing therest of the SConscript
file after the Ret ur n call. This was the default behavior prior to SCons 0.98. However, the values returned are
till the values of the variablesin the named var s at the point Ret ur n iscalled.

Examples:

Returns without returning a val ue.
Ret urn()

Returns the value of the '
Return("foo")

foo' Python variabl e.

Returns the values of the Python variables 'foo’ and 'bar’.

Return("foo", "bar")

Returns the val ues of Python variables 'vall and 'val2'.

~

'—‘-‘ SCONS 290

Return('val 1 val 2")

Scanner (function, [argunent, keys, path_function, node_class, node factory,
scan_check, recursive]) ,
env. Scanner (function, [argunent, keys, path_function, node_cl ass, node factory,
scan_check, recursive])
Creates a Scanner object for the specified f unct i on. See the section "Scanner Objects," below, for acomplete
explanation of the arguments and behavior.

env. SCCS()
A factory function that returns a Builder object to be used to fetch source files from SCCS. The returned Builder
isintended to be passed to the Sour ceCode function.

Example:

env. Sour ceCode('."', env.SCCS())

Notethat scons will fetch sourcefilesfrom SCCS subdirectories automatically, so configuring SCCS as demon-
strated in the above example should only be necessary if you arefetching from s. SCCSfilesin the sasmedirectory
asthe sourcefiles, or if you need to explicitly specify SCCS for a specific subdirectory.

SConscript(scripts, [exports, variant_dir, duplicate]),

env. SConscript(scripts, [exports, variant _dir, duplicate]),

SConscri pt (di rs=subdirs, [nane=script, exports, variant_dir, duplicate]),

env. SConscri pt (di rs=subdirs, [name=script, exports, variant_dir, duplicate])
This tells scons to execute one or more subsidiary SConscript (configuration) files. Any variables returned
by a called script using Ret ur n will be returned by the call to SConscr i pt . There are two ways to call the
SConscri pt function.

Thefirst way you can call SConscr i pt isto explicitly specify one or morescr i pt s asthefirst argument. A
single script may be specified as a string; multiple scripts must be specified asalist (either explicitly or as created
by afunction like Spl i t). Examples:

SConscri pt (' SConscri pt') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscri pt (['src/ SConscript', 'doc/SConscript'])

config = SConscript (' MyConfig.py')

The second way you can call SConscr i pt isto specify alist of (sub)directory namesasadi r s=subdi rs
keyword argument. In this case, scons will, by default, execute a subsidiary configuration file named SCon-
scri pt in each of the specified directories. You may specify a name other than SConscr i pt by supplying
an optional name=scri pt keyword argument. The first three examples below have the same effect as the first
three examples above:

SConscript (dirs=".") # run SConscript in the current directory
SConscri pt (dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

The optional export s argument provides a list of variable names or a dictionary of named values to export
tothescri pt (s). These variables are locally exported only to the specified scri pt (s), and do not affect
the global pool of variables used by the Export function. The subsidiary scri pt (s) must usethel nport
function to import the variables. Examples:

Iy
=== SCONS 291

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])
SConscri pt (dirs="subdir', exports='env variable')
SConscript(dirs=['one', "two', 'three'], exports=' shared_info')

If the optional var i ant _di r argument is present, it causes an effect equivalent to the Var i ant Di r method
described below. (If var i ant _di r isnot present, thedupl i cat e argument isignored.) Thevari ant _dir
argument isinterpreted relative to the directory of thecalling SConscr i pt file. Seethedescription of theVar i -
ant Di r function below for additional details and restrictions.

If vari ant _di r ispresent, the source directory isthe directory in which the SConscr i pt fileresidesand the
SConscri pt fileisevaluated asif it wereinthevar i ant _di r directory:

SConscript (' src/ SConscript', variant _dir = '"build")
is equivalent to

VariantDir('build, 'src')

SConscri pt (" bui | d/ SConscri pt')

Thislater paradigm is often used when the sources are in the same directory asthe SConst r uct :

SConscri pt (' SConscript', variant_dir = "build")

isequivalent to

VariantDir('build , '.")
SConscri pt (' bui | d/ SConscript')

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_i nfo = SConscript (' MConfig. py')

SConscri pt (' src/ SConscript', exports='shared_info')

SConscri pt (' doc/ SConscri pt', exports='shared_info')

bui |l d debuggi ng and production versions. SConscri pt

can use Dir('.").path to determ ne vari ant.

