CDF

C Reference Manual

Version 3.5, September 11, 2013

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright © 2013

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet: gsfc-cdf-support@lists.nasa.gov

Contents

1 Compiling 00 1
1.1 Specifying cdf.h Location in the Compile Commandc..cocceeirieriinieiiniieniieieieeeene e e 1
L.1.1 OPEIVIMS SYSIEIMIS ...ttt ettt ettt et ettt ettt ettt e et et ae et e s et e s e s aeesnesbeesaesae et e sae et e eas e st ennesaeennenaee 1
1.1.2 UNIX Systems (including Mac OS X)) ..ccueiiiiiiiiinieiinieiieeet ettt ettt s 2
1.1.3 Windows NT/2000/XP Systems, Microsoft Visual C++ or Microsoft Visual C++ .Netcccceveveneennne. 2

1.2 Specifying cdf .h Location in the SoUrce File..........ccccoviiiiiiiiiiiiiiiicinciceceeeec ettt 3

2 Linking 0000000000000 00 5
2.1 OPENVIMS SYSLBINIS ..ttt ettt ettt ettt et e st e et e sae et e satesnesaee s e sa s e b e ses et e essesteeaseeneessesaeemnesueensesanennesanennenn 5
2.1.1 Combining the Compile and LiNK..........cccoeciiiiiiiniiiiiiiiiieceeeeet ettt s 6

2.2 Windows NT/2000/XP SYSTEMS, Microsoft Visual C++ or Microsoft Visual C++ NETccccccccocvvviiiiinnnnnn. 6

3 Linking Shared CDF LiDIraryccccccccneeccccsssssnnsecccsssssssseccsssssssssssssssssssssssssssssnses 1

3.1 DEC VAX & AIPha (OPENVIMS)oiiiiiiiiiiiiient ettt ettt st st st e sre e sae s e s b snesueenneene 7
3.2 STUN (SOLATIS) teteeutrieiirieerrireeitttessttteasereeesseeessseeasseesasseeassseeaasssessasseessssesesssssesssssesssseessssssessssessssseessssessssssessssseenssns 8
3.3 HP Q000 (HP-UX) ... utiieiiiieeiiieiiieeeetteesteeestteeeeveessaeeessteaeassseesassaeassseaaassaeessssaeassseassssseesssseessssesssssessssseeesnsseennsns 8
34 IBM RSO000 (ATX) ..uveeeiiiieeiiieeiiiteesteeesoteeestteeaeseesssseeessseaaassseesassaeasssesasssseessssseassseessssssesssseesssseessssessssssessssseesnsns 8
3.5 DEC ALPRA (OSF/1) ettt ettt ettt ettt et e s bt e bt e s st e s s bt e sa b e e st e e sbbeeabeesbeesabeesaaesabeesatesabeens 9
3.0 SGI (TRIX 6.X) 1eeuerieiiiieeiiiteeiteesitteesttteesteeestteeaseseesasseeassseaaassseesassaeassseaaassseessssseassseessssseesssssesssseessssessssseessssseennsnn 9
3.7 LINUX (PC & POWET PC) ..ottt ettt et e et e e e ea e e ettt e esataeesssaeeessbeeessaeeasseaeansseeassesensseaesnsseennnnn 9
3.8 WIndows (INT/2000/XP) ...eeeccurieiiuiieeiiieeeeiteeectteeesteeesteeesteeeesaeessssaeasseaesssseesssseeassseassssssesssseesssseessssesessseessnsseennsnn 9
3.9 MACINEOSH OS Xi..ooiiiiiiieiii ettt et e e et e e ettt e e tbeeestbeeeestaeeasseeassseaaassaeesssaaeassseeassseeasseaeansseesnssaeensseeennsseennsnn 9

4 Programming INterfacecccccvreccccnnicsscnnicsssnnnecssnsncsssnnsscssssssssssssssssssssssssssnns 11

4.1 THeM REFEIENCING ... eoiiiiiiiieiiiiieie ettt ettt a e e sttt saeeae st eaesaeenesuee s e sanesneeaneneeas 11
4.2 DETINEA TYPES .ureeiintieiieiieit ettt ettt ettt et sttt et s e sttt et e s et e s s e st easesatesnesatesaesaeennesat e e eaneneeaneneeas 11
4.3 CDFStatUs CONSTANLSeuvieuritieiietieirenteetenttete st ete st ese st estesus et e eus e st essesstessesseensesaeennesaeennesueennesusensesanensesanesenns 11
4.4 CDF FOIMALS ...ttt ettt ettt ettt st st e s e st e e e e bt e s e st eae e st essesat e s e saeesaesaeemnesueennesunenneeaneseas 12
4.5 CDF DAt TYPES weuveeureeuieiieiiiiieitenttee sttt st ettt et st e e st e e s et e e e st e s e st easesaeessesatemaesatessesueennesunensesanenneeaneneeas 12
4.6 Datd ENCOGINGS ...cueiiiiiiiiieiiiiieiett ettt ettt sttt et e a e st eae e s st esa e s atesaesaeenesae e saneneeanenneeas 13
4.7 Datd DECOINGES ...c.eeeuriiieiiieiiiiieiett ettt ettt sttt s et et e e bt ea s e st eseesatesne s aeesnesae e nesu e esanen e enne e 14
4.8 Variable MaJOIitisccc.couieiiriieieiieienitet ettt sttt ettt e ettt e e bt e s e saeesnesatenesaeenesuee s e saneneeaneneeas 15
4.9 Record/DImenSion VATIANCESccceoieriiruierierieeieneeteneetesieeteease st eeseseessesaeessesaeessesatessesueennessnensesssensessnenseens 15
410 COMPIESSIONS ...eniiriiientietteteeetett ettt et saeeaesaeeaesat e s e s ueessesaees st eas et e essenstessesaeemsesatemnesatensesaeennesusensesanenseeaneneas 16
1T SPAISEIIESS ..ceveeniiniiinieiieieeit ettt ettt et s et e sa e et esaeess e s ae e e st e et e as et e as e st e e s e et eas e e a e e sn e e ateaesaeenesue b e ane e eaneneeas 16

AAT.1 SPAISE RECOTASeiuiiniieiiiiieiciteeeeet ettt ettt ettt e b e et eae st e saeeenesaeeanenneen 17

A 1T.2 SPAISE ATITAYS .ueeeuriiieniieieeit ettt ete st ete sttt sae et e eae e bt eas e s st esaesatesaesat e st eane st eas e bt ess e bt emseeseessesuee st ennenseennenrees 17
412 AUIIDULE SCOPES ...coutiiieniieiiitieiett ettt ettt ettt ettt s et st e et e e e st eas e s st eseesatesnesaeesaesaeennesueensesanenneeaneneas 17
413 ReEAA-ONLY MOAES ...ttt et ettt e at e s bt e st s enesaee s e saneneeaneneeas 17
14 ZIMIOAES ...ttt st et a e e a e e e a e e ateaesa e nesu e e an b e s eneeas 18
415 -0.0 £0 0.0 MOGES ..eeneieniieiiiiieiieit ettt ettt sttt ettt et e a et a e s ae e saeene et n e enne e 18
416 Operational LIMILSc..ocuieiiiiieiiiieieniieierc ettt ettt et ettt ee e sae e st eaesae e s e saee e saneneeaneneeas 18
4.17 Limits of Names and Other Character StrNESccceeveriirieriirieniieiet ettt et s senesreeanesreeas 18
4.18 Backward File Compatibility With CDF 2.7ccccociiiiiiiiiiiieinie ettt 19
419 CRECKSUIM ...ttt ettt sttt et e et e et e e e st ea s e s st essesatesaesatessesaeennesaeensesane s e eaneneean 20
420 Data VAIIAATONootiiiiiieiiiiieieie ettt ettt sttt ettt e et e e bt easesaeeseesaeesaesaeesaesaeennesaee s e sanenreeaneneeas 22

421 B-BYLE INIEZET .ottt ettt ettt ettt e s ae e st s a e n e sut e s n e e ne e 23

5 Standard INTEITACEceeeeeeeeereenceereeneeeeeeeeeeceeseseescsssssssssssssesssssssssssssssssssssssssssssssss 23

S B O D) a7 15 ¢ @ (<1 (RSSO 25
S5.11 0 EXAMPLE(S) veerurteriieniiietieeie ettt et stt et e sttt et e s ate st e suteeab e e sbteeabe e bt e s bt e bt e sab e e bt e ea bt e abeeeab e e bee e beebeesate e beesats 26
5.2 CDFattrENIyINQUITEooueeiiiieiiiieieetettet ettt ettt et ettt et et e st st esaeesnesaeesnesaeesnesunenneeanenneeas 26
521 EXAMPLE(S) veerurtertteruieintieeteette st et stt et e sttt e bt e sttt st esateeab e e sb b e et e e bt e e bt e bt e sab e e bt e e et e e abaeeabe e bt e e bt ebeesateebeesates 27
G T O B) a7 15 { € (< USSP 28
5301 EXAMPIE(S) veerurtetieniieetieeieette sttt sit et e e sttt bt e st e st esateeab e e sb b e eabe e bt e e bt e bt sab e e bt e e et e e bt e e bt e be e e be e beesabe e beesats 29
54 CDFAITIQUITE ...coueiiiiieiiteiece ettt ettt ettt et et a e et e et e e b e e eb e et e eaeesseeaee st esnesaeesnesueennesueenneeanenseas 29
I I 0 B 5 101 o) (<1) OO OO OO OO OO OO PO PRURRUPR 30
S T O B) 2 115 A\ 1112 s USSR 31
551 EXAMPIE(S) veerurteriteniitetieeieette ettt stt et stt e e bt esate et esuteeab e e sh b e e bt e bt e et e e bt e sab e e bt e e et e e bt e e be e bee e beebeesateebeeeates 31
S T O D) 115 d oo USSR 32
5.0 1 EXAMPIE(S) veerurteniienuiieitieeieette sttt stt et stt e bt e st e et e sate st e e sb e e et e e bt e et e e bt e sa bt e bt e ea bt e abt e eabe e bae e be e bt e sabeebeesats 32
5.7 CDFAIRENAMEccoiiiieiiiieeiiie ettt ettt e et e ettt e e sttt e e sstbeeesseeessseeesssseeassseesssaeesssseeansssessseeesssesennsseennnsens 33
S5T.1 EXAMPIE(S) veerurtetienuieeitieeieeite et et sit et e sttt e bt e s ate st esuteeabeesbbeeabe e bt e sabe e bt e sab e e bteeabeesbaeeabe e bee e beebeesabeeneesats 34
SR T 5) are] [0 USSR 34
581 EXAMPIE(S) veeurtertienuieeiieeieeite ettt stt et stt e e bt e s it et esateeab e e sb b e et e e bt e et e e bt e sa bt e bt e e et e e aba e e abeeabee e beebeesateebeeeates 34
5.9 CDEFCIALE ..eecuuvieeeiiieeiiie ettt ettt e ettt e e bt eesateeeetaeeastseeasssaeeanseaeassseeassseeasssaaaassseeasssaesnssaaesnsseeansseesnssaeenssaeennsseennsens 35
5.9.1 EXAMPIE(S) veeruvtertienuiteiieeieeite et et e sttt et e sttt e bt e s tte st esuteeab e e sb b e e bt e bt e st e e bt e sab e e bt e e a bt e aba e et e e bae e beebeesateebeesates 36
I L O B) 1 153 1< £ USSR 36
50,1 EXAMPIE(S) teuvvtetteruiieiieeteiite ettt sttt ettt et s et bt e sat e et e s bt e e bt e bt e st e e bt e sa bt e bt e e et e e ab e e et e e bt e e bt e bt e sate e neeeats 37
IS I R O B) 1 (o oSSR 37
STTL EXAMPIE(S) teuvvtetteniiietieeiieette sttt sit ettt et ettt et e sa e et esb b e et e e bt e sab e e bt e sab e e bt e sabeesbeeeabe e bee e be e bt e sateebeeeats 38
S B O) 1S5 y (o) SRS 38
5021 EXAMPIE(S) teuvveetteniiiiiieeieeite sttt ettt ettt ettt s bt e sa e et e s bt e et e e bt e e bt e bt e e et e e bt e e et e e abt e eabe e bt e e bt ebeesabeeneesates 38
5.13 CDFgetrVarsRECOIADALAc.couiiiiiiriiiiiiieieeeee ettt ettt et ettt et s ene s s neeanenne e 39
5031 EXAMPIE(S) teueveetteniiiitieeieeite sttt sttt ettt ettt e bt e sat e et e s bt e et e e bt e e bt e bt e ea bt e bt e e et e e ebe e ea bt e bt e e be e bt e sabeeneesats 40
5.14 CDFgetzVarsReCOTADALac..cocueiuiriiiiiiiiiieiieieie ettt ettt ettt et e ene s s eneeanene e 41
ST4.T EXAMPIE(S) tevvtetteruiieiieeieette ettt ettt et stt e et s e et e sat e et e e sb bt et e e bt e st e e bt e sa bt e bt e e a bt e ab b e e abe e bt e e bt e bt e sabe e neesats 41
S5.15 CDFINQUITE ...cuvtouiiiieiiiiieieiteteet ettt ettt ettt ea e st ae st s a e eaae s bt e s e st e ess e et e easeeaeesseeaee st ennesaeennesueennesseenneeanensenas 42
S50 EXAMPIE(S) teuvvtetteriiietieeieeite ettt ettt ettt et ettt et e sa e et e s bt e et e e bt e e bt e bt e e a bt e bt e e a b e e nba e e bt e bt e e bt e bt e sabeebeesats 43
516 CDFOPEIN ...ttt ettt et a e st s st h e e h e e bttt e a e et atesnesae e saeenneeaeeneeanene e 44
S5.16.1 EXAMPIE(S) teuvvtetieriiieiieeieiite ettt sttt ettt ettt et e sa b et e s bt e et e e bt e s bt e bt e sab e e bt e e et e e sbt e e bt e bt e e bt e beesabe e neesats 44
5.17 CDFputrVarsRECOTADALA.c..cocuiiiiiiiiiiiiiieieeeete ettt ettt et ettt et e s ene st ne s esne e 45
SAT.0 0 EXAMPIE(S) teueveetteiuiieiieeieette ettt sttt ettt et ettt et e sat e et e s bt e e bt e bt e s bt e bt e sab e e bt e s a bt e sbaeeabe e bee e beebeesabe e neesats 45
5.18 CDFputzVarsRECOTADALAc..coueriiriiriiiiiiieiieeee ettt ettt ettt et e ene st saeeneeanene e 47
S.08.1 EXAMPIE(S) teuvveetteriiietienteetie sttt sttt ettt ettt st e sa b et e s bt e et e e bt e s b e bt ea bt e bt e ea bt e ebt e et e e bt e e bt e beesateebeesats 47
5.1 CDFVATCIOSE. ... vvieitiieeiiiie ettt e eetteeereteeestteesttaeeseseeessseeaasssaaassseeasssesassaeesssseeasssasssseessnssseansssesnsseeesssesesnsseennssens 48
59,1 EXAMPIE(S) teuvveetteriiieiieeieette sttt sttt ettt et s et et esat e et esb b e et e e bt s bt e bt e ea bt e bt e e et e e eb e e e bt e bt e e bt ebeesate e beesats 49
520 CDEFVATCIEALEvveeivvieeiiieeeieeeeeiteeesiteeestteesestaeastseeesssaeassssaeassseeassesasssasasssseeasssessasseeessssseassseesssseeesssesenssseennnsens 49
5.20.1 EXAIMPIE(S) teuvvtetteruiietienieette ettt stt et stt e et s et et e sa e e et e s bt et e e bt e e bt e be e ea bt e bt e ea bt e bt e e bt e bt e e be e bt e sateebeesats 50
I B O D) 217 1 { € 1< USSR 51
5211 EXAMPIE(S) tervveettenuiieiieeieeite ettt sit et s ettt s et et esat e et e s bt e et e e b et s b e e bt e ea bt e bt e e et e e ebt e e bt e bt e e be e bt e sate e beesats 51
5.22 CDEFVATHYPEIGELc.oiiiiiiiiieiiiieeeetet ettt ettt ettt et ettt et e st et e st e saeesnesaeesneeueennesaneneeas 52
5.22.1 EXAIMPIE(S) teuvveetteriiieiieeieette ettt ettt et stt e et s ittt e sa b e et esh e et e e bt e b e e bt ea bt e bt e ea bt e ab b e ea bt e bt e s bt e bt e sabe e beesats 52
5.23 CDEVATHYPEIPULcooiiiiiiiieieee ettt ettt ettt et et ae et st enesae b saeeneeaneneeas 53
IV TN B 25 € 1101 5) (51) RSO OO O OO O OO USROS PR U SRRUPR 54
5.24 CDEFVAIINQUITEoooviiiiiiieieiieceete ettt sttt et s et e b et e et et eae e st esnesaeesnesueenneeueennesanennean 54
5241 EXAIMPIE(S) teuvvtetteruiieitieeieiite ettt sit et stt e et e sttt et e sat e et esh b e et e e bt e e bt e bt ea bt e bt e e et e e eb b e ea bt e bt e e bt e bt sabe e neesats 55
5.25 CDFVATNUITL...cecctiiiitieeeitieeettt e ettt e estteeesteeesateeastseeessseeeasssaeasssaeasssesasssaeeassseeasssaessseaessssseansssssnssesesssesessseensnsees 56
IV TN B 25 € 1101 5) (51) RSO OO O OO O OO P OO RUPR U SRROPR 56
I I O D) 27V o | USSP 57
5.26.1 EXAIMPIE(S) teuvveetteruiietienieiite ettt stt ettt bt s e e bt e sa b et e s bt e et e e bt s bt e bt et e e bt e ea bt e eb b e e bt e bee e beebeesabe e beesats 57
527 CDEFVATRENAME......ccuiiieiiiiieiiieciieeeeiee ettt s e e ettt e eseteeesaeeeastbeeessee e ssaaesssseeassseesssaeesnssseansseessseeesssasennsseennses 58