SConscri pt (' SConscript', variant_dir="debug', duplicate=0)
SConscri pt (' SConscript', variant_dir="prod , duplicate=0)

bui |l d debuggi ng and production versions. SConscri pt
is passed flags to use.

opts = { 'CPPDEFINES : ['DEBUG], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant_dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES : ['NODEBUG], 'CCFLAGS : '-0O }

SConscri pt (' SConscript', variant_dir="prod' , duplicate=0, exports=opts)

Iy
=== SCONS 292

build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscri pt', variant _dir="buil d/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="buil d/ x86', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

SConscri pt Chdi r (val ue) ,

env. SConscri pt Chdi r (val ue)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives.
This behavior may be disabled by specifying either:

SConscri pt Chdi r (0)
env. SConscr i pt Chdi r (0)

inwhich casescons will stay inthetop-level directory whilereading all SConscript files. (Thismay be necessary
when building from repositories, when all the directoriesin which SConscript files may be found don't necessarily
exist locally.) Y ou may enable and disable this ability by calling SConscriptChdir() multiple times.

Example:

env = Environment ()

SConscri pt Chdi r (0)

SConscri pt (' foo/ SConscript') # will not chdir to foo
env. SConscri pt Chdir (1)

SConscri pt (' bar/ SConscript') # will chdir to bar

SConsignFile([file, dbmnodule]) ,

env. SConsi gnFile([file, dbm nodule])
Thistellsscons to storeadll filesignaturesin the specified databasef i | e. If thef i | e nameisomitted, . scon-
si gn isused by default. (The actual file name(s) stored on disk may have an appropriated suffix appended by
the dbm nodul e.) If fi |l e isnot an absolute path name, the file is placed in the same directory as the top-
level SConst ruct file.

If fil eisNone,thenscons will storefile signatures in a separate . sconsi gn filein each directory, not in
one global database file. (Thiswas the default behavior prior to SCons 0.96.91 and 0.97.)

The optional dbm nodul e argument can be used to specify which Python database module The default is to
use acustom SCons. dbl i t e module that uses pickled Python data structures, and which works on all Python
versions.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the

default behavior).

SConsi gnFi | e()

Stores signatures in the file "etc/scons-signatures”
relative to the top-level SConstruct directory.
SConsi gnFi | e("et c/ scons-si gnat ures")

Stores signatures in the specified absolute file nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es™)

Iy
=== SCONS 293

Stores signatures in a separate .sconsign file
in each directory.
SConsi gnFi | e(None)

env. Set Def aul t (key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO = ' fo00')
if "FOO not in env: env['FOO] = 'foo

Set Opti on(nane, val ue) ,

env. Set Opti on(nane, val ue)
This function provides a way to set a select subset of the scons command line options from a SConscript file.
The options supported are;

cl ean
which corresponds to -c, --clean and --remove;

duplicate
which corresponds to --duplicate;

hel p
which corresponds to -h and --help;

i mplicit_cache
which corresponds to --implicit-cache;

max_drift
which corresponds to --max-drift;

no_exec
which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

num j obs
which corresponds to -j and --jobs;

random
which corresponds to --random; and

stack_si ze
which corresponds to --stack-size.

See the documentation for the corresponding command line object for information about each specific option.

Example:

Set Option(' max_drift', 1)

Si deEffect (side_effect, target) ,

env. Si deEf f ect (si de_effect, target)
Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj filesfor a static library,

Iy
=== SCONS 294

and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commandsis executed at atime. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect tar-
get is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get is cleaned, you must specify this explicitly with the
C ean or env. C ean function.

Sour ceCode(entries, builder),

env. Sour ceCode(entries, builder)
This function and its associate factory functions are deprecated. There is no replacement. The intended use was
to keep alocal treein sync with an archive, but in actuality the function only causes the archive to be fetched on
the first run. Synchronizing with the archive is best done external to SCons.

Arrange for non-existent source files to be fetched from a source code management system using the specified
bui | der . The specified ent ri es may be a Node, string or list of both, and may represent either individual
source files or directoriesin which source files can be found.

For any non-existent source files, scons will search up the directory tree and use the first Sour ceCode builder
it finds. The specified bui | der may be None, in which case scons will not use a builder to fetch source files
for the specifiedent r i es, evenif aSour ceCode builder has been specified for adirectory higher up the tree.

scons will, by default, fetch files from SCCS or RCS subdirectories without explicit configuration. This takes
some extra processing timeto search for the necessary source code management fileson disk. Y ou can avoid these
extra searches and speed up your build alittle by disabling these searches as follows:

env. Sour ceCode('."', None)

Notethat if the specified bui | der isoneyou create by hand, it must have an associated construction environment
to use when fetching a source file.

scons providesaset of canned factory functionsthat return appropriate Buildersfor various popular source code
management systems. Canonical examples of invocation include:

env. Sour ceCode('."', env.BitKeeper('/usr/local/BKsources'))
env. Sour ceCode(' src', env.CVS('/usr/| ocal / CVYSROOT"))

env. Sour ceCode(' /', env.RCS())

env. SourceCode(['fl.c', "f2.c'], env.SCCS())

env. Sour ceCode(' no_source.c', None)

Sour ceSi ghat ures(type) ,

env. Sour ceSi gnat ur es(type)
Note: Although it is not yet officially deprecated, use of this function is discouraged. Seethe Deci der function
for amore flexible and straightforward way to configure SCons' decision-making.

The Sour ceSi gnat ur es function tellsscons how to decide if a source file (afile that is not built from any
other files) has changed since the last time it was used to build a particular target file. Legal values are VD5 or
ti mestanp.

If the environment method is used, the specified type of source signature is only used when deciding whether
targets built with that environment are up-to-date or must be rebuilt. If the global function is used, the specified
type of source signature becomes the default used for all decisions about whether targets are up-to-date.

Iy
=== SCONS 295

MD5 meansscons decidesthat a sourcefile has changed if the MD5 checksum of its contents has changed since
the last time it was used to rebuild a particular target file.

ti mest anp means scons decides that a source file has changed if its timestamp (modification time) has
changed since the last time it was used to rebuild a particular target file. (Note that although this is similar to
the behavior of Make, by default it will also rebuild if the dependency is older than the last time it was used to
rebuild the target file.)

Thereis no different between the two behaviors for Python Val ue node objects.

MD5 signatures take longer to compute, but are more accurate than t i nest anp signatures. The default value
isVD5.

Note that the default Tar get Si gnat ur es setting (see below) isto usethis Sour ceSi gnat ur es setting for
any target files that are used to build other target files. Consequently, changing the value of Sour ceSi gha-
t ur es will, by default, affect the up-to-date decision for al filesin the build (or al files built with a specific
construction environment when env. Sour ceSi gnat ur es isused).

Split(arg) ,

env. Split(arg)
Returns alist of file names or other objects. If arg isa string, it will be split on strings of white-space characters
within the string, making it easier to write long lists of file names. If arg is already alist, the list will be returned
untouched. If arg is any other type of object, it will be returned as alist containing just the object.

Example:

files
files
files
f7.c
f8.c
fo.c

")

env. subst (i nput, [raw, target, source, conv])
Performs construction variable interpolation on the specified string or sequence argument i nput .

Split("fl.c f2.c f3.c")
env.Split("f4.c f5.c f6.c")
Split("""

By default, leading or trailing white space will be removed from the result. and all sequences of white space will
be compressed to asingle space character. Additionally, any $(and $) character sequenceswill be stripped from
the returned string, The optiona r aw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The r aw argument may be set to 2 if you want to strip all characters between any $(and $) pairs
(asisdonefor signature calculation).