5271 EXAIMPIE(S) teuureetteriiietieeieette ettt ettt stt e et s et et esat e et esb b e et e e bt e s bt e bt ea bt e bt e e a bt e abteea b e e bt e e be e beesabe e beesates 58

6 Exended Standard INLEITACEcceeeeeeereeeeeereeeeeceeeeeeccsseseeccssesssesssssssesssssesssseses 01

6.1 Library INTOrMAtiONccoeiiiiiiiiiiiiiieiice ettt ettt ettt ettt st e saeesnesueesnesaeeneeanene e 61
6.1.1 CDFZEtDAtATYPESIZE ...c..eevieiieniieiiieiieteeieete ettt ettt ettt ettt ettt et eae et e sae e saeesnesaeennesanennesanenneens 61
6.1.2 CDFgetLibraryCopYTiZht......cccoiiiiiiiiiiieit ettt ettt ettt et e s e e s ne s sanere e 62
6.1.3 CDFZEtLIDIAry VETSIONccueiuieiieiiiniietieitete ettt ettt sttt ettt s e nesae et et e st eseesaeesnesueesnesaeesnesunennesunensens 63
6.1.4 CDEFZEtSIAtUSTEXE .. eeiiiiieiieiieiieieeeeteeet ettt ettt ettt et ettt eae et eae e aeeaeesaeeanesaeennesueennesanennesunensens 64

6.2 CDF ...ttt e a e e h e e e h et h et ettt et e ae et saeenesue b eaeeneeaneneea 64
6.2.1 CDECIOSEC Doiiiiiiiieieeteeet ettt ettt ettt sttt ettt et ea e et esaeeanesae e s e saeenesaeenneeanenreeas 65
6.2.2 CDECIEAECDIFooiiiiiiiiiiiiieitcteet ettt ettt ettt ettt ettt et et a e et e sa e eanesaeesnesaeennesunennesanenneeas 65
6.2.3 CDEFAEICIECDEcuiiiiiiiiiiieieeteet ettt ettt ettt ettt ettt ettt et ettt eae st et e s bt ennesae e s e saeennesanennesanenneeas 67
6.2.4 CDEFZEICACKESIZEcouveiieiiiiiieiicteeeteetet ettt ettt sttt ettt et at et s bt eanesae e s e saeennesnnenneeanenseeas 67
6.2.5 CDFZEICRECKSUMcouiiiiiiiiiiietieieeeteet ettt ettt ettt ettt ettt e e e aeeaeesaeeanesaeesnesaeennesanenneeanenseens 68
6.2.0 CDEFZEtCOMPIESSIONeuuieuiieiieniieitentietietteteetteteeeee st essesteessesteessesteesseeseesseeseessteseesaeennesueennesueennessnensesanenseens 69
6.2.77 CDFgetCompressionNCaChESIZecc.coviriiiiiiiiiiiieiccieccet ettt 70
6.2.8 CDFgetCompressiOnInTocoiiiiiiiiiiiiiiiiiie ettt ettt et e 71
6.2.9 CDEFZEtCOPYIIGNL . ..ceiiniiiiiiiieieieeteet ettt ettt ettt ettt et et ae et e saeeanesaeesnesaeesnesanenneeanenneeas 72
6.2.10 CDFZEIDECOMINGcouveiieniiiiieiieiieniieteettete ettt et ettt st ettt et e st e e eae et e eae e st eseesaeesnesaeennesueennesanensesanensenns 72
6.2.11 CDFZEENCOGING.....ccuiiiiiiiiiiiiieieeiteieetete ettt ettt ettt ettt ettt et et e ae et e saeesnesaeesnesaeesnesanenneeanenrens 73
6.2.12 CDFEetFIleBaCKWAIdc..cocuoiiiiiiiiiiiiieit ettt et et et re e 74
6.2.13 CDFZEFOIMALouiiiiiiiiiiiieieeieee ettt ettt ettt ettt ettt e ettt e et e st e e e saeesnesueennesaeesnesanennesunenreas 74
6.2.14 CDFZEMAJOTILY ...cueeuriiieiieiietieitenieete et ettt ettt e st essesae e s e s bt eesesteesneeseesseeseeateseesaeennesaeennesueennesunennesanensens 75
6.2.15 CDFZEINAIIEoeriiemiiiiieiieiteteeiteete ettt ettt et ettt et sa e s e st e s esteesseeaeesseeaee st eaeesaeennesueennesueennesunensesanensenns 76
6.2.16 CDFgetNegtoOPOSIPOMOUEcccuiriiiiiieiiiieie ettt ettt et e sae e sae e s s e saeenesanereeas 77
6.2.17 CDFZetReadONLIYMOUEc.oooviiiiiiieiiiniieiietete ettt ettt ettt ettt sae e et e saeesnesaeesnesaeennesanenneens 77
6.2.18 CDFZetStagelaCheSIZecc.eoouiiiiiiiiiiiieii ettt ettt et e sae e et e e s e enesae e eanereeas 78
6.2.19 CDFZEtVALIAALEc..ooveriieiieiieiieitinieeteeitete ettt ettt ettt et ettt eae st et e et et e saeesnesueennesaeennesanennesanenseas 79
6.2.20 CDFZEEVEISION ..ottt et et ettt et e et aeeesesa e e e st e s e steesseeae et e eae e st eaeesaeennesaeennesueennesunensesanenseens 80
60.2.21 CDFZEIZIMOMEceeeniiiieiieiieieeieete ettt ettt ettt et et st et e e et et e st e st e sateasesaeesnesaeennesanenneeanentens 80
6.2.22 CDFINQUITECDFcoiiiiiiiiiiiiceeetet ettt et et ae et e s bt e sae e s e s enesanenneeanenreens 81
6.2.23 CDFOPENCDEoiiiiiiiiiiee ettt ettt ettt ettt et a e et sa e sae e s e saeenesan s e eanenreeas 83
6.2.24 CDFSEICACNESIZEveouiiniiiiieiiciiieiieteetee ettt ettt ettt et ae e e sa e saeene s e enesaeenneeanenreeas 84
6.2.25 CDFSEICRECKSUI «..coutiiiiiiiiiiiiiieitiiteteetete ettt ettt ettt ettt ettt et eae et eae e s bt eanesaeesnesaeesnesunenneeanennens 84
6.2.26 CDFSELCOMPIESSION «.....eeuiiiienrieitintietinieeteeitete et e st eetesreeae s it eesesteesnesteesseeseesseeseesaeennesueennesaeennesanensesanensenns 85
6.2.27 CDFsetCompressioNCaCRESIZEccuivieiiiiiniiiieiiiienieeeeeteee ettt ettt ettt ne e 86
6.2.28 CDFSEIDECOMINGcouieiieiiiiiieiieieeitete ettt ettt ettt ettt et ettt ettt e et et e saeeanesaeesnesaeennesanenneeanensens 87
6.2.29 CDFSEENCOMINGeouteiieiiiiiieiiciieeieeteet ettt ettt ettt ettt et et et e et e e e sateanesaeesnesueennesunenneeanenrens 88
6.2.30 CDFSetFIleBaCKWardccccoiiiiiiiiinieitiitee ettt et et ereeas 88
6.2.31 CDFSEFOIMALcc.eeiiiiiiiiiieiieteee ettt ettt ettt et ettt et et e st eae e et eaeesaeeanesaeennesaeennesunenneeanensens 89
6.2.32 CDFSEIMAJOTILY ...eoueeuiiriieiieiieiieitenie ettt ettt ete ettt eetesaeeae st essesteesseeae et e eae e st eaeesaeemnesaeennesueennesunennesanenseenn 90
6.2.33 CDFsetNegtoPOSIPOMOMEc..cccuiriieiiiieiiiieie ettt ettt ettt et st e e s e e eanesanereean 91
6.2.34 CDFSetReadONLYMOMEc.coouiiiiiiiiiniieiieitete ettt ettt ettt e sae e st e s e s esnesaeennesaneneean 91
6.2.35 CDFSetStageCaCheSizZe coueviiiiiieiiieii ettt ettt ettt et s st re e 92
6.2.30 CDFSEIVALIAALEc.eeenieiieiieiieiicieeeeteett ettt ettt ettt et et ae et e saeeanesaeesnesaeesnesunenneeanenneean 93
6.2.37 CDFSEIZIMIOUEooeieniiiieiieiieieeteeie ettt ettt ettt ettt et ean e et e st eaeeaeeaeesaeeanesaeennesaeennesunennesanensenn 93

6.3 VaATIADIC ...couiiiiiieee ettt et h et et a e e ae e she e sa e nnesaeeneeanene e 94
6.3.1 CDEFCIOSEZV ALccuuiiiiiiiiieiecietect ettt ettt ettt ettt ettt et ettt ettt eae e et et e bt eanesaeesnesaeennesaeennesanenreean 94
6.3.2 CDFcONfIrMZVarEXISIENCEc.eeuiriieiiriieiiiiete ettt ettt ettt et et esae et e sae e saeene s e enesaeennesanereean 95
6.3.3 CDFconfirmzVarPadValUEEXIStENCEccuerieriiriiniiiiiniieienieeteeeeteee ettt et 96
6.3.4 CDECIEAEZVATueeiieniiiiiiiieiieiecteete ettt ettt et ettt et e et e e st e eae et e eae e st eaeesaeeanesaeennesueennesunenneeanensenn 97
6.3.5 CDEFAEICIEZVALoeiieniiiieiieieiect ettt ettt ettt ettt ettt et eae e st et e saeeaaesaeesnesaeennesunenneeanenseenn 99
6.3.6 CDFdeleteZVAarRECOTASc..coueiiiriiiiiiiiiiieieie ettt sttt sttt et ae e et ene s ennesaees 100
6.3.77 CDFgetMaxWIitteNRECINUIMS.....c..cooiiiiiiieiiiieieiet ettt ettt ettt e s ene s 101
6.3.8 CDEFZEINUIMIVALS ..c..eoiiiiiiiiiniieieeiieteeie ettt ettt ettt et st eae st e s e s ae e b e s ae e st eas et e easeteessesntennesaeennesaeennenaeen 101
6.3.9 CDEFZEIINUMZVAIS.....ccciiiieiiiieieiieieeie ettt ettt et sttt st e e st e e s besae e bt e s et esseaeesnesntennesaeennesaeennenaeen 102
6.3.10 CDFgetVarAlIRecordsByVarNAMEcc.cceeciiriiiiiinieiiiieieneeeeeeesree ettt et s 103

6.3.11
6.3.12
6.3.13
6.3.14
6.3.15
6.3.16
6.3.17
6.3.18
6.3.19
6.3.20
6.3.21
6.3.22
6.3.23
6.3.24
6.3.25
6.3.26
6.3.27
6.3.28
6.3.29
6.3.30
6.3.31
6.3.32
6.3.33
6.3.34
6.3.35
6.3.36
6.3.37
6.3.38
6.3.39
6.3.40
6.341
6.3.42
6.3.43
6.3.44
6.3.45
6.3.46
6.3.47
6.3.48
6.3.49
6.3.50
6.3.51
6.3.52
6.3.53
6.3.54
6.3.55
6.3.56
6.3.57
6.3.58
6.3.59
6.3.60
6.3.61
6.3.62
6.3.63
6.3.64
6.3.65
6.3.66

CDFZEEVAIINUIIL ..ottt ettt ettt ettt et st st a e st e bt e s e bt eane b e e s eebeenneeneenneeae 104

CDFgetVarRangeRecordsByVarNAmec..cocoouiiiiiiiiiiniieieicecc e 106
CDFZetzZVarAllOCRECOTAScoouiiiiiiiiiiieieitcectetee ettt st et 107
CDFgetzVarAlIRecordsByVarlDccccocioiiiiiiiiiiiiniiieeiceeeeee sttt 108
CDFgetzVarBIOCKINGFACIOTc.oociiiiiiiiiieiiiiciectceece ettt 109
CDFZEtZVarCaCheSiZeccuivuiiiiiiiiieieitee ettt st et st et eneeae 110
CDFZEtZVarCOmMPIESSION «....eeeenrieireiieteritete it siteteeeseteeasesteesnesaeessesaeessesaeessessnesseensesseensesseenseeneenneenne 111
CDFZEIZVATDALA.ceeeiiiiieiiieieit ettt sttt ettt ettt st ae st e bt e s e beeane bt esneebeesneeneenneeae 112
CDFZEtZVarDataTYPecc.eevieiiiiiiiiniieieitetertete sttt ettt et e st sae sttt ene b e st eaeeneeae 113
CDFZEtZVaArDIMSIZEScueeuiieiiiiieiettete sttt ettt et e st sae st be s bt eane b e neebe et e eneeneeae 114
CDFgetzZVarDIMVATIANCESoouieiiriieiiniieieiteiesiteteeet et ettt ettt ete st esae st sresen et enesbeeneebeesneeneeneeee 115
CDFgetzVarMax AIIOCRECNUIN........oouiiiiiiieiiiiciectcee ettt e 116
CDFgetzVarMaxWritteNRECINUINc..cocuiiiiiiiiiiiiiiiieeicieeteetc ettt e 116
CDFZEtZVATNAIE.......couviiiiiiieiiiiieieeicete sttt sttt ettt ettt et st eae st e beeas e beeanesbeesneeteesneeneeneeae 117
CDFZetzZVarNUMDIMSocuiiiiiiiiiiieienieerteeet ettt ettt e ne e 118
CDFgetzZVarNUMEIBIMENLSccuiiiiiiiiiiiieieiicieet ettt sttt eneeee 119
CDFgetzZVarNUMRECSWIIHEN «.....cceoruiiiiiiieiiiiieieniieieee ettt ettt n e eae 120
CDFZetzZVarPadValUe.........cc.ooiiiiiiiniiiiiiieicntceceee ettt ettt 120
CDFgetzVarRangeRecordSByVarIDccccociiiiiiiiiiiiiiiieiieece et e 121
CDFgetzZVarReCOrdDAtac.ceouieiiriieiiiieierteieeteeee ettt sttt e ne e 123
CDFZEtZVArRECVATIANCEooueeuiieiiiiieiiiiieieniteteetete ettt sttt st ettt ae s enesa et esneeneeneeee 124
CDFZetZVarReESEIVEPEICENLcoviiuiiiieiiiiieierteteeit ettt ettt ettt st st n e b esneeaeeneeae 125
CDFZEtZVarSEqDAta.cc.eeiiiiiiieiiiieiereete ettt ettt e st st s et ean et et eneeee 125
CDFZEIZVATSEAPOSceviiieiiieiieii ettt et et st st ean et n e bt eaeeneeae 126
CDFgetzVarsMaxWrittenNRECINUIMcc.ooiiiiiiiiiiiiiiieiceetctcceee et e 127
CDFgetzVarSparsCRECOTAScouiiiiriiiiiiiieieiieieet ettt ettt st et en e eneeae 128
CDFgetzVarsRecordDatabyNUMDETScccciiiiiiiiiiiiiiiiieieieencee e 129
CDFhyPerGetZVarData.......c..coceeouieiiniieiiiieieniteeeetete ettt ettt st ae et eenesb e s e b e st eneeneeae 131
CDFhyPerPUtZVarDatac..cocvevuiiiiniieiiiieienteeet ettt ettt e sa e e e sneeee 132
CDFINQUITEZV AT ..ottt ettt sttt ettt et et sae et st esae s e beeas e b e eanesbeeanesbeenneeneeneeae 134
CDFinsertrVarRecordsSBy VarID...........ccccoioiiiiiiiiiiiiiieiicieeeseee et 135
CDFinsertVarRecordsByVarNAmMe..........cocceouiiiiiiiiiiiiiniciietctecte ettt 137
CDFinsertzVarRecordsByVarIDccccocoiiiiiiiiiiiiiiiiiceicceee ettt e 138
CDFputVarAlIRecordsSByVarNAMEc.ccccerieriiiiiiiiniiiieieniceeeste ettt e e 139
CDFputVarRangeRecordsByVarNAmMEc.cccoeiiiiiiiiiniieiiniieienccee et 140
CDFputzVarAlIRecordsBy VarlDccccoceeiiiiiiiiiiiiiinieiieeesieeee ettt e 141
CDFPULZVAIDALAooiiiiiiiiiieiii ettt ettt st st ean ettt e eneeae 142
CDFputzVarRangeRecordsByVarlDccccocooiiiiiiiiiiiiiienieineeee et 143
CDFPUtZVarRECOTADALAocueiiieiiiiieiiiieicreecteee ettt sttt eee 144
CDFPULZVAISEADALA ...ttt ettt et et st e a et eneeae 145
CDFputzVarsRecordDatabyNUMDETS.........ccccoiiiiiiiiiiiiiiieieieeeeete et e 146
CDFIENAMEZVALoiiieiiiiieiiieiiett ettt sttt sttt ettt ettt s et e et st e st s e e seeen e bt eanesbeeaneebeenneeneenneeae 148
CDFsetzVarAlloCBIOCKRECOITScoueeiiriiiiiiieiiiicieetcte ettt e 149
CDFSetZVarAlIOCRECOITScoueeuiiiiiieiiiteiert ettt ettt e ene e 150
CDFsetzVarBloCKINGFACIOTc..cocuiiuiiiiiieiiiicieceee ettt 150
CDFSEtZVarCaCheSiZecouieiiiiiiiiieieneeereec ettt st e ne e 151
CDFSEtZVarCOMPIESSIONeeueeiieiieiieienieetenitetesetete et eteeesesteesnesseessesaeessesaeesseessesseensenseesesseenseeneenneenne 152
CDFSEtZVArDataSPECcvveuiiiiiiieiienicete sttt ettt ettt ettt sae st e ene b eane b s e ete s e eneeneeae 153
CDFSetZVarDIMVAITIANCESc.coouieviruieiiiriieienieieniteteeitete et sttt st eseseeesaeseeesaeessesseeenesaeesneeseesseeneeneenne 154
CDFSetZVarINitialRECscc.ooiiriiiiiriieiiiieicnteenteeee ettt st e 155
CDFSetZVarPadValUecc.ooiiiiiiiiiiiiiieicnceceee ettt e 156
CDFSEtZVarRECVATTANCEocueeiieiiiiieiiiiteientcect ettt ettt e n e e eneeae 156
CDFSetZVarReseIVEPEICENLc..cccviriiiiiiieiiiicieeteeeee ettt e 157
CDFSEtZVarsCaCh@SIZEc.uivuiiiiiiiiieieitee ettt ettt st e n et n e b eaeeneeae 158
CDFSEIZVArSEAPOSceiiiieiiieiei ettt et sttt e n e e be et e eneeae 159

CDFSetzVarSpars€RECOTAScouiiiiriiiiiiieiciteee ettt st e ne e 160

6.4 AUIIDULES/ENITIES ..ottt ettt st st st et eaeesb e e aeemaesae e saeennesaeen 161
6.4.1 CDFCONfIMATMIEXISIEIICE ...c..eeutiiieiieiiiiieieiteeestt ettt ettt sttt sttt et e s sat e saeennesaeennesneen 161
6.4.2 CDFconfirmgENIIYEXISIEIICEeeutitiiiiiiieieiieieteete sttt sttt sttt et ae e e ene e nesaeen 161
6.4.3 CDFconfirmrENtryEXISIEICEcoveoiiiiiiieieiieietiete ettt ettt et sae e sae e s saeen 162
644 CDFconfirmzENtryEXISTENCEccveitiiiiiiieiiiieieiietestc ettt sttt ettt e s s saeen 163
6.4.5 CDEFCTEAEALIc.eiiieiiiieieeitete ettt ettt ettt ettt et st e e st et e e et e s as et e eas et e eas e st essesntennesaeennesaeennenaeen 164
6.4.0 CDEFARIBLEALTcueiiiiiiiiieieeitet ettt ettt ettt ettt e st st s b s ae et e eae et e eeseae e e esatennesaeennesaeennesaeen 165
6.4.77 CDFEFAEICtEAUIZENIIYouiiiiiiiiiieeiieieee ettt ettt et sttt ae s e ne e saeesnesaeennesaeen 166
6.4.8 CDFAEICtEAMITENIIY ..ottt ettt ettt st sttt e a e essesatennesaeesnesaeennesaeen 167
6.4.9 CDFAEICtEAMIZENLITY ...oviiiiiiiiiiieiieiceiete ettt ettt sttt ae s e at e saeesnesaeennesaeen 168
6.4.10 CDFZEtAUIZENIIY ...coviiiiiiiiieiieieee ettt ettt sttt et e s e atesnesaeennesaeennenaeen 168
6.4.11 CDFgetAttrgENryDataTYPeccveiiriiiiieiiiieienie ettt ettt ettt et sae e saeene e nesaeen 170
6.4.12 CDFgetAttrgEntryNUMEICMENTSco.eiiiiiiiieiiiieiceicee ettt et s e 171
6.4.13 CDFZELAMITENIIY ..coiiiiiiiiiiiiiiieee ettt sttt et ae s e atesnesaeennesaeennenaeen 172
6.4.14 CDFZEtAUIMAaXZENIIY ...oooiiiiiiiiiiieiiiiet ettt sttt ettt e at e et ene st eaesaeen 173
6.4.15 CDFZEetAUIMAXIENIIY c..cocviiiiiiiiiiiieiciee ettt sttt et ae e s ene s enesaeen 174
6.4.16 CDFZEtAUIMAXZENIY ..cociiiiiiiiiiiiiieiiiiete ettt sttt sttt et e ae e et ene s esnesaeen 175
6.4.17 CDFZELAUIINAINEccviiuiiiiiieieeiieteet ettt ettt ettt e e st e e st e s e sae e b e sae e st eas et e esseteessesatennesaeennesaeennenaeen 176
6.4.18 CDFZELAMIINUII ..c..eotiiiiiiiieieeiieteeit ettt ettt ettt et e e st e s e s s e e s e ea s et e easeaeessesatennesaeennesaeennesaeen 177
6.4.19 CDFgetAtITENIYDAtaTYPE ..c.ooouieiiiiiiieiiiiieieieetesttee ettt ettt e st 177
6420 CDFgetAttrrEntryNUMEIBIENTScc.eooiiiiiiiiiiiiiiericeeneee ettt et s s 178
60.4.21 CDFZELAIMISCOPEccuviiieuteieeieeiieteeet et ettt ettt ettt e e st e s st e st s ae e b e s as e bt eas et e eeseteessesntennesaeennesaeenaesaeen 179
6.4.22 CDFZELAMIZENIIY c..coiiiiiiiiiieiieieteee ettt ettt ettt ettt et sae e e atesnesaeesnesaeennenaeen 180
6.4.23 CDFgetAtrzENtryDataTyPecouveiiriiiiieiiiieieieetesttete ettt ettt e s s s 182
6.4.24 CDFgetAttrzEntryNUMEISMENTScc.ooiiiiiiiiiiiiiiieecee ettt et s s 183
6.4.25 CDFetNUMATUIZENIIIES ...oouiiiiiiiiiieiiiiieieete ettt ettt et e s s 184
6.4.26 CDFZEtNUMATLIIDULESc.eeriiiiiiiieiieiietietete ettt sttt sttt et sttt et e s saeessesaeennesaeennesaeennesanen 185
6.4.27 CDFZetNUMATITENLIIIEScueiiiiiiiiieiiiiieie ettt et et et s s saeen 185
6.4.28 CDFZEtNUMATIZENIIIES ...c.eeiiiiieiieiiiiieieicee ettt sttt sttt e ae s aeesnesaeesnesaeennesneen 186
6.4.29 CDFZEtNUMZAMIIDULESeouteutieiietieiietieiete ettt ettt ettt ettt sttt st e eeee bt eesesteessesneennesaeennesaeensenanen 187
6.4.30 CDFZEtNUMVAIIIDULESeuteitieiieiieiietietete ettt ettt ettt st eae st s et e e bt eesesaeessesatennesaeesnesaeennesaeen 188
6.4.31 CDFINQUITEALLT ..ottt ettt ettt ettt et st st e e s e b e s ae e bt eas et e esseneessesntennesaeennesaeennesaeen 189
6.4.32 CDFINQUITEAIZENIIY c..cociiiiiiiiiiiiiieietee ettt sttt et e ae e e esnesaeennesaeen 190
6.4.33 CDFINQUITEATIITENLIYeoiiiiiiiiiieiie ettt ettt et s ene s nesaeen 192
6.4.34 CDFINQUITEAIZENLTY ...cocviiiiiiiiiiiiieieiietee ettt sttt sttt e ae e at e e enesaeesnesaeen 193
6.4.35 CDFPULAIZENITY ..ooiiiiiiiiiiiieeieee ettt ettt sttt ae e e ae e saeennesaeennesaeen 194
6.4.360 CDFPULATITENIIY c..eoiiiiiiiiieieeeee ettt sttt sttt e a e e atene et ennesaeennenaeen 195
6.4.37 CDFPULATIZENIIY ...couviiiiiiiiiiiieieee ettt ettt ettt ettt essesatesnesaeennesaeennesaeen 197
6.4.38 CDFIENAMEALLT....c..eoiiiiieieiiteieeitet ettt ettt ettt ettt et st e e st e e s e e b e s as e bt ease st esseteessesntennesaeennesaeennesaeen 198
6.4.39 CDFsetAttrgENIyDataSPec.coveiieiiiiieieiieieie ettt ettt ettt e st s 198
6440 CDFSetAtITENIYDAtASPEC ...uveovieniieiiiiieieiieieie ettt sttt ettt et s e saeen 199
60.4.41 CDFSELAISCOPE ...eeuveiienreiieieeiteteeie et ettt ettt et sat e e e st esae st e s e s ae e aesas et e ease st eeseteeseesntennesaeennesaeennenaeen 200
6442 CDFSetAtIZENIYDAtASPECeouiiiiiiiiiieiieiieieie ettt ettt ettt et st s 201

7 Internal INterface = CDFLDoieeeeereeeceeereeeccereeeecceseeeecsssessecsssssssessssseeessssess 203

Tl EXAIMPLE(S) +eeueeetiieteeiee ittt ettt ettt ettt et e s bt e bt e sbt e e bt e s abeea bt e sh b e e bt e s bt e e b e e b et e bt e e bt e e bt e shbeeabeenhaeebeenbae s 203
7.2 Current ObJects/States (TLEIMS) ...cooueeruuieriierieeiie ittt ettt et e st et e st e e bt e sbe e e bt e sbte s bt esatesabeesbteenbeesbeeenseenseean 205
T3 RETUINEA STALUS ...eeuieiiiiiiiiitieie ettt ettt sttt ettt e s bt e bt e s at e e bt e sat e e bt e sbteenbeebtesabeesaeesabeessbesabeenbaeenbeensaean 209
T4 INAENALION/SEYLE ..ooniiiiiiiieiece ettt st sttt et b e e a e s ae e st enesaeen 209
TS5 SYIEAX weiiieitieiieie ettt ettt et ettt ettt ettt e a e s a e s ae e s h et e e bt e a et ea s et e ettt ennesaeennesaeenneeaeen 209
T.0 OPETALIONS. . . .eouvieiiiiieiieie ettt ettt ettt et et et e et e e et e bt e aeess e eaeesaeesaesaeessesaeesseeae e s e easenteene e st easesaeennesaeennesaeennenaeen 210
TT MOTE EXAMPLES ..ottt ettt ettt e st et e et ese e bt e e et ennesaeennesaeennesaeen 265

TT.1 TVATIADIE CIEAIOMNteitieeiiieiteeieeit ettt sttt ettt e ettt e bt e st e et e e sab e e bt e shteebeessbesabeesabesabeesabesabeesbeeenseenseean 265

7.7.2 zVariable Creation (Character Data TYPE)cccceeuieiirieiinieiiiieriteeenie et 265

7.73 Hyper Read with SUDSAMPIINGcoeoiiiiiiiiiiiiiieeee et e 266

TT7.4 Aribute RENAMINGccoiiiiiiiiiiiiiet ettt st et en e e eae e 267

TT5 SEQUENTIAL ACCESS ..oouvieuiiiieiieiieit ettt ettt ettt et ea et et sa e st s et et e s bt e s e s bt e nesbeessesbeeaneeseenneeneenneeae 267
TT.6 AriDULE TENIIY WITEES ..ouiiiiiiiiiiiieicei ettt et et sbe e s eneeae 268
777 Multiple ZVariable WIILEccoouiiiiiiiiiiiiiieecieeet ettt ettt et s eaeeneeae 269
7.8 A Potential Mistake We Don't Want YOu t0 IMAKEcoceiriiiiiiiniiiiieiieeeesiteeicerite ettt ettt 270
7.9 CUSLOM € FUNCHIONSeeiteiiteiiieeiteeite ettt sttt ettt et e sttt s bt e s et e et e e sat e e bt e s bt e enbeebee s bt esatesabeesabeenbeenbeeenseenneean 270

8 Interpreting CDF Status Codescccuvueiiccsssssnnneccsssssnnneecsssssssssssssssssssssssssse 273

9 EPOCH Utility ROULINES ...cccovvrrnneieccsssssanseccsssssanssscssssssssssssssssssssssssssssssssssssssse 279

9.1
9.2
93
94
95
9.6
9.7
9.8
99
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26

COMPUIEEPOCH ..ottt ettt ettt e s s et eae et e eaeeae 275
EPOCHDICAKAOWI......vviiiiieiiiiee ettt e ee ettt eeta e e e e e etta e e e e eeetabeeeeeeeatraeeeeeetbseeeeeeessseeeseenassseeeeenanraeeens 276
ENCOACEPOCHovviiiiiieee et e et e e e e ettt e e e e e e ettaeeeeeeetaaeeeeeesttsseeeeeetrseeeeeessreeeeeans 276
ENCOACEPOCH ..o ettt e et e e e ettt e e e e eeettaeeeeeeetaaeeeeeeettsseeeeeettseeeeeeanreaeeeaas 277
ENCOACEPOCHZ ...ttt e et e e e e ettt e e e e e eeettaaeeeeeetaaeeeeeeastseeeeeeetrseeeeeeasreeeeeeas 277
ENCOAEEPOCHS ... ettt e e e et e e e e et tae e e e e eeettaeeeeeeetaaeeeeeeettsseeeeeetsseeeeeessreeeeeans 277
ENCOACEPOCHY ...ttt e e et e e e ettt e e e e e eeettaeeeeeeentaaeeeeeesttsseeeeeetsaeeeeeessreeeeeaas 277
ENCOACEPOCHX ...ttt et e e e et e e e e e e aae e e e e eeettaeeeeeeestaaeeeeeeastsseeeeeessseeeeeeasseeeeeeas 278
PATSEEPOCH ..ottt ettt e a et s a et st a e st ae s heean et eas 279
PATSEEPOCH ..ottt ettt ettt et st st a e e a e e h e s a ettt ene e 279
PATSEEPOCH2 ...ttt ettt ettt et sttt st a e et h e st a et et eae 279
PATSEEPOCHI ...ttt et ettt et st st a e st h e a e sttt eae 279
PATSEEPOCHY ...ttt ettt et st st a e et h e s h et e ne e 280
COMPULEEPOCH LG ...c..ceiiiiiiiiiiiee ettt sttt st ettt e ne st et eaeeneeae 280
EPOCH 1ODIEAKAOWIN......ccceiiiriiieieeiiiieeeeeeeteee e eeete e e ee et e e e e eeete e e e e eeetaaeeeeeeeasaeaeeeesestsseeeesesssseeeeenansseeeeeennres 280
ENCOAECEP O CHLOoveiiiieeeee e et e e e e e e et e e e e eeettaeeeeeeeeataeeeeeeettsseeeeeaasseeseeennres 281
(S i Tetele (51 23 S0 103 5 1 K< TN O 281
(S i Tetele 51 23 S0 103 5 1 K TN S 281
(S i TeTele (51 23 S0 103 5 1 K TG JP SR 282
(S i Tetele (51 23 S0 103 5 1 K T S 282
(S Tetele (51 23 S0 103 5 1 K T PSS 282
PATSEEPOCHIO ...ttt ettt e st st a e e e st e b e e ae e nesbeen e eneeae 283
PATSEEPOCH IO _1 ...ttt ettt st e b e st e bt e sab e e bt e st e e bt e sabeesbeesabeessaesaneenne 284
PATSEEPOCH IO _2 ...ttt ettt et st et s et e bt e sab e e bt e saseebeesabeesbeesabeesseesaneenee 284
PATSEEPOCH IO _3 ...ttt sttt sttt e st e s bt e sab e e bt e s bt e bt e sabeesbeesateesseesaneenne 284
PATSEEPOCH IO _4 ..ottt ettt sttt st e s bt e sab e e bt e st e e bt e sabeesbeesabeessaesaneenne 284

10 TT2000 Utility ROULINES auueeeeiccesissnneicccsssssnnsseccssssssssssscssssssssssssssssssssssssssssssssses 28 7

10.1
10.2
103
104
10.5
10.6
10.7
10.8

CDF_TT2000_from_UTC_PAITS ...c.ueerieriieitieeieeniteeieesite st esite st esbteeteesbeesteesbeesateesaeessseesbaesseenseesnseesseesanes 287
CDF_TIME_tO_UTIC_PATSeeitieiiieeiieeiteeitte et ette st estte st estte st esbtessbeesbeesabeestesabeesatesabeesbaesnbeenseesabeenseesanes 288
CDF_TT2000_tO_UTC _StINZ..ccteeruttertierieeitteeteenitesteestte st e site st esbteebeesbeesabeesseesateesatesabeesbaesaseenseesnbeesseesanes 289
CDF_TT2000_from_UTC_StINZ ..cc.veertteriteitieeieeniteeieesite sttt st esbteeteesbeesteesbeesateesatesateesbaesaseenseesabeesseesases 290
CDF_TT2000_from_UTC_EPOCHooooiiiiiiieee ettt eee e e ettt e e etaae e e e eeaaeeeeeeenraeee s 290
CDF_TT2000_to_UTC_EPOCH.........ccoitttiie ettt ettt e et e e et e e e e e etaaeeeeeearaeeeeeesnraeeeas 291
CDF_TT2000_from_UTC_EPOCHILOccooiriiieeeeceeee ettt eeaav e e e eeaaae e e e eeenaaee s 291

CDF_TT2000_to_UTC_EPOCHILO.........cctiiiiiiiiiieiieectt ettt sttt ettt sne et 291

Chapter 1

1 Compiling

Each source file that calls the CDF library or references CDF parameters must include cdf.h. On OpenVMS systems a
logical name, CDFS$INC, that specifies the location of cdf.h is defined in the definitions file, DEFINITIONS.COM,
provided with the CDF distribution. On UNIX systems (including Mac OS X) an environment variable, CDF_INC, that
serves the same purpose is defined in the definitions file definitions.<shell-type> where <shell-type> is the type of shell
being used: C for the C-shell (csh and tesh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne
shell (sh). This section assumes that you are using the appropriate definitions file on those systems. The location of
cdf.h is specified as described in the appropriate sections for those systems.