If theinput is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned asalist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes, respec-
tively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion. Thisis
usually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use the Python p idiom
to pass in an unnamed function that simply returns its unconverted argument.

Example:

Iy
=== SCONS 296

print env.subst("The C conpiler is: $CC')

def conpil e(target, source, env):
sourceDir = env. subst (" ${ SOURCE. srcdir}",
t ar get =t ar get ,
sour ce=sour ce)

sour ce_nodes = env. subst (' $EXPAND_TO NODELI ST' ,
conv=l anbda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All tags are optional.

Examples:

makes sure the built library will be installed with 0644 file
access node
Tag(Library('"lib.c'), UNI X _ATTR="0644")

marks file2.txt to be a docunentation file
Tag('file2.txt', DOC)

Tar get Si ghat ures(type) ,

env. Tar get Si gnat ur es(type)
Note: Although it is not yet officially deprecated, use of this function is discouraged. Seethe Deci der function
for amore flexible and straightforward way to configure SCons' decision-making.

TheTar get Si gnat ur es function tellsscons how to decideif atarget file (afile that is built from any other
files) has changed since the last time it was used to build some other target file. Legal values are " bui | d";
"content" (oritssynonym" MD5");"ti mest anp";or"source".

If the environment method is used, the specified type of target signature is only used for targets built with that
environment. If the global function is used, the specified type of signature becomes the default used for all target
filesthat don't have an explicit target signature type specified for their environments.

"content" (oritssynonym" MD5") meansscons decidesthat atarget file has changed if the MD5 checksum
of its contents has changed since the last timeit was used to rebuild some other target file. Thismeansscons will
open up MD5 sum the contents of target files after they're built, and may decide that it does not need to rebuild
"downstream" target files if afile was rebuilt with exactly the same contents as the last time.

"ti mestanp" means scons decides that a target file has changed if its timestamp (modification time) has
changed since the last time it was used to rebuild some other target file. (Note that although this is similar to
the behavior of Make, by default it will also rebuild if the dependency is older than the last time it was used to
rebuild the target file.)

"sour ce" meansscons decidesthat atarget file has changed as specified by the corresponding Sour ceSi g-
nat ur es setting (" MD5" or "t i mest anp"). This means that scons will treat all input files to a target the
same way, regardless of whether they are source files or have been built from other files.

"bui | d" means scons decides that a target file has changed if it has been rebuilt in this invocation or if its
content or timestamp have changed as specified by the corresponding Sour ceSi gnat ur es setting. This"prop-
agates' the status of arebuilt file so that other "downstream™ target fileswill alwaysbe rebuilt, evenif the contents
or the timestamp have not changed.

Iy
=== SCONS 297

"bui | d" signatures are fastest because " cont ent " (or " MD5") signatures take longer to compute, but are
more accuratethan "t i mest anp” signatures, and can prevent unnecessary "downstream" rebuilds when a tar-
get file is rebuilt to the exact same contents as the previous build. The " sour ce" setting provides the most
consistent behavior when other target files may be rebuilt from both source and target input files. The default
valueis"source".

Becausethe default settingis” sour ce" , using Sour ceSi gnat ur es isgenerally preferableto Tar get Si g-
nat ur es, so that the up-to-date decision will be consistent for all files (or all files built with a specific construc-
tion environment). Use of Tar get Si gnat ur es provides specific control for how built target files affect their
"downstream"” dependencies.

Tool (string, [tool path, **kw]) ,

env. Tool (string, [tool path, **kw])
The Tool form of the function returns a callable object that can be used to initialize a construction environment
using the tools keyword of the Environment() method. The object may be called with a construction environment
as an argument, in which case the object will add the necessary variables to the construction environment and the
name of the tool will be added to the $TOOLS construction variable.

Additional keyword arguments are passed to the tool's gener at e() method.