The CDF file’s offset and size in V 3.0 use the data type off_t (__int64 on Windows)', instead of 32-bit long. One or
certain predefined macros needs to be defined to the C compiler to make it 64-bit long.

One of two methods may be used to include cdf.h. They are described in the following sections.

1.1 Specifying cdf.h Location in the Compile Command

The first method involves including the following line at/near the top of each source file:
#include "cdf.h"

Since the file name of the disk/directory containing cdf.h was not specified, it must be specified when the source file is
compiled.

1.1.1 OpenVMS Systems

An example of the command to compile a source file on OpenVMS systems would be as follows:

$ CC/INCLUDEFIDIRECTORY=CDF$INC/DEFINE= LARGEFILE <source-name>

' We use OFF _T to represent either off t or _int64 as the 64-bit data type in the following section.

where <source-name> is the name of the source file being compiled. (The .C extension does not have to be specified.)
The object module created will be named <source-name>.OBJ. Use /DEFINE=_LARGEFILE to make OFF_T 64-bit
long.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-
precision floating-point representation of IEEE FLOAT, you will also have to specify /FLOAT=IEEE FLOAT on the
CC command line in order to correctly process double-precision floating-point values.

1.1.2 UNIX Systems (including Mac OS X)

An example of the command to compile a source file on UNIX flavored systems would be as follows:

% cc -c -I${CDF INC} -D FILE OFFSET BITS=64 -D LARGEFILE64 SOURCE
-D_LARGEFILE_SOURCE <source-name>.cC

where <source-name>.c is the name of the source file being compiled (the .c extension is required). The -c option
specifies that only an object module is to be produced. (The link step is described in Section 2.2.) The object module
created will be named <source-name>.0. Note that in a “makefile” where CDF_INC is imported, $(CDF_INC) would
be specified instead of ${CDF INC}. The defined Macros, _FILE_OFFSET_ BITS=64,
2_LARGEFILE64_SOURCE and LARGEFILE_SOURCE, are needed to make the data type OFF_T 64-bit long.

1.1.3 Windows NT/2000/XP Systems, Microsoft Visual C++ or Microsoft
Visual C++ .Net

An example of the command to compile a source file on Windows systems using Microsoft Visual C++ would be as
follows. It is extracted from an NMAKE file, generated by Microsoft Visual C++, to compile the CDF library source
code.

C:\> CL /c /nologo /W3 /Gm /GX /zI /Od /D "WIN32" /D " FILE OFFSET BITS=64"
/D " LARGEFILE SOURCE" /D " LARGEFILE64 SOURCE" /I<inc-path> <source-name>.c

where <source-name>.c is the name of the source file being compiled (the .c extension is required) and <inc-path> is
the file name of the directory containing cdf.h. You will need to know where on your system cdf.h has been installed.

<inc-path> may be either an absolute or relative file name.

You may also need to specify the location of system include files. For Microsoft Visual C++ this is usually
accomplished by setting MS-DOS environment variables, e.g., execute VCVARS32.BAT for VC++.

The /c option specifies that only an object module is to be produced. The object module will be named <source-
name>.obj.

The /nologo option specifies that the Copyright message is suppressed.
The /W3 option specifies the warning level for compiling.

The /Gm option specifies that minimal rebuild is enabled.

* You may not need to define these all three macros on a certain Unix platform. But defining all of them should work
on all compilers that support 64-bit off t data type.

The /GX option specifies that C++ EH is enabled.

The /Z1 option specifies that edit/continue debug information is enabled.

The /Od option specifies that optimization is disabled.

WIN32, FILE OFFSET BITS=64, LARGEFILE SOURCE and LARGEFILE64 SOURCE are defined macros.
Consult the documents for Microsoft Visual C++ or contact gsfc-cdf-support@lists.nasa.gov for inquiries.

All distributed libraries (static and dynamic) as well as the executables for the toolkit programs for WIN32 are created
by the Microsoft Visual C++.

1.2 Specifying cdf . h Location in the Source File

The second method involves specifying the file name of the directory containing cdf.h in the actual source file. The
following line would be included at/near the top of each source file:

#include "<inc-path>cdf.h"

where <inc-path> is the file name of the directory containing cdf.h. The source file would then be compiled as shown
in Section 1.1 but without specifying the location of cdf.h on the command line (where applicable).

On OpenVMS systems CDF$INC: may be used for <inc-path>. On UNIX, MS-DOS, and Macintosh systems, <inc-
path> must be a relative or absolute file name. (An environment variable may not be used for <inc-path> on UNIX
systems.) You will need to know where on your system the cdf.h file has been installed. on Macintosh systems, file
names are constructed by separating volume/folder names with colons.

Chapter 2

2 Linking

Your applications must be linked with the CDF library.” Both the Standard and Internal interfaces for C applications
are built into the CDF library. On OpenVMS systems, a logical name, CDF$LIB, which specifies the location of the
CDF library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX
systems (including Mac OS X) an environment variable, CDF_LIB, which serves the same purpose, is defined in the
definitions file definitions.<shell-type> where <shell-type> is the type of shell being used: C for the C-shell (csh and
tesh), K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This section assumes that you
are using the appropriate definitions file on those systems. The location of the CDF library is specified as described in
the appropriate sections for those systems.

2.1 OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDFS$LIB:LIBCDF/LIBRARY, SYSSLIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_ FLOAT
or VAXCRTLD for a default of D FLOAT or VAXCRTLT for a default of IEEE FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the /EXECUTABLE qualifier.

UNIX Systems (including Mac OS X)
An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

? A shareable version of the CDF library is also available on Open/VMS and some flavors of UNIX. Its use is
described in Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on Window NT/2000/XP. Consult
the Microsoft documentation for details on using a DLL. Note that the DLL for Microsoft is created using Microsoft
VC ++.

% cc <object-file(s)>.o ${CDF_LIB}/libcdf.a

where <object-file(s)>.o is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX
systems may also require that -lc (the C run-time library), -lm (the math library), and/or -1dl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used.

2.1.1 Combining the Compile and Link

On UNIX systems the compile and link may be combined into one step as follows:

% cc -I${CDF_INC} -D FILE OFFSET BITS=64 -D LARGEFILE64 SOURCE
-D_LARGEFILE SOURCE <source-name (s)>.c ${CDF _LIB}/libcdf.a

where <source-name(s)>.c is the name of the source file(s) being compiled/linked. (The .c extension is required.)
Some UNIX systems may also require that -Ic, -lm, and/or -1dl be specified at the end of the command line.

2.2 Windows NT/2000/XP SYSTEMS, Microsoft Visual C++ or
Microsoft Visual C++ .NET

An example of the command to link your application with the CDF library (LIBCDF.LIB) on Windows systems using
Microsoft Visual C++ or Microsoft Visual C++ NET would be as follows:*

> LINK /nologo /nodefaultlib:libcd /nodefaultlib:libemt /nodefaultlib:msvert \
/output:where to.exe <objs> <lib-path>\libcdf.lib

where <objs> is your application's object module(s); <where to.exe> is the name of the executable file to be created
(with an extension of .exe); and <lib-path> is the file name of the directory containing the CDF library. You will need
to know where on your system the CDF library has been installed. <lib-path> may be either an absolute or relative
directory name that contains libcdf.lib.

Consult the manuals for Microsoft Visual C++ to set up the proper project/workspace to compile/link your applications.

* This example is extracted from an NMAKE file, created by Microsoft Developer Studio, for compiling/linking the
toolkit programs.

Chapter 3

3 Linking Shared CDF Library

A shareable version of the CDF library is also available on OpenVMS systems, some flavors of UNIX® and Windows
NT/2000/XP®. The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
DEC VAX & Alpha (OpenVMS) LIBCDF.EXE
Sun (SunOS)’ libedf.so

Sun (Solaris) libedf.so

HP 9000 (HP-UX)’ libedf.sl

IBM RS6000 (AIX)’ libcdf.o

DEC Alpha (OSF/1) libedf.so

SGi (IRIX 6.x) libedf.so
Linux (PC & Power PC) libedf.so
Windows NT/2000/XP dlledf.dll
Macintosh OS X libedf.dylib

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

3.1 DEC VAX & Alpha (OpenVMYS)

$ ASSIGN CDFSLIB:LIBCDF.EXE CDFSLIBCDFEXE

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDFSLIBCDFEXE/SHAREABLE
SYSSLIBRARY:<crtl>/LIBRARY
<Control-Z>

$ DEASSIGN CDFSLIBCDFEXE

> On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD LIBRARY PATH must be set to include the directory containing libcdf.so or libcdfsl.

® When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dllcdf.dll.

7 Not yet tested. Please contact gsfc-cdf-support@lists.nasa.gov to coordinate a test.

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_ FLOAT
or VAXCRTLD for a default of D FLOAT or VAXCRTLT for a default of IEEE FLOAT. The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the EXECUTABLE qualifier.

NOTE: On DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYSSSHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYSS$SHARE : LIBCDF/SHAREABLE
SYSSLIBRARY:<crtl>/LIBRARY
<Control-Z>

3.2 SUN (Solaris)

$ cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lc -1lm
where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.3 HP 9000 (HP-UX)®

$ cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.sl -lc -1lm
where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.4 IBM RS6000 (AIX)*

% cc -o <exe-file> <object-file(s)>.o -L${CDF_LIB} S${CDF _LIB}/libcdf.o -lc -1m

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

8 Yet to be tested.

3.5 DEC Alpha (OSF/1)

% cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -1lm -lc
where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 SGi (IRIX 6.x)

$ cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -1lm -1lc
where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.7 Linux (PC & Power PC)

o)

$ cc -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -1lm -lc
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name

of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 Windows (NT/2000/XP)

% link /out:<exe-file>.exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has

dlledf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.9 Macintosh OS X

% cc -o <exe-file> <object-file(s)>.o S${CDF_LIB}/libcdf.dylib -1m

where <object-file(s)>.o is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

10

Chapter 4

4 Programming Interface

4.1 Item Referencing

The following sections describe various aspects of the C programming interface for CDF applications. These include
constants and types defined for use by all CDF application programs written in C. These constants and types are
defined in cdfh. The file cdfth should be #include'd in all application source files referencing CDF
routines/parameters.

For C applications all items are referenced starting at zero (0). These include variable, attribute, and attribute entry
numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are numbered
starting at zero (0).

4.2 Defined Types

The following typedef's are provided. They should be used when declaring or defining the corresponding items.

CDFstatus All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, are of type CDFstatus. They return a status code indicating the
completion status of the function. The CDFerror function can be used to inquire
the meaning of any status code. Appendix A lists the possible status codes along
with their explanations. Chapter 8 describes how to interpret status codes.

CDFid An identifier (or handle) for a CDF that must be used when referring to a CDF. A
new CDFid is established whenever a CDF is created or opened, establishing a

connection to that CDF on disk. The CDFid is used in all subsequent operations on
a particular CDF. The CDFid must not be altered by an application.

4.3 CDFstatus Constants

These constants are of type CDFstatus.

CDF_OK A status code indicating the normal completion of a CDF function.

11

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 8 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE_FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF_INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINTI1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.
CDF_INT8 8-byte, signed integer.
CDF _REALA4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF _REALS 8-byte, floating point.
CDF _DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.
CDF_EPOCH16 two 8-byte, floating point.

12

CDF TIME TT2000 8-byte, signed integer.

CDF CHAR and CDF _UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character). Both CDF_INT8 and
CDF _TIME TT2000, 8-byte integer, can be presented in “long long” in C.

NOTE: When using a 64-bit OS. E.g., DEC Alpha running OSF/1, or Linux running 64-bit Intel, keep in mind that a
long is 8 bytes and that an int is 4 bytes. Use int C variables with the CDF data types CDF INT4 and CDF UINT4
rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF _INT4 and CDF UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK _ENCODING Indicates network transportable data representation (XDR).

VAX ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSd _ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

ALPHAOSF1 ENCODING Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.

SGi_ ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).

13

HP_ENCODING Indicates HP data representation (HP 9000 series).

PC_ENCODING Indicates PC data representation.
NeXT _ENCODING Indicates NeXT data representation.
MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST _ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G FLOAT
representation.

ALPHAVMSi DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1 DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_ DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).

14

HP_DECODING Indicates HP data representation (HP 9000 series).

PC_DECODING Indicates PC data representation.
NeXT DECODING Indicates NeXT data representation.
MAC _DECODING Indicates Macintosh data representation.

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

4.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.
VARY True record or dimension variance.

NOVARY False record or dimension variance.

15

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the

same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for

a particular data set.
NO COMPRESSION

RLE COMPRESSION

HUFF_COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

4.11 Sparseness

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING_TREES.

Gnu's “zip" compression.” There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes.

? Disabled for PC running 16-bit DOS/Windows 3.x.

16

4.11.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.'’

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF READONLY MODE > operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLY off Turns off read-only mode.

12 Obviously, sparse arrays are not yet supported.

17

4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT ,CDF_zMODE > operation.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF NEGtoPOS{p0 MODE > operation.

NEGtoPOS{pOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOS{pOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name (excluding the NUL'' terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical

"' The ASCII null character, 0x0.

18

names on OpenVMS systems and environment variables on UNIX

systems).
CDF_VAR NAME LEN256 Maximum length of a variable name (excluding the NUL terminator).
CDF_ATTR NAME LEN256 Maximum length of an attribute name (excluding the NUL terminator).
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).
CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

4.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.X, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. Function
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (e.g.,. via CDFcreateCDF). This function takes an argument to control the backward file compatibility.
Passing a flag value of BACKWARDFILEon, defined in cdf.h, to the function will cause the new files being created
to be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish
to create and share files with colleagues who still use a CDF V2.6/V2.7 library. If this option is specified, the
maximum file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEOoff, also defined in cdf.h, will
use the default file creation mode and the newly created files will not be backward compatible with older libraries. The
created files are of version 3.* and thus their file sizes can be greater than 2G bytes. Not calling this function has the
same effect of calling the function with an argument value of BACKWARDFILEooff.

The following example uses the Internal Interface to create two CDF files: “MY TEST1.cdf” is a V3.* file while

“MY_TEST2.cdf” a V2.7 file. Alternatively, the Standard Interface function CDFcreateCDF can be used for the file
creation.

#include "cdf.h"

CDFid id1, id2; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims = 0; /* Number of dimensions. */
long dimSizes[1] = {0}; /* Dimension sizes. */

status = CDFlib (CREATE , CDF _, “MY_TEST1”, numDims, dimSizes, &idl,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

CDFsetFileBackward(BACKWARDFILEon);
status = CDFlib (CREATE , CDF _, “MY_TEST2”, numDims, dimSizes, &id2,
NULL);

19

if (status != CDF_OK) UserStatusHandler (status);

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDFSFILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward function to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

#include "cdf.h"

CDFstatus status; /* Returned status code. */

flag = CDFgetFileBackward();

4.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5_CHECKSUM, both defined in cdfh. With MD5 CHECKSUM, the MDS5
algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

See Section 6.2.5 and 6.2.25 for the Standards Interface functions and Section 7.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF

20

files will have their checksum bit set with a signature message produced by the MDS5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MDS5 checksum and set another
existing file’s checksum to none.

#include "cdf.h"

CDFid id1, id2; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims = 0; /* Number of dimensions. */
long dimSizes[1] = {0}; /* Dimension sizes. */

long checksum; /* Checksum code. */

status = CDFlib (CREATE , CDF _, “MY_TEST1”, numDims, dimSizes, &idl,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

checksum = MD5_CHECKSUM,;

status = CDFlib (SELECT , CDF , idl,
PUT _, CDF_CHECKSUM , checksum,
NULL_);

if (status != CDF_OK) UserStatusHandler (status);

status = CDFlib (OPEN _, CDF , “MY_ TEST2”, &id2,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

checksum = NO_CHECKSUM,;

status = CDFIib (SELECT , CDF , id2,
PUT_, CDF_CHECKSUM , checksum,
NULL);

if (status != CDF_OK) UserStatusHandler (status);

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* Checksum code. */

21

status = CDFIlib (OPEN , CDF , “MY_TEST1”, &id,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFIib (SELECT _, CDF , id,
GET_, CDF_CHECKSUM , &checksum,
NULL);

if (status != CDF_OK) UserStatusHandler (status);

if (checksum == MD5 CHECKSUM) {

h

Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

4.20 Data Validation

To ensure the data integrity from CDF files and secure operation of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to
function unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-
guard the CDF operations: catch any bad data in the file and end the application gracefully if any bad data is identified.
An overhead (performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is
advised that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need
a file conversion, which will consolidate the interna; data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide.

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all
open CDF files are subjected to this data validation process. If the environment variable is set to “ne”, then no
validation is perfomed. The environment variable can be set at logon or through command line, which becomes in
effective during terminal session, or by an application, which is good only while the application is run. Setting the
environment variable, CDFsetValidate, at application level will overwrite the setup from the command line. The
validation is set to be on when VALIDATEFILEon is passed into as the argument. VALIDATEFILEoff will
set off the validation. CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero)
otherwise. If the environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation on when the CDF file, “TEST”, is open.
#include ‘cdf.h’

CDFid id /* CDF identifier. */
CDFstatus status /* Returned status code. */

CDFsetValidate (VALIDATEFILEon)

status = CDF _lib (OPEN_, CDF , “TEST”, &id,
NULL)

if (status .NE. CDF_OK) UserStatusHandler (status)

22

The following example turns off the data validation when the CDF file, “TEST” is open.
#include ‘cdf.h’

CDFid id /* CDF identifier. */
CDFstatus status /* Returned status code. */

CDFsetValidate (VALIDATEFILEofY)

status = CDF _lib (OPEN _, CDF _, “TEST”, &id,
NULL)

if (status .NE. CDF_OK) UserStatusHandler (status)

4.21 8-Byte Integer

Both data types of CDF INT8 and CDF TIME TT2000 use 8-byes signed integer. While there are several ways to
define such integer by various C compilers on various platforms, “long long” appears to be accepted by all ports that
support CDF. This is the data type that CDF library uses for these two CDF data types.

23

Chapter 5

5 Standard Interface

The Standard Interface functions described in this chapter represents the original Standard Interface functions. As most
of them were developed when CDF was first introduced in early 90°s and they only provide a very limited functionality
within the CDF library. For example, it can not handle zVariables thoroughly and has no access to attribute’s entry
corresponding to the zVariables (zEntries). If you want to create or access zVariables and zEntries, you must use the
newer Standard Interface functions (a new feature in CDF Version 3.1) in Chapter 6 or the Internal Interface described
in Chapter 7.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
they are not as efficient as Internal Interface. If you are not familiar with Internal Interface, the use of Standard
Interface is recommended.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the original Standard Interface functions callable from C applications. Most functions
return a status code of type CDFstatus (see Chapter 8). The Internal Interface is described in Chapter 7. An application
can use either or both interfaces when necessary.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same

function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that
many of the Standard Interface functions in this chapter are implemented as macros (which call the Internal Interface).

5.1 CDFattrCreate'’

CDFstatus CDFattrCreate(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

12 Same as CDFcreateAttr.

25

char *attrName, /* in -- Attribute name. */
long attrScope, /* in -- Scope of attribute. */
long *attrNum); /* out -- Attribute number. */

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the

CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute.

determined with the CDFgetAttrNum function.

5.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each

entry describes some property of the corresponding variable (in this case the units for the data).

#include "cdf.h"

CDFid id; /*
CDFstatus status; /*
static char ~ UNITSattrName[] = {"Units"}; /*
long UNITSattrNum; /*
long TITLEattrNum,; /*
static long TITLEattrScope = GLOBAL SCOPE; /*

CDF identifier. */

Returned status code. */
Name of "Units" attribute. */
"Units" attribute number. */
"TITLE" attribute number. */
"TITLE" attribute scope. */

status = CDFattrCreate (id, "TITLE", TITLEattrScope, & TITLEattrNum);

if (status != CDF_OK) UserStatusHandler (status);
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE,
if (status != CDF_OK) UserStatusHandler (status);

5.2 CDFattrEntrylnquire

26

&UNITSattrnum);

An existing attribute's number may be

CDFstatus CDFattrEntrylnquire(/* out -- Completion status code. */

CDFid id,

long attrNum,
long entryNum,
long *dataType,

long *numElements);

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* in -- Entry number. */

/* out -- Data type. */

/* out -- Number of elements (of the data type). */

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrlnquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntryInquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

5.2.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 5.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 4.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable

numbers.

#include "cdf.h"

CDFid
CDFstatus
long

long

char

long
long
long
long

id;
status;
attrN;
entryN;

/* CDF identifier. */

/* Returned status code. */
/* attribute number. */

/* Entry number. */

attrName[CDF_ATTR NAME LEN256+1];

attrScope;
maxEntry;
dataType;
numElems;

/* attribute name, +1 for NUL terminator. */
/* attribute scope. */

/* Maximum entry number used. */

/* Data type. */

/* Number of elements (of the data type). */

27

attrN = CDFgetAttrNum (id, "TMP");

if (attrN < CDF_OK) UserStatusHandler (attrN);

status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status |= CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {
status = CDFattrEntryInquire (id, attrN, entryN, &dataType, &numElems);
if (status < CDF_OK) {
if (status = NO_SUCH_ENTRY) UserStatusHandler (status);
}
else {
/* process entries */

5.3 CDFattrGet"

CDFstatus CDFattrGet(/* out-- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

long entryNum, /* in -- Entry number. */

void *value); /* out -- Attribute entry value. */

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum (Section
5.5).
entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

"> An original Standard Interface function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is
the preferred name for it.

28

5.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; /* Attribute number. */

long entryN; /* Entry number. */

long dataType; /* Data type. */

long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */

attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFvarNum (id, "PRES _LVL"); /* The rEntry number is the rVariable number. */

if (entryN < CDF_OK) UserStatusHandler (entryN);
status = CDFattrEntrylnquire (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (buffer == NULL)...

status = CDFattrGet (id, attrN, entryN, buffer);
if (status != CDF_OK) UserStatusHandler (status);

buffer[numElems] = "0'; /* NUL terminate. */
printf ("Units of PRES LVL variable: %s\n", buffer);

free (buffer);

RN

5.4 CDFattrInquire14

'* An original Standard Interface function. While it is still available in V3.1, CDFinquireAttr is the preferred name for
it.

29

CDFstatus CDFattrInquire(
CDFid id,

long attrNum,

char *attrName,

long *attrScope,

long *maxEntry);

CDFattrlnquire is used to
CDFattrEntryInquire.

/* out -- Completion status code. */

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* out -- Attribute name. */

/* out -- Attribute scope. */

/* out -- Maximum gEntry or rEntry number. */

inquire about the specified attribute. To inquire about a specific attribute entry, use

The arguments to CDFattrInquire are defined as follows:

id

attrNum

attrName

attrScope

maxEntry

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 5.5).

The attribute's name. This character string must be large enough to hold
CDF _ATTR NAME LEN256 + 1 characters (including the NUL terminator).

The scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 7). If no entries exist for the attribute, then
a value of -1 will be passed back.

5.4.1 Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numDims; /* Number of dimensions. */

long dimSizes[CDF_MAX DIMS]; /* Dimension sizes (allocate to allow the maximum

number of dimensions). */

long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numVars; /* Number of variables in CDF. */
long numaAttrs; /* Number of attributes in CDF. */
long attrN; /* attribute number. */
char attrName[CDF_ATTR NAME LEN256+1];
/* attribute name -- +1 for NUL terminator. */
long attrScope; /* attribute scope. */

30

long maxEntry; /¥ Maximum entry number. */

status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority, &maxRec, &numVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);
for (attrN = 0; attrN < numAttrs; attrN-++) {
status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);
else
printf ("%s\n", attrName);

-~

5.5 CDFattrNum"

long CDFattrNum(/* out -- attribute number. */
CDFid id, /* in-- CDF id */
char *attrName); /* in -- Attribute name */

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrName The name of the attribute for which to search. This may be at most
CDF _ATTR NAME LEN256 characters (excluding the NUL terminator). Attribute names

are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

5.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

#include "cdf.h"

"> An original Standard Interface function. While it is still available in V3.1, CDFgetAttrNum is the preferred name for
it.

31

CDFid id;

CDFstatus status;

/* CDF identifier. */
/* Returned status code. */

status = CDFattrRename (id, CDFattrNum(id,"pressure"), "PRESSURE");
if (status != CDF_OK) UserStatusHandler (status);

5.6 CDFattrPut

CDFstatus CDFattrPut(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElements,
void *value);

/*
/*
/*
/*
/*
/*
/*

out -- Completion status code. */

in -- CDF identifier. */

in -- Attribute number. */

in -- Entry number. */

in -- Data type of this entry. */

in -- Number of elements (of the data type). */

in -- Attribute entry value. */

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

5.6.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

32

#include "cdf.h"

#define TITLE LEN 10 /* Length of CDF title. */

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long entryNum; /* Entry number. */

long numElements; /* Number of elements (of data type). */
static char title[TITLE LEN+1] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */
static short TMPvalids[2] = {15,30}; /* Value(s) of VALIDs attribute,

rEntry for rVariable TMP. */

entryNum = 0;
status = CDFattrPut (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF _CHAR, TITLE LEN, title);
if (status != CDF_OK) UserStatusHandler (status);

numElements = 2;

status = CDFattrPut (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
CDF_INT2, numElements, TMPvalids);

if (status != CDF_OK) UserStatusHandler (status);

5.7 CDFattrRename'®

CDFstatus CDFattrRename(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

char *attrName); /* in -- New attribute name. */

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 5.5).

'® An original Standard Interface function. While it is still available in V3.1, CDFrenameAttr is the preferred name for
it.

33

attrName The new attribute name. This may be at most CDF_ ATTR NAME LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

5.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFattrRename (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status != CDF_OK) UserStatusHandler (status);

5.8 CDFclose

CDFstatus CDFclose(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFclose closes the specified CDF. The CDEF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

5.8.1 Example(s)

The following example will close an open CDF.

#include "cdf.h"

34

CDFid 1id;
CDFstatus status;

/* CDF identifier. */
/* Returned status code. */

status = CDFclose (id);
if (status |= CDF_OK) UserStatusHandler (status);

5.9 CDFcreate

CDFstatus CDFcreate(
char *CDFname,
long numDims,

long dimSizes[],
long encoding,

long majority,
CDFid *id);

/* out -- Completion status code. */

/* in -- CDF file name. */

/* in -- Number of dimensions, rVariables. */
/* in -- Dimension sizes, rVariables. */

/* in -- Data encoding. */

/* in -- Variable majority. */

/* out -- CDF identifier. */

CDFcreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 4.6.

The majority for variable data. Specify one of the majorities described in Section 4.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

35

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFIib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 5.8).

5.9.1 Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
static long numDims = 3; /* Number of dimensions, rVariables. */
static long dimSizes[3] = {180,360,10}; /* Dimension sizes, rVariables. */

static long majority = ROW_MAIJOR; /* Variable majority. */

status = CDFcreate ("testl", numDims, dimSizes, NETWORK_ ENCODING, majority, &id);
if (status != CDF_OK) UserStatusHandler (status);

ROW_MAIJOR and NETWORK ENCODING are defined in cdf.h.

5.10 CDFdelete

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

36

5.10.1 Example(s)

The following example will open and then delete an existing CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopen ("test2", &id);

if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);

else {
status = CDFdelete (id);

if (status != CDF_OK) UserStatusHandler (status);
1
5

5.11 CDFdoc

CDFstatus CDFdoc(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long *version, /* out -- Version number. */

long *release, /* out -- Release number. */

char *Copyright); /* out -- Copyright. */

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.
release The release number of the CDF library that created the CDF.
Copyright The Copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF COPYRIGHT LEN + 1 characters (including the NUL
terminator). This string will contain a newline character after each line of the Copyright
notice.

37

5.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
long version; /* CDF version number. */
long release; /* CDF release number. */

char CopyrightfCDF_COPYRIGHT LEN+1]; /* Copyright notice -- +1 for NUL terminator. */

status = CDFdoc (id, &version, &release, Copyright);

if (status < CDF_OK) /* INFO status codes ignored */
UserStatusHandler (status);

else {
printf ("CDF V%d.%d\n", version, release);
printf("%s\n", Copyright);

1

s

512 CDFerror"’

CDFstatus CDFerror(/* out -- Completion status code. */
CDFstatus status, /* in -- Status code. */
char *message); /* out -- Explanation text for the status code. */

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 8 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code. This character string must be large enough to
hold CDF_STATUSTEXT LEN + 1 characters (including the NUL terminator).

5.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

'7 An original Standard Interface function. While it is still available in V3.1, CDFgetStatusText is the preferred name
for it.

38

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char text{CDF_STATUSTEXT LEN+1]; /* Explanation text.+1 added for NUL terminator. */

status = CDFopen ("giss_wetl", &id);
if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
CDFerror (status, text);

printf ("ERROR> %s\n", text);
!
5

5.13 CDFgetrVarsRecordData18

CDFstatus CDFgetrVarsRecordData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varsNum, /* in -- The number of variables involved. */
char *varNames|[], /* in -- The names of variables involved. */
long recNum, /* in -- The record number. */

void *buffer); /* out -- The data holding buffer. */

CDFgetrVarsRecordData reads an entire record from a specified record number for a number of the specified
rVariables in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables,
instead of doing it one variable at a time if calling the lower-level function. The retrieved record data from the
rVariable group is added to the buffer. The specified variables are identified by their names. Use
CDFgetrVarsRecordDatabyNumbers function to perform the similar operation by providing the variable numbers,
instead of the names.

The arguments to CDFgetrVarsRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varsNum The number of variables in the operation.
varNames The names of variables in the operation.
recNum The record number.

buffer The data holding buffer.

'® An original Standard Interface function.

39

5.13.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude, Temperature and
NAME. The record to be read is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar
variable of type int is allocated for its data type CDF INT4. For Longitude, a 1-dimensional array of type float (size
[2]) is allocated for its dimension variances [VARY,NONVARY] and data type CDF REAL4. A similar allocation is
done for Latitude for its NONVARY,VARY] dimension variances and CDF REAL4 data type. For Temperature,
since its [VARY,VARY] dimension variances and CDF REAL4 data type, a 2-dimensional array of type float is
allocated. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated for its [VARY,NONVARY]
dimension variances and CDF CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 5; /* Number of rVariables to read. */
long varRecNum = 4; /* The record number to read data. */
char *rVarl = "Time", /* Names of the rVariables to read. */

*rVar2 = "Longitude",
*rVar3 = "Latitude",
*rVar4 = "Temperature",
*rVar5 = "NAME";

char *varNames[5];

void *buffer; /* Array of buffer pointers. */

int time; /* rVariable: Time; Datatype: INT4. */
/* Dim/Rec Variances: T/FF. */

float longitude[2]; /* rVariable: Longitude; Datatype: REAL4. */
/* Dim/Rec Variances: T/TF. */

float latitude[2]; /* rVariable: Latitude; Datatype: REAL4. */
/* Dim/Rec Variances: T/FT. */

float temperature[2][2]; /* rVariable: Temperature; Datatype: REAL4. */
/* Dim/Rec Variances: T/TT. */

char name[2][10]; /* rVariable: Name; Datatype: CHAR/10. */
/* Dim/Rec Variances: T/TF. */

varNames[0] = rVarl; /* Name of each rVariable. */

varNames[1] =rVar2;
varNames[2] = rVar3;
varNames[3] = rVar4;
varNames[4] = rVar5;

buffer = (void *) malloc(sizeof(time) + sizeof(longitude) + sizeof(latitude) + sizeof(temperature) + sizeof(name));

status = CDFgetrVarsRecordData(id, numVars, varNames, varRecNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);

40

5.14 CDFgetzVarsRecordData

CDFstatus CDFgetzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long numVars, /*in -- Number of zVariables. */

char *varNames|[], /*in -- Names of zVariables. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; /* out — Array of buffers for holding data. */

CDFgetzVarsRecordData reads an entire record of the specified record number from the specified zVariables in a CDF.
This function provides an easier and higher level interface to acquire data from a group of variables, instead of reading
data one variable at a time. The retrieved record data from the zVariable group is put into the respective buffer. The
specified variables are identified by their names. Use the CDFgetzVarsRecordDatabyNumbers function to perform the
similar operation by providing the variable numbers, instead of the variable names.