Examples:

env Envi ronnent (tools = [Tool (' nsvc')])
env = Environment ()

t = Tool (' msvc')

t(env) # adds 'nsvc' to the TOOLS vari abl e

u = Tool ('opengl', toolpath = ['tools'])
u(env) # adds 'opengl' to the TOOLS vari abl e

Theenv. Tool form of the function appliesthe callable object for the specified tool st r i ng to the environment
through which the method was called.

Additional keyword arguments are passed to the tool's gener at e() method.

env. Tool (' gcc')
env. Tool (' opengl', toolpath = ['build/tools'])

Val ue(val ue, [built _value]) ,

env. Val ue(val ue, [built _val ue])
Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies of tar-
gets. If theresult of calling st r (val ue) changes between SConsruns, any targetsdepending on Val ue(val ue)
will be rebuilt. (Thisistrue even when using timestamps to decide if files are up-to-date.) When using timestamp
source signatures, Value Nodes' timestamps are equal to the system time when the Node is created.

The returned Value Node object has awr i t e() method that can be used to "build" a Value Node by setting a
new value. The optional bui | t _val ue argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." Thereis a corresponding r ead() method that will return the built
value of the Node.

Examples:

Iy
=== SCONS 298

env = Environment ()

def create(target, source, env):
A function that will wite a 'prefix=$SOURCE
string into the file name specified as the
$TARCET.
f = open(str(target[0]), "wb')
f.wite(' prefix=" + source[0].get_contents())

Fetch the prefix= argunent, if any, fromthe comuand
line, and use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

Attach a .Config() builder for the above function action

to the construction environnent.

env[' BU LDERS][' Config'] = Builder(action = create)

env. Confi g(target = 'package-config', source = Val ue(prefix))

def build_val ue(target, source, env):
A function that "builds" a Python Value by updating
the the Python value with the contents of the file
specified as the source of the Builder call ($SOURCE).
target[0] .wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

Attach a .UpdateVal ue() builder for the above function

action to the construction environnent.

env[' BUI LDERS'][' Updat eVal ue'] = Buil der(action = build_val ue)
env. Updat eVal ue(target = Val ue(output), source = Val ue(i nput))

VariantDir(variant_dir, src_dir, [duplicate]),

env. VariantDir(variant_dir, src_dir, [duplicate])
Use the Vari ant Di r function to create a copy of your sources in another location: if a name under
vari ant _di r isnotfoundbut existsunder sr ¢c_di r, thefileor directory iscopiedtovari ant _di r. Target
files can be built in a different directory than the original sources by simply refering to the sources (and targets)
within the variant tree.

Vari ant Di r can be called multiple times with the same sr ¢_di r to set up multiple builds with different
options (vari ants). The src_di r location must be in or underneath the SConstruct file's directory, and
vari ant _di r may not beunderneathsrc_dir.

The default behavior is for scons to physically duplicate the source files in the variant tree. Thus, a build per-
formed in the variant tree is guaranteed to be identical to abuild performed in the source tree even if intermediate
source files are generated during the build, or preprocessors or other scanners search for included files relative
to the source file, or individual compilers or other invoked tools are hard-coded to put derived files in the same
directory as sourcefiles.

If possible on the platform, the duplication is performed by linking rather than copying; seeasothe- - dupl i -
cat e command-line option. Moreover, only the files needed for the build are duplicated; files and directories
that are not used are not presentinvari ant _dir.

Duplicating the source tree may be disabled by setting the dupl i cat e argument to O (zero). This will cause
scons to invoke Builders using the path names of sourcefilesinsr ¢c_di r and the path names of derived files

Iy
=== SCONS 299

withinvari ant _di r. Thisis aways more efficient than dupl i cat e=1, and is usually safe for most builds
(but see above for cases that may cause problems).