The arguments to CDFgetzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.
varNames The names of the zVariables from which to read data.
varRecNum The record number at which to read data.

buffers An array of buffers, each holding the retrieved data for the given zVariables. Each buffer should
be big enough to allow full physical record data to fill.

5.14.1 Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT?2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type

CDF INT4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 4; /* Number of zVariables to read. */

long varRecNum = 5; /* The record number to read data — 6™ record */
char *zVarl = "Longitude", /* Names of the zVariables to read. */

*zVar2 = "Delta",
*zVar3 = "Time",
*zVar4d = "Name";

41

void **yarNames;
void **puffers;
unsigned int time[3][2];

short longitude[3];
int delta[3][2];
char name[2][10];
int 1;

/* Nariable names array. */

/* Array of buffers to hold the returned data. */

/* zVariable: Time; Datatype: UINT4. */

/* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
/* zVariable: Longitude; Datatype: INT2. */

/* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */

/* zVariable: Delta; Datatype: INT4. */

/* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
/* zVariable: Name; Datatype: CHAR/10. */

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

varNames = (void **) malloc (4 * sizeof(char *));
for I1=0;1<4;++D
varNames[I] = (char *) malloc (CDF_VAR NAME LEN256+1);

strcpy(varNames[0], zVarl);
strcpy(varNames[1], zVar2);
strcpy(varNames[2], zVar3);
strcpy(varNames[3], zVar4);

/* Name of each zVariable. */

buffers = (void **) malloc(4 * (sizeof(void *));
buffers[0] = time;
buffers[1] = longitude;
buffers[2] = delta;
buffers[3] = name;

status = CDFgetzVarsRecordData(id, numVars, varNames, varRecNum, buffers);
if (status != CDF_OK) UserStatusHandler (status);

for (= 0; i <4; ++i)
free (varNames[i]);

free (varNames);
free (buffers);

5.15 CDFinquire

CDFstatus CDFinquire(
CDFid id,

long
long
long
long
long
long
long

*numDims,
dimSizes[CDF_MAX DIMS],
*encoding,

*majority,

*maxRec,

*numVars,

*numAttrs);

/* out -- Completion status code. */

/* in -- CDF identifier */

/* out -- Number of dimensions, rVariables. */

/* out -- Dimension sizes, rVariables. */

/* out -- Data encoding. */

/* out -- Variable majority. */

/* out -- Maximum record number in the CDF, rVariables. */
/* out -- Number of rVariables in the CDF. */

/* out -- Number of attributes in the CDF. */

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

42

The arguments to CDFinquire are defined as follows:

id

numDims

dimSizes

encoding

majority

maxRec

numVars

numAttrs

5.15.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

The number of rVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

#include "cdf.h"

CDFid 1id;
CDFstatus status;
long numDims;

/* CDF identifier. */
/* Returned status code. */
/* Number of dimensions, rVariables. */

long dimSizesfCDF_MAX DIMS]; /* Dimension sizes, rVariables (allocate to allow the

long encoding;
long majority;
long maxRec;
long numVars;
long numAttrs;

maximum number of dimensions). */
/* Data encoding. */
/* Variable majority. */
/* Maximum record number, rVariables. */
/* Number of rVariables in CDF. */
/* Number of attributes in CDF. */

status = CDFinquire (id, &numDims, dimSizes, &encoding, &majority,

&maxRec, &numVars, &numAttrs);

if (status |= CDF_OK) UserStatusHandler (status);

43

5.16 CDFopen

CDFstatus CDFopen(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out-- CDF identifier. */

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

5.16.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

static char CDFname[] = { "NOAAI1" }; /* file name of CDF. */

status = CDFopen (CDFname, &id);
if (status != CDF_OK) UserStatusHandler (status);

44

5.17 CDFputrVarsRecordData19

CDFstatus CDFputrVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long numVars, /*in -- Number of rVariables. */

char *varNames|[], /*in -- Names of rVariables. */

long varRecNum, /*in -- Number of record. */

void *buffers[]; /*in -- Array of buffers for input data. */

CDFputrVarsRecordData is used to write a whole record data at a specific record number for a group of rVariables in a
CDF. It expects that the each buffer matches up to the total full physical record size of its corresponding rVariables to
be written. Passed record data is filled into its respective rVariable’s buffer. This function provides an easier and higher
level interface to write data for a group of variables, instead of doing it one variable at a time if calling the lower-level
function. The specified variables are identified by their names. Use CDFputrVarsRecordDatabyNumbers function to
perform the similar operation by providing the variable numbers, instead of the names.

The arguments to CDFputrVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the rVariables in the group involved this write operation.
varNames The names of the rVariables involved for which to write a whole record data.
varRecNum The record number at which to write the whole record data for the group of rVariables.

buffers The array of buffers, each holding the output data for the full record of a given rVariables.

5.17.1 Example(s)

The following example will write an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF _INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar 1-dimensional
array is provided for Latitude for its NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"
/* Dim/Rec Variances: T/TF. */

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

' An original Standard Interface function.

45

long numVars = 5; /* Number of rVariables to write. */
long varRecNum = 4; /* The record number to write data. */
char *rVarl = "Time", /* Names of the rVariables to write. */

*rVar2 = "Longitude",

*rVar3 = "Latitude",

*rVar4 = "Temperature",

*rVar5 = "NAME";

void *buffer; /* The ouput buffer. */

void bufferptr; /* Buffer place keeper */

int time = {123} /* rVariable: Time; Datatype: INT4. */

/* Dim/Rec Variances: T/FF. */

float longitude[2] = /* rVariable: Longitude; Datatype: REAL4. */
{11.1,22.2}; /* Dim/Rec Variances: T/TF. */

float latitute[2] = /* rVariable: Latitude; Datatype: REAL4. */
{-11.1, -22.2}; /* Dim/Rec Variances: T/FT. */

float temperature[2][2] = /* rVariable: Temperature; Datatype: REAL4. */
{100.0, 200.0, /* Dim/Rec Variances: T/TT. */

300.0, 400.0};
char name[2][10] = /* rVariable: NAME; Datatype: CHAR/10. */

/* Dim/Rec Variances: T/TF. */
{717’ l3" VSI’ ’77, l9’, 721’ V4|, 167’ l8" VOI,
YZY’ VZY’ lyV’ VY" VXY’ VXY’ VWY’ VW’, VVY’ YVY};

int 1;

varNames = (void **) malloc(4 * sizeof (char *));
for (i=0;1<4; ++i)
varNames[i] = (char *) malloc(CDF_VAR_NAME Len256+1]);

strepy (varName[0], rVarl); /* Name of each rVariable. */
strepy (varNames[1], rVar2);
strepy (varNames[2], rVar3);
strepy (varNames[3], rVard);

buffers = (void **) malloc (4 * sizeof(void *));

buffers[0] = (void *) malloc(sizeof(longtitude);
memcpy(buffers[0], (void *) longitude, sizeof(longitude));
buffers[1] = (void *) malloc(sizeof(delta));
memcpy(buffers[1], (void *) delta, sizeof(delta));
buffers[2] = (void *) malloc(sizeof(time);
memcpy(buffers[2], (void *) time, sizeof(time));
buffers[3] = (void *) malloc(sizeof(name));
memcpy(buffers[3], (void *) name, sizeof(name));

status = CDFputrVarsRecordData(id, numVars, varNames, varRecNum, buffers);
if (status != CDF_OK) UserStatusHandler (status);

for (i=0;1<4;++) {
free (varNames[i]);

free (buffers[i]);

i

free (varNames);
free (buffers);

46

5.18 CDFputzVarsRecordData

CDFstatus CDFputzVarsRecordData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long numVars, /*in -- Number of zVariables. */

char *varNames|[], /*in -- Names of zVariables. */

long recNum, /*in -- Record number. */

void *buffers[]; /*in -- Array of buffers for input data. */

CDFputzVarsRecordData is used to write a whole record data at a specific record number for a group of zVariables in a
CDF. It expects that the each data buffer matches up to the total full physical record size for its corresponding
zVariable. Passed record data is filled into its respective zVariable. Use CDFputzVarsRecordDatabyNumbers function
to perform the similar operation by providing the variable numbers, instead of the names.

The arguments to CDFputzVarsRecordData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this write operation.

varNames The names of the zVariables involved for which to write a whole record data.

recNum The record number at which to write the whole record data for the group of zVariables.
buffers An array of buffers, each holding the output data for a full record of a given zVariables.

5.18.1 Example(s)

The following example will write an entire single record data for a group of zVariables. The zVariables involved in the
write are Time, Longitude, Delta and Name. The record to be written is 5. For Longitude, a 1-dimensional array of
type short (size [3]) is provided for its dimension variance [VARY] and data type CDF_INT2. For Delta, a 2-
dimensional array of type int (size [3,2]) is provided as its dimension variances are [VARY,VARY] with data type
CDF_INT4. For Time, it is 2-dimensional of type unsigned int (sizes [3,2]) for its dimension variances
[VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is provided
due to its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long numVars = 4; /* Number of zVariables to write. */
long varRecNum = 5; /* The record number to write data. */
char *zVarl = "Longitude", /* Names of the zVariables to write. */

*zVar2 = "Delta",
*zVar3 = "Time",
*zVar4d = "Name";

47

char **yarNames; /* Variable names. */

void **buffers; /* Array of buffer pointers. */
short longitude[3] = /* zVariable: Longitude; Datatype: INT2. */
{50, 100, 125}; /* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */
int delta[3][2] = /* zVariable: Delta; Datatype: INT4. */
{-100, -200, /* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
-400, -800,
-1000, -2000};
unsigned int time[3][2] = /* zVariable: Time; Datatype: UINT4. */
{123,234, /* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
345, 456,
567, 789};
char name[2][10] = /* zVariable: Name; Datatype: CHAR/10. */

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */
lal, 'bV’ 'C', VdV’ lel’ ’f, YgV’ th’ ViV, le’
VAI, VBV’ ICV’ VD" VEV’ IFV, YGV, YHV, YIV’ IJV};
int 1;

varNames = (char **) malloc(4 * sizeof (char *));

varName[0] = zVarl; /* Name of each zVariable. */
varNames[1] = zVar2;

varNames[2] = zVar3;

varNames[3] = zVar4;

buffers = (void **) malloc (4 * sizeof(void *));
buffers[0] = longtitude;

buffers[1] = delta;

buffers[2] = time;

buffers[3] = name;

status = CDFputzVarsRecordData(id, numVars, varNames, varRecNum, buffers);
if (status != CDF_OK) UserStatusHandler (status);

free (varNames);
free (buffers);

This function can be a replacement for the similar functionality
provided from the Internal Interface as <PUT , zZVARs RECDATA >.

519 CDFvarClose®

CDFstatus CDFvarClose(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum); /* in -- rVariable number. */

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

* An original Standard Interface function, handling rVariables only.

48

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

5.19.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFvarClose (id, CDFvarNum (id, “Flux”));
if (status != CDF_OK) UserStatusHandler (status);

520 CDFvarCreate”

CDFstatus CDFvarCreate(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

char *varName, /* in -- rVariable name. */

long dataType, /* in -- Data type. */

long numElements, /* in -- Number of elements (of the data type). */
long recVariance, /* in -- Record variance. */

long dimVariances|[], /* in -- Dimension variances. */

long *varNum); /* out -- rVariable number. */

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

! An original Standard Interface function, handling rVariables only.

49

id

varName

dataType

numElements

recVariance

dimVariances

varNum

5.20.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 4.5.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 4.9.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

The following example will create several rVariables in a 2-dimensional CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */
static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys[1] = {NOVARY,NOVARY}; /¥ EPOCH dimension variances. */
static long LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
static long ~LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
static long ~ TMPdimVarys[2] = {VARY,VARY}; /* TMP dimension variances. */
long EPOCHvarNum; /¥ EPOCH zVariable number. */
long LATvarNum; /* LAT zVariable number. */
long LONvarNum; /* LON zVariable number. */
long TMPvarNum; /¥ TMP zVariable number. */

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1,

EPOCHrecVary, EPOCHdimVarys, &EPOCHvarNum);

if (status != CDF_OK) UserStatusHandler (status);

50

status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1,
LATrecVary, LATdimVarys, &LATvarNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "LONGITUDE", CDF _INT2, 1,
LONrecVary, LONdimVarys, &LONvarNum);

if (status |= CDF_OK) UserStatusHandler (status);

status = CDFvarCreate (id, "TEMPERATURE", CDF_REALA4, 1,

TMPrecVary, TMPdimVarys, & TMPvarNum);
if (status != CDF_OK) UserStatusHandler (status);

521 CDFvarGet?

CDFstatus CDFvarGet(/* out-- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* out -- Value. */

CDFvarGet is used to read a single value from an rVariable.
The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

5.21.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY VAR, a2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

2 An original Standard Interface function, handling rVariables only.

51

CDFid id; /* CDF identifier. */

long varNum,; /* rVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */
double valuel, value2; /* The data values. */

varNum = CDFvarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

recNum = 0L;

indices[0] = OL;

indices[1] = OL;

status = CDFvarGet (id, varNum, recNum, indices, &valuel);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = IL;

indices[1] = IL;

status = CDFvarGet (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);

5.22 CDFvarHyperGet23

CDFstatus CDFvarHyperGet(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- rVariable number. */

long recStart, /* in -- Starting record number. */

long recCount, /* in -- Number of records. */

long reclnterval, /* in -- Subsampling interval between records. */

long indices[], /* in -- Dimension indices of starting value. */

long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Subsampling intervals along each dimension. */
void *buffer); /* out -- Buffer of values. */

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

* An original Standard Interface function, handling rVariables only.

52

#include "cdf.h"

CDFid id;

CDFstatus status;

float tmp[180][91][10];
long varN;

long recStart = 13;
long recCount = 1;
long recInterval = 1;

static long indices[3] = {0,0,0};
static long counts[3] = {180,91,10}; /*
static long intervals[3] = {1,1,1};

/*
/*
/*
/*
/*
/*
/*
/*

/*

varN = CDFgetVarNum (id, "Temperature");

if (varN < CDF_OK) UserStatusHandler (varN);
status = CDFgetHyperGet (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, tmp);
if (status != CDF_OK) UserStatusHandler (status);

CDF identifier. */
Returned status code. */
Temperature values. */
rVariable number. */
Record number. */
Record counts. */
Record interval. */
Dimension indices. */
Dimension counts. */
Dimension intervals. */

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

5.23 CDFvarHyperPut**

CDFstatus CDFvarHyperPut(
CDFid id,

long varNum,

long recStart,

long recCount,

long reclnterval,

long indices[],

long counts[],

long intervals[],

void *buffer);

/* out -- Completion status code. */

/*in --
/*in --
/*in --
/*in --
/*in --
/*in --
/*in --
/*in --
/*in --

CDF identifier. */

rVariable number. */

Starting record number. */

Number of records. */

Interval between records. */

Dimension indices of starting value. */

Number of values along each dimension. */
Interval between values along each dimension. */

Buffer of values. */

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

** An original Standard Interface function, handling rVariables only.

53

5.23.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvarHyperPut rather than numerous calls to CDFvarPut.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */

short lats[1817; /* Buffer of latitude values. */
long varN; /* rVariable number. */

long recStart = 0; /* Record number. */

long recCount = 1; /* Record counts. */

long recInterval = 1; /* Record interval. */

static long indices[2] = {0,0}; /* Dimension indices. */
static long counts[2] = {1,181}; /* Dimension counts. */

static long intervals[2] = {1,1}; /* Dimension intervals. */

varN = CDFvarNum (id, "LATITUDE");
if (varN <CDF_OK) UserStatusHandler (varN);
for (lat = -90; lat <= 90; lat ++)

lats[90+1at] = lat;

status = CDFvarHyperPut (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status != CDF_OK) UserStatusHandler (status);

5.24 CDFvarlnquire

CDFstatus CDFvarlnquire(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- rVariable number. */

char *varName, /* out -- rVariable name. */

long *dataType, /* out -- Data type. */

long *numElements, /* out -- Number of elements (of the data type). */
long *recVariance, /* out -- Record variance. */

long dimVariancesfCDF_ MAX DIMS])); /* out -- Dimension variances. */

CDFvarlnquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that
data type).

54

The arguments to CDFvarlnquire are defined as follows:

id
varNum
varName

dataType

numElements

recVariance

dimVariances

5.24.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 5.25).

The rVariable's name. This character string must be large enough to hold
CDF_VAR NAME LEN256 + 1 characters (including the NUL terminator).

The data type of the rVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 4.9.
The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 4.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF VAR NAME LEN256+1]; /* rVariable name, +1 for NUL terminator. */
long dataType; /* Data type of the rVariable. */

long numElems; /* Number of elements (of data type). */

long recVary; /* Record variance. */

long dimVarys[CDF_ MAX DIMS]; /* Dimension variances (allocate to allow the

maximum number of dimensions). */

status = CDFvarlnquire (id, CDFgetVarNum(id,"HEAT FLUX"), varName, &dataType,

&numElems, &recVary, dimVarys);

if (status |= CDF_OK) UserStatusHandler (status);

55

5.25 CDFvarNum?

long CDFvarNum(/* out -- Variable number. */
CDFid id, /* in -- CDF identifier. */
char *varName); /* in -- Variable name. */

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero (0).
The returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is
an rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varName The name of the variable to search. This may be at most CDF_ VAR NAME LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

5.25.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR NAME LEN256+1]; /* Variable name. */

long dataType; /* Data type of the rVariable. */

long numElements; /* Number of elements (of the data type). */
long recVariance; /* Record variance. */

long dimVariances] CDF_ MAX DIMS]; /* Dimension variances. */

status = CDFvarlnquire (id, CDFvarNum(id,"LATITUDE"), varName, &dataType,
&numElements, &recVariance, dimVariances);
if (status != CDF_OK) UserStatusHandler (status);

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into

** An original Standard Interface function. It used to handle only rVariables. It has been extended to include zVariables.
While it is still available in V3.1, CDFgetVarNum is the preferred name for it.