Note that Var i ant Di r works most naturally with a subsidiary SConscript file. However, you would then call
the subsidiary SConscript file not in the source directory, but in the var i ant _di r, regardless of the value of
dupl i cat e. Thisis how you tell scons which variant of a source tree to build:

run src/SConscript in tw variant directories

VariantDir (' build/variantl', "src')
SConscri pt (' bui | d/ vari ant 1/ SConscri pt')
VariantDir (' build/variant2', "'src')

SConscri pt (' bui | d/ vari ant 2/ SConscri pt"')

SeeasotheSConscr i pt function, described above, for another way to specify avariant directory in conjunction
with calling asubsidiary SConscript file.

Examples:

use nanes in the build directory, not the source directory
VariantDir('build , 'src', duplicate=0)
Program(' bui |l d/ prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir("build , '."', duplicate=0)
SConscri pt (dirs=["build/src'," build/doc'])

same as previous exanple, but only uses SConscri pt
SConscript (dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant _dir="buil d/doc', duplicate=0)

Werel s(program [path, pathext, reject]),

env. Werel s(program [path, pathext, reject])
Searches for the specified executable pr ogr am returning the full path name to the program if it is found,
and returning None if not. Searches the specified pat h, the value of the calling environment's PATH
(env[' ENV']1[' PATH]), or the user's current external PATH (0s. envi ron[' PATH]) by default. On
Windows systems, searches for executable programs with any of the file extensions listed in the speci-
fied pat hext, the caling environment's PATHEXT (env[' ENV'][' PATHEXT']) or the user's current
PATHEXT (os. envi ron[' PATHEXT']) by default. Will not select any path name or namesin the specified
rej ect ligt, if any.

Iy
=== SCONS 300

Appendix E. Handling Common Tasks

There is a common set of simple tasks that many build configurations rely on as they become more complex. Most
build tools have specia purpose constructsfor performing thesetasks, but since SConscr i pt filesare Python scripts,
you can use more flexible built-in Python servicesto perform these tasks. This appendix lists a number of these tasks
and how to implement them in Python and SCons.

Example E.1. Wildcard globbing to create a list of filenames

files = d ob(wi | dcard)

Example E.2. Filename extension substitution

i mport os. path
filename = os.path.splitext(filenane)[0]+extension

Example E.3. Appending a path prefix to alist of filenames

i mport os. path
filenames = [os.path.join(prefix, x) for x in fil enanes]

Example E.4. Substituting a path prefix with another one

if filename.find(old_prefix) ==
filename = filenane.replace(ol d_prefix, new prefix)

Example E.5. Filtering a filenamelist to exclude/retain only a specific set of extensions

i mport os. path
filenames = [x for x in filenanmes if os.path.splitext(x)[1] in extensions]

Example E.6. The " backtick function”: run a shell command and captur e the output

i mport subprocess
out put = subprocess. check_out put (command)

Iy
=== SCONS 301

Example E.7. Generating sour ce code: how code can be generated and used by SCons

The Copy builders here could be any arbitrary shell or python function that produces one or more files. This example
shows how to create those files and use them in SCons.

SConstruct
env = Environnent ()
env. Append(CPPPATH = "#")

Header exanpl e
env. Append(BU LDERS =
{' Copyl' : Builder(action = 'cat < $SOURCE > $TARGET',
suffix=".h", src_suffix=".bar')})
env. Copyl('test.bar') # produces test.h fromtest.bar.
env. Program(' app',' main.cpp') # indirectly depends on test. bar

Source file exanple
env. Append(BU LDERS =
{' Copy2' : Builder(action = "'cat < $SOURCE > $TARGET',
suf fix=".cpp', src_suffix=".bar2")})
foo = env. Copy2(' foo.bar2') # produces foo.cpp from foo. bar2.
env. Progran(' app2',[' mai n2.cpp'] + foo) # conpiles nmain2. cpp and foo.cpp into app2.

Where main.cpp looks like this:
#i nclude "test.h"

produces this:

% scons -Q

CC -0 app main.cpp

cat < foo.bar2 > foo.cpp

cCc -0 app2 mai n2.cpp foo.cpp
cat < test.bar > test.h

Iy
=== SCONS 302