56

varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarInquire would
be used to determine them. CDFvarlnquire is described in Section 5.24.

526 CDFvarPut?®

CDFstatus CDFvarPut(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- rVariable number. */
long recNum, /* in -- Record number. */
long indices[], /* in -- Dimension indices. */
void *value); /* in -- Value. */

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record number at which to write.

indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index. For O-dimensional variables, this
argument is ignored (but must be present).

value The data value to write.

5.26.1 Example(s)

The following example will write two data values (1% and 5™ elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* rVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */

double valuel, value2; /* The data values. */

*® An original Standard Interface function, handling rVariables only.

57

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

recNum = 0L;

indices[0] = OL;

indices[1] = OL;

valuel =10.1;

status = CDFvarPut (id, varNum, recNum, indices, &valuel);
if (status != CDF_OK) UserStatusHandler (status);
indices[0] = IL;

indices[1] = 1L;

value2 =20.2;

status = CDFvarPut (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);

5.27 CDFvarRename?’

CDFstatus CDFvarRename(/* out -- Completion status code. */

CDFid id,
long varNum,
char *varName);

/* in -- CDF identifier. */
/* in -- rVariable number. */
/* in -- New name. */

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF VAR NAME LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

5.27.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.

#include "cdf.h"

" An original Standard Interface function, handling rVariables only.

58

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* rVariable number. */

varNum = CDFvarNum (id, "TEMPERATURE");
if (varNum <CDF_OK) {

if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);

}

else {
status = CDFvarRename (id, varNum, "TMP");
if (status != CDF_OK) UserStatusHandler (status);

59

Chapter 6

6 Exended Standard Interface

The following sections describe the new, extended set of Standard Interface functions callable from C applications that
were added to CDF library since Version 3.1. Most functions return a status code of type CDFstatus (see Chapter 8).
The Internal Interface is described in Chapter 7. An application can use either or both interfaces when necessary.

The original Standard Interface only provided a very limited functionality within the CDF library. For example, it
could not handle zVariables and vAttribute zEntries (they were only accessible via the Internal Interface). Since V3.1,
the Standard Interface has been expanded to include many new operations that are previously only available through
the Internal Interface. The new functions in this chapter that deal with variables and variable attribute entries are only
applicable to zVariables and variable attribute’s zEntries, not rVariables and rEntries. If you need to deal with
rVariables for some reason (no need to use rVariables at all unless you are dealing with a CDF file that only contains
rVariables), use the appropriate original Standard Interface routines in Chapter 5 or the Internal Interface in Chapter 7.
Read Chapter 5 to understand why zVariables are recommended over the rVariables.

Each section begins with a function prototype for the routine being described. The include file cdf.h contains the same
function prototypes (as well as function prototypes for the Internal Interface and EPOCH utility routines). Note that

many of the Standard Interface functions in this chapter are implemented as macros (which call the Internal Interface).

The new functions, based on the operands, are grouped into four (4) categories: library, CDFs, variables and
attributes/entries.

6.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

6.1.1 CDFgetDataTypeSize

CDFstatus CDFgetDataTypeSize (/* out -- Completion status code. */
long dataType, /* in -- CDF data type. */
long *numBytes); /* out -- Number of bytes for the given CDF type. */

61

CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.
The arguments to CDFgetDataTypeSize are defined as follows:
dataType The CDF supported data type.

numBytes The size of dataType.

6.1.1.1. Example(s)

The following example returns the size of the data type CDF _INT4 that is 4 bytes.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
long numBytes; /* Number of bytes. */

status = CDFgetDataTypeSize((long)CDF _INT4, &numBytes);
if (status != CDF_OK) UserStatusHandler (status);

6.1.2 CDFgetLibraryCopyright

CDFstatus CDFgetLibraryCopyright (/* out -- Completion status code. */

char *Copyright); /* out -- Library Copyright. */

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.

The arguments to CDFgetLibraryCopyright are defined as follows:

Copyright The Copyright notice. This character string must be large enough to hold
CDF _COPYRIGHT LEN + 1 characters (including the NUL terminator).

6.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

#include "cdf.h"

62

char Copyrightf CDF_COPYRIGHT LEN+1]; /* CDF library Copyright. */

status = CDFgetLibraryCopyright(Copyright);
if (status |= CDF_OK) UserStatusHandler (status);

6.1.3 CDFgetLibraryVersion

CDFstatus CDFgetLibraryVersion (/* out -- Completion status code. */

long *version, /* out -- Library version. */

long *release, /* out -- Library release. */

long *increment, /* out -- Library increment. */
char *sublncrement); /* out -- Library sub-increment. */

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

version The library version number.

release The library release number.

increment The library incremental number.
sublncrement The library sub-incremental character.

6.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

#include "cdf.h"

long version; /* CDF library version number. */

long release; /* CDF library release number. */

long increment; /* CDF library incremental number. */

char subIncrement; /* CDF library sub-incremental character. */

status = CDFgetLibraryVersion(&version, &release, &increment, &sublncrement);
if (status != CDF_OK) UserStatusHandler (status);

63

6.1.4 CDFgetStatusText

CDFstatus CDFstatusText(/* out -- Completion status code. */
CDFstatus status, /* in -- The status code. */
char *message); /* out -- The status text description. */

CDFgetStatusText is identical to the original Standard Interface function CDFerror (see section 5.12), and the use of
this function is strongly encouraged over CDFerror as it might not be supported in the future. This function is used to
inquire the text explanation of a given status code. Chapter 8 explains how to interpret status codes and Appendix A

lists all of the possible status codes.
The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code. This character string must be large enough to

hold CDF_STATUSTEXT LEN + 1 characters (including the NUL terminator).

6.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char text{CDF_STATUSTEXT LEN+1]; /* Explanation text.+1 added for NUL terminator. */

status = CDFopenCDF ("giss_wetl", &id);

if (status < CDF_WARN) { /* INFO and WARNING codes ignored. */
CDFgetStatusText (status, text);
printf ("ERROR> %s\n", text);

1

s
CDFcloseCDF (id);

6.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are

described in the following sections. This CDF has to be a newly created or opened from an existing one.

64

6.2.1 CDFcloseCDF

CDFstatus CDFcloseCDF (/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFcloseCDF closes the specified CDF. This function is identical to the original Standard Interface function
CDFclose (see section 5.8), and the use of this function is strongly encouraged over CDFclose as it might not be
supported in the future. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the case of a
multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

6.2.1.1. Example(s)

The following example will close an open CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopenCDF ("giss_wetl", &id);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFcloseCDF (id);
if (status != CDF_OK) UserStatusHandler (status);

6.2.2 CDFcreateCDF

CDFstatus CDFcreateCDF(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out -- CDF identifier. */

CDFcreateCDF creates a CDF file. This function, a new and simple form of CDFcreate (see section 5.9 for details)
without the encoding and majority arguments, works just like the CDF creation function from the Internal Interface.

65

The created CDF will use the default encoding (HOST ENCODING) and majority (ROW_MAIJOR), specified in the
configuration file of your CDF distribution. A CDF cannot be created if it already exists. (The existing CDF will not
be overwritten.) If you want to overwrite an existing CDF, you can either manually delete the file or open it with
CDFopenCDF ,delete it with CDFdeleteCDF, and then recreate it with CDFcreateCDF. If the existing CDF is
corrupted, the call to CDFopenCDF will fail. (An error code will be returned.) In this case you must delete the CDF at
the command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format,
delete all of the variable files (having extensions of .v0,.v1,. .. and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 5 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:

CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDFlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.8).

6.2.2.1. Example(s)

The following example creates a CDF named “testl.cdf” with the default encoding and majority.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFcreateCDF ("testl", &id);
if (status != CDF_OK) UserStatusHandler (status);

CDFclose (id);

66

6.2.3 CDFdeleteCDF

CDFstatus CDFdelete(/* out -- Completion status code. */
CDFid id); /* in -- CDF identifier. */

CDFdeleteCDF deletes the specified CDF. This function is identical to the original Standard Interface function
CDFdelete (see section 5.10), and the use of this function is strongly encouraged over CDFdelete as it might not be
supported in the future. The CDF files deleted include the dotCDF file (having an extension of .cdf), and if a multi-file
CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

6.2.3.1. Example(s)

The following example will open and then delete an existing CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFopenCDF ("test2", &id);

if (status < CDF_OK) /* INFO status codes ignored. */
UserStatusHandler (status);

else {
status = CDFdeleteCDF (id);

if (status != CDF_OK) UserStatusHandler (status);
1
5

6.2.4 CDFgetCacheSize

CDFstatus CDFgetCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- CDF’s cache buffers. */

67

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

numBuffers The number of cache buffers.

6.2.4.1. Example(s)

The following example returns the cache buffers for the open CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; /* CDEF’s cache buffers. */

status = CDFgetCacheSize (id, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.2.5 CDFgetChecksum

CDFstatus CDFgetChecksum (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long *checksum); /* out -- CDF’s checksum mode. */

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 4.19.

The arguments to CDFgetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

6.2.5.1. Example(s)

The following example returns the checksum code for the open CDF file.

68

#include "cdf.h"

CDFid id;
CDFstatus status;
long checksum;

/* CDF identifier. */
/* Returned status code. */
/* CDEF’s checksum. */

status = CDFgetChecksum (id, &checksum);
if (status != CDF_OK) UserStatusHandler (status);

6.2.6 CDFgetCompression

CDFstatus CDFgetCompression (/*

CDFid id, /*
long *compressionType, /*
long compressionParms[], /*

long *compressionPercentage); /*

out -- Completion status code. */

in -- CDF identifier. */

out -- CDF’s compression type. */

out -- CDF’s compression parameters. */
out -- CDF’s compressed percentage. */

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression percentage. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size®. CDF compression types/parameters are described

in Section 4.10.

The arguments to CDFgetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The type of the compression.

compressionParms The parameters of the compression.

compressionPercentage The compression percentage, the percentage of a uncompressed file size to hold the

compressed data.

6.2.6.1. Example(s)

The following example returns the compression information of the open CDF file.

¥ The compression ratio is (100 — compression percentage). The lower the compression percentage, the better the

compression ratio.

69

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long compressionType; /* CDEF’s compression type. */

long compressionParms[CDF MAX PARMS] /* CDF’s compression parameters. */
long compressionPercentage; /* CDEF’s compression rate. */

status = CDFgetCompression (id, &compression, compressionParms, &compressionPercentage);
if (status != CDF_OK) UserStatusHandler (status);

if (compressionType == NO_COMPRESSION) {

H

6.2.7 CDFgetCompressionCacheSize

CDFstatus CDFgetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- CDF’s compressed cache buffers. */

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCompressionCacheSize are defined as follows:

Id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.7.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numBuffers; /* CDEF’s compression cache buffers. */

70

status = CDFgetCompressionCacheSize (id, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.2.8 CDFgetCompressionInfo

CDFstatus CDFgetCompressionInfo (/* out -- Completion status code. */

char *CDFname, /* in -- CDF name. */

long *cType, /* out -- CDF compression type. */

long cParmsl[]. /* out -- CDF compression parameters. */
OFF T *cSize. /* out -- CDF compressed size. */
OFF T *uSize); /* out -- CDF decompressed size. */

CDFgetCompressionInfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.

cType The CDF compression type.

cParms The CDF compression parameters.

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

6.2.8.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

#include "cdf.h"

CDFstatus status; /* Returned status code. */

long cType; /* Compression type. */

long cParms[CDF_MAX PARMS]; /* Compression parameters. */
OFF T cSize; /* Compressed file size. */
OFF_T uSize; /* Decompressed file size. */

status = CDFgetCompressionInfo(“MY_TEST”, &cType, cParms, &cSize, &uSize);
if (status != CDF_OK) UserStatusHandler (status);

71

6.2.9 CDFgetCopyright

CDFstatus CDFgetCopyright (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

char *Copyright); /* out -- Copyright notice. */
CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

Copyright CDF Copyright. This character string must be large enough to hold
CDF _COPYRIGHT LEN + 1 characters (including the NUL terminator).

6.2.9.1. Example(s)

The following example returns the Copyright in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char Copyrightf CDF_COPYRIGHT LEN+1]; /¥ CDEF’s Copyright. */

status = CDFgetCopyright (id, Copyright);
if (status != CDF_OK) UserStatusHandler (status);

6.2.10 CDFgetDecoding

CDFstatus CDFgetDecoding (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long *decoding); /* out -- CDF decoding. */

CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 4.7.

The arguments to CDFgetDecoding are defined as follows:

72

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

6.2.10.1. Example(s)

The following example returns the decoding for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long decoding; /* Decoding. */

status = CDFgetDecoding(id, &decoding);
if (status != CDF_OK) UserStatusHandler (status);

6.2.11 CDFgetEncoding

CDFstatus CDFgetEncoding (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long *encoding); /* out -- CDF encoding. */

CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 4.6.

The arguments to CDFgetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

6.2.11.1. Example(s)

The following example returns the data encoding used for the given CDF.

#include "cdf.h"

73

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */

status = CDFgetEncoding(id, &encoding);
if (status |= CDF_OK) UserStatusHandler (status);

6.2.12 CDFgetFileBackward

int CDFgetFileBackward(/* out — File Backward Mode. */
);

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the currentl library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

6.2.12.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
int mode; /* Backward mode. */

mode = CDFgetFileBackward ();
if (mode == 1) {

6.2.13 CDFgetFormat

CDFstatus CDFgetFormat (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

74

long *format); /* out -- CDF format. */
CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 4.4.
The arguments to CDFgetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

6.2.13.1. Example(s)

The following example returns the file format of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format. */

status = CDFgetFormat(id, &format);
if (status != CDF_OK) UserStatusHandler (status);

6.2.14 CDFgetMajority

CDFstatus CDFgetMajority (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *majority); /* out -- Variable majority. */

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 4.8.

The arguments to CDFgetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

75

6.2.14.1. Example(s)

The following example returns the majority of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long majority; /* Majority. */

status = CDFgetMajority (id, &majority);
if (status != CDF_OK) UserStatusHandler (status);

6.2.15 CDFgetName

CDFstatus CDFgetName (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *name); /* out -- CDF name. */
CDFgetName returns the file name of the specified CDF.

The arguments to CDFgetName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

6.2.15.1. Example(s)

The following example returns the name of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
char name[CDF PATHNAME LEN]; /* Name of the CDF. */

status = CDFgetName (id, name);

76

if (status |= CDF_OK) UserStatusHandler (status);

6.2.16 CDFgetNegtoPosfp0Mode

CDFstatus CDFgetNegtoPosfpOMode (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *negtoPosfp0); /* out -- -0.0 to 0.0 mode. */

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 function to set
the mode. The —0.0 to 0.0 modes are described in Section 4.15.

The arguments to CDFgetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

6.2.16.1. Example(s)

The following example returns the —0.0 to 0.0 mode of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long negtoPosfp0; /* -0.0 to 0.0 mode. */

status = CDFgetNegtoPosfpOMode (id, &negtoPosfp0);
if (status != CDF_OK) UserStatusHandler (status);

6.2.17 CDFgetReadOnlyMode

CDFstatus CDFgetReadOnlyMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *readOnlyMode); /* out -- CDF read-only mode. */

77

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 4.13.

The arguments to CDFgetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode (READONLYon or READONLY off).

6.2.17.1. Example(s)

The following example returns the read-only mode for the given CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */

status = CDFgetReadOnlyMode (id, &readMode);
if (status != CDF_OK) UserStatusHandler (status);

6.2.18 CDFgetStageCacheSize

CDFstatus CDFgetStageCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numBuffers); /* out -- The stage cache size. */

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFgetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.18.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

78

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */

status = CDFgetStageCacheSize (id, &numBuffers);
if (status |= CDF_OK) UserStatusHandler (status);

6.2.19 CDFgetValidate

int CDFgetValidate();

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain
data fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

6.2.19.1. Example(s)

In the following example, it gets the data validation mode.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
int validate; /* Data validation flag. */

validate = CDFgetValidate ();

79

6.2.20 CDFgetVersion

CDFstatus CDFgetVersion(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long *version, /* out -- CDF version. */

long *release, /* out -- CDF release. */

long *increment); /* out -- CDF increment. */

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

version The CDF version number.
release The CDF release number.
increment The CDF increment number.

6.2.20.1. Example(s)

In the following example, a CDF’s version/release is acquired.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long version; /* CDF version. */

long release; /* CDF release */

long increment; /* CDF increment. */

status = CDFgetVersion (id, &version, &release, &increment);
if (status != CDF_OK) UserStatusHandler (status);

6.2.21 CDFgetzMode

CDFstatus CDFgetzMode(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *zMode); /* out -- CDF zMode. */

80

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 4.14.

The arguments to CDFgetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

6.2.21.1. Example(s)

In the following example, a CDF’s zMode is acquired.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long zMode; /* CDF zMode. */

status = CDFgetzMode (id, &zMode);

if (status != CDF_OK) UserStatusHandler (status);

6.2.22 CDFinquireCDF

CDFstatus CDFinquireCDF(
CDFid id,

long *numDims,

long dimSizes[CDF_ MAX DIMS],
long *encoding,

long *majority,

long *maxrRec,

long *numrVars,

long *maxzRec,

long *numzVars,

long *numAttrs);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

out --

Completion status code. */

in -- CDF identifier */

out --
out --
out --
out --
out --
out --
out --
out --
out --

Number of dimensions for rVariables. */

Dimension sizes for rVariables. */

Data encoding. */

Variable majority. */

Maximum record number among rVariables in the CDF. */
Number of rVariables in the CDF. */

Maximum record number among zVariables in the CDF. */
Number of zVariables in the CDF. */

Number of attributes in the CDF. */

CDFinquireCDF returns the basic characteristics of a CDF. This function expands the original Standard Interface
function CDFinquire by acquiring extra information regarding the zVariables. Knowing the variable majority can be
used to optimize performance and is necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

81

numDims

dimSizes

encoding

majority

maxrRec

numrVars

maxzRec

numzVars

numAttrs

6.2.22.1. Example(s)

The number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

The dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension
sizes in the same CDF file must be the same). dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

#include "cdf.h"

CDFid 1id;
CDFstatus status;
long numDims;

/* CDF identifier. */
/* Returned status code. */
/* Number of dimensions, rVariables. */

long dimSizesfCDF_MAX DIMS]; /* Dimension sizes, rVariables (allocate to allow the

long encoding;
long majority;
long maxrRec;
long numrVars;
long maxzRec;
long numzVars;
long numAttrs;

maximum number of dimensions). */
/* Data encoding. */
/* Variable majority. */
/* Maximum record number, rVariables. */
/* Number of rVariables in CDF. */
/* Maximum record number, zVariables. */
/* Number of zVariables in CDF. */
/* Number of attributes in CDF. */

82

status = CDFinquireCDF (id, &numDims, dimSizes, &encoding, &majority,
&maxrRec, &numrVars, &maxzRec, &numzVars, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);

6.2.23 CDFopenCDF

CDFstatus CDFopenCDF(/* out -- Completion status code. */
char *CDFname, /* in -- CDF file name. */
CDFid *id); /* out-- CDF identifier. */

CDFopenCDF opens an existing CDF. This function is identical to the original Standard Interface function CDFopen
(see section 5.16), and the use of this function is strongly encouraged over CDFopen as it might not be supported in the
future. The CDF is initially opened with only read access. This allows multiple applications to read the same CDF
simultaneously. When an attempt to modify the CDF is made, it is automatically closed and reopened with read/write
access. The function will fail if the application does not have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

6.2.23.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

static char CDFname[] = { "NOAAI1" }; /* file name of CDF. */

status = CDFopenCDF (CDFname, &id);

83

if (status != CDF_OK) UserStatusHandler (status);

6.2.24 CDFsetCacheSize

CDFstatus CDFsetCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- CDF’s cache buffers. */

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to

the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.24.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300

for a single-file format CDF on Unix systems.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long cacheBuffers; /* CDEF’s cache buffers. */

cacheBuffers = 500L;
status = CDFsetCacheSize (id, cacheBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.2.25 CDFsetChecksum

CDFstatus CDFsetChecksum (/* out -- Completion status code. */

84

CDFid id, /* in -- CDF identifier. */
long checksum); /* in -- CDF’s checksum mode. */

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 4.19.
The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

6.2.25.1. Example(s)

The following example turns off the checksum flag for the open CDF file..

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long checksum; /* CDEF’s checksum. */

checksum=NO_CHECKSUM,;
status = CDFsetChecksum (id, checksum);
if (status != CDF_OK) UserStatusHandler (status);

6.2.26 CDFsetCompression

CDFstatus CDFsetCompression (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long compressionType, /* in -- CDF’s compression type. */
long compressionParms[]); /* in -- CDF’s compression parameters. */

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF,
not of any variables. The compressions are described in Section 4.10.

The arguments to CDFsetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

85

compressionParms The compression paramters.

6.2.26.1. Example(s)

The following example uses GZIP.9 to compress the CDF file.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionType; /* CDEF’s compression type. */

long compressionParms[CDF MAX PARMS] /* CDF’s compression parameters. */

compressionType = GZIP_ COMPRESSION;

compressionParms[0] = 9L;

status = CDFsetCompression (id, compression, compressionParms);
if (status != CDF_OK) UserStatusHandler (status);

6.2.27 CDFsetCompressionCacheSize

CDFstatus CDFsetCompressionCacheSize (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long compressionNumBuffers); /* in -- CDF’s compressed cache buffers. */

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers The number of cache buffers.

6.2.27.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

86

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long compressionNumBuffers; /* CDEF’s compression cache buffers. */

compressionNumBuffers = 100L;
status = CDFsetCompressionCacheSize (id, compressionNumBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.2.28 CDFsetDecoding

CDFstatus CDFsetDecoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long decoding); /* in -- CDF decoding. */

CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 4.7.
The arguments to CDFsetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of a CDF.

6.2.28.1. Example(s)

The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long decoding; /* Decoding. */

decoding = NETWORK DECODING;
status = CDFsetDecoding (id, decoding);
if (status != CDF_OK) UserStatusHandler (status);

87

6.2.29 CDFsetEncoding

CDFstatus CDFsetEncoding (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long encoding); /* in -- CDF encoding. */

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 4.6.

The arguments to CDFsetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

6.2.29.1. Example(s)

The following example sets the encoding to HOST ENCODING for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long encoding; /* Encoding. */

encoding = HOST _ENCODING;
status = CDFsetEncoding(id, encoding);
if (status != CDF_OK) UserStatusHandler (status);

6.2.30 CDFsetFileBackward

void CDFsetFileBackward(
long mode) /* in -- File backward Mode. */

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created areof version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default

for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

88

mode The backward mode.

6.2.30.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

#include "cdf.h"
CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

CDFsetFileBackward (FILEBACKW ARDoff);

6.2.31 CDFsetFormat

CDFstatus CDFsetFormat (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long format); /* in -- CDF format. */

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 4.4.

The arguments to CDFsetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

6.2.31.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

#include "cdf.h"

89

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format. */

format = MULTI FILE;
status = CDFsetFormat(id, format);
if (status != CDF_OK) UserStatusHandler (status);

6.2.32 CDFsetMajority

CDFstatus CDFsetMajority (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long majority); /* in -- CDF variable majority. */

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 4.8.

The arguments to CDFsetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

6.2.32.1. Example(s)

The following example sets the majority to COLUMN_ MAJOR for the CDF. The default is ROW_MAJOR.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long majority; /* Majority. */

majority = COLUMN_MAJOR;
status = CDFsetMajority (id, majority);
if (status != CDF_OK) UserStatusHandler (status);

90

6.2.33 CDFsetNegtoPosfp0Mode

CDFstatus CDFsetNegtoPosfpOMode (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long negtoPosfp0); /* in-- -0.0 to 0.0 mode. */

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
4.15.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

6.2.33.1. Example(s)

The following example sets the —0.0 to 0.0 mode to ON for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

long negtoPosfp0; /* -0.0 to 0.0 mode. */

negtoPosfp0 = NEGtoPOS{pOon;
status = CDFsetNegtoPosfpOMode (id, negtoPosfp0);
if (status != CDF_OK) UserStatusHandler (status);

6.2.34 CDFsetReadOnlyMode

CDFstatus CDFsetReadOnlyMode(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long readOnlyMode); /* in -- CDF read-only mode. */

CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 4.13.

The arguments to CDFsetReadOnlyMode are defined as follows:

91

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode.

6.2.34.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long readMode; /* CDF read-only mode. */

readMode = READONLY off;
status = CDFsetReadOnlyMode (id, readMode);
if (status != CDF_OK) UserStatusHandler (status);

6.2.35 CDFsetStageCacheSize

CDFstatus CDFsetStageCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- The stage cache size. */

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

6.2.35.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

92

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBufffers; /* The number of cache buffers. */

numBufffers = 10L;
status = CDFsetStageCacheSize (id, numBuffers);
if (status |= CDF_OK) UserStatusHandler (status);

6.2.36 CDFsetValidate

void CDFsetValidate(
long mode); /* in -- File Validation Mode. */

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 4.20.

The arguments to CDFgetVersion are defined as follows:

mode The validation mode.

6.2.36.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

CDFsetValidate (VALIDATEFILEon);

6.2.37 CDFsetzMode

CDFstatus CDFsetzMode(/* out -- Completion status code. */

93

CDFid id, /* in -- CDF identifier. */
long zMode); /* in -- CDF zMode. */

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 4.14 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s highly
recommended to set the value of zMode to zZMODEon2.

The arguments to CDFsetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

6.2.37.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long zMode; /* CDF zMode. */

zMode = zMODEon2;
status = CDFsetzMode (id, zMode);
if (status != CDF_OK) UserStatusHandler (status);

6.3 Variable

The functions in this section provides CDF variable-specific functions. A variable is identified by its unique name in a
CDF or a variable number. Before you can perform any operation on a variable, the CDF in which it resides in must be
opened.

6.3.1 CDFclosezVar

CDFstatus CDFclosezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum) /* in -- zVariable number. */

94

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open zVariable’s file. This identifier must have been initialized by a call
to CDFcreatezVar or CDFgetVarNum.

6.3.1.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */

varNum = CDFgetVarNum (id, “VAR_NAME1");
if (varNum < CDF_OK) QuitError(.......);

status = CDFclosezVar (id, varNum);
if (status != CDF_OK) UserStatusHandler (status);

6.3.2 CDFconfirmzVarExistence

CDFstatus CDFconfirmzVarExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
Char *varName); /* in -- zVariable name. */

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

95

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The zVariable name to check.

6.3.2.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFconfirmzVarExistence (id, “MY_VAR?”);
if (status != CDF_OK) UserStatusHandler (status);

6.3.3 CDFconfirmzVarPadValueExistence

CDFstatus CDFconfirmzVarPadValueExistence(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum) /* in -- zVariable number. */
CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO_PADVALUE_SPECIFIED will be returned.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

6.3.3.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

#include "cdf.h"

96

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */

varNum = CDFgetVarNum(id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

status = CDFconfirmzVarPadValueExistence (id, varNum);
if (status !=NO_PADVALUE SPECIFIED) {

6.3.4 CDFcreatezVar

CDFstatus CDFcreatezVar(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

char *varName, /* in -- zVariable name. */

long dataType, /* in -- Data type. */

long numElements, /* in -- Number of elements (of the data type). */
long numDims, /* in -- Number of dimensions. */

long dimSizes[], /* in -- Dimension sizes */

long recVariance, /* in -- Record variance. */

long dimVariances|[], /* in -- Dimension variances. */

long *varNum); /* out -- zVariable number. */

The arguments to CDFcreatezVar are defined as follows:

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new zVariable. Specify one of the data types defined in Section 4.5.

numElements The number of elements of the data type at each value. For character data types

(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

numDims Number of dimensions the zVariable.

CDF_MAX_DIMS.

97

This may be as few as zero (0) and at most

dimSizes

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional zVariables this
argument is ignored (but must be present).

recVariance The zVariable's record variance. Specify one of the variances defined in Section 4.9.

dimVariances The zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional zVariables this argument is ignored (but must
be present).

varNum The number assigned to the new zVariable. This number must be used in subsequent

CDF function calls when referring to this zVariable. An existing zVariable's number
may be determined with the CDFgetVarNum function.

6.3.4.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and
LON are 2-diemnational, and TMP is a 1-dimensional.

#include "cdf.h"

CDFid

id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static long EPOCHrecVary = {VARY}; /* EPOCH record variance. */
static long LATrecVary = {NOVARY}; /* LAT record variance. */
static long LONrecVary = {NOVARY}; /* LON record variance. */
static long TMPrecVary = {VARY}; /* TMP record variance. */
static long EPOCHdimVarys[1] = {NOVARY}; /* EPOCH dimension variances. */
static long LATdimVarys[2] = {VARY,VARY}; /* LAT dimension variances. */
static long ~LONdimVarys[2] = {VARY,VARY}; /* LON dimension variances. */
static long ~ TMPdimVarys[2] = {VARY,VARY}; /* TMP dimension variances. */
long EPOCHvarNum; /* EPOCH zVariable number. */
long LATvarNum; /* LAT zVariable number. */
long LONvarNum; /* LON zVariable number. */
long TMPvarNum; /¥ TMP zVariable number. */
static long ~ EPOCHdimSizes[1] = {3}; /¥ EPOCH dimension sizes. */
static long ~ LATLONdimSizes[2] = {2,3} /* LAT/LON dimension sizes. */
static long ~ TMPdimSizes[1] = {3}; /¥ TMP dimension sizes. */
status = CDFcreatezVar (id, "EPOCH", CDF _EPOCH, 1, OL, EPOCHdimSizes, EPOCHrecVary,

EPOCHdimVarys, &EPOCH varNum);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "LATITUDE", CDF_INT2, 1, 2L, LATLONdimSizes,LATrecVary,
LATdimVarys, &LATvarNum);
if (status != CDF_OK) UserStatusHandler (status);

98

status = CDFcreatezVar (id, "LONGITUDE", CDF _INT2, 1, 2L, LATLONdimSizes, LONrecVary,
LONdimVarys, &LONvarNum);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFcreatezVar (id, "TEMPERATURE", CDF REAL4, 1, 1L, TMPdimSizes, TMPrecVary,

TMPdimVarys, &TMPvarNum);
if (status != CDF_OK) UserStatusHandler (status);

6.3.5 CDFdeletezVar

CDFstatus CDFdeletezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum); /* in -- zVariable identifier. */

CDFdeletezVar deletes the specified zVariable from a CDF.
The arguments to CDFdeletezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to be deleted.

6.3.5.1. Example(s)

The following example deletes the zVariable named MY VAR in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

status = CDFdeletezVar (id, varNum);

if (status != CDF_OK) UserStatusHandler (status);

99

6.3.6 CDFdeletezVarRecords

CDFstatus CDFdeletezVarRecords(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- zVariable identifier. */
long startRec, /* in -- Starting record number. */
long endRec); /* in -- Ending record number. */

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF.
The arguments to CDFdeletezVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

6.3.6.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */
long startRec; /* Starting record number. */
long endRec; /* Ending record number. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) QuitError(....);

startRec = 10L;

endRec = 20L;

status = CDFdeletezVarRecords (id, varNum, startRec, endRec);
if (status != CDF_OK) UserStatusHandler (status);

100

6.3.7 CDFgetMaxWrittenRecNums

CDFstatus CDFgetMaxWrittenRecNums (/* out -- Completion status code. */

CDFid id,
long *rVarsMaxNum,
long *zVarsMaxNum);

/* in -- CDF identifier. */
/* out -- Maximum record number among all rVariables. */
/* out -- Maximum record number among all zVariables. */

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all

respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
rVarsMaxNum The maximum record number among all rVariables.

zVarsMaxNum The maximum record number among all zVariables.

6.3.7.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long rVarsMaxNum,; /* Maximum record number among all rVariables. */
long zVarsMaxNum; /* Maximum record number among all zVariables. */

status = CDFgetMaxWrittenRecNums (id, &rVarsMaxNum, &zVarsMaxNum);
if (status != CDF_OK) UserStatusHandler (status);

6.3.8 CDFgetNumrVars

CDFstatus CDFgetNumrVars (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numVars); /* out -- Total number of rVariables. */

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

101

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of rVariables.

6.3.8.1. Example(s)

The following example returns the total number of rVariables in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

status = CDFgetNumrVars (id, &numVars);
if (status != CDF_OK) UserStatusHandler (status);

6.3.9 CDFgetNumzVars

CDFstatus CDFgetNumzVars (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long *numVars); /* out -- Total number of zVariables. */
CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of zVariables.

6.3.9.1. Example(s)

The following example returns the total number of zVariables in a CDF.

102

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numVars; /* Number of zVariables. */

status = CDFgetNumzVars (id, &numVars);
if (status != CDF_OK) UserStatusHandler (status);

6.3.10 CDFgetVarAllRecordsByVarName

CDFstatus CDFgetVarAllRecordsByVarName(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
char *varName, /* in -- Variable name. */
void *buffer); /* out — Buffer for thre returned record data. */

CDFgetVarAllRecordsByVarName reads the whole records from the specified variable in a CDF. This function
provides an easier way of getting all data from a variable. Since a variable name is unique in a CDF, this function can
be used for either an rVariable or zVariable. For zVariable, this function is similar to CDFgetzVarAllRecordsByVarID,
which requires the zVariable id, instead. Make sure that the buffer is big enough to hold the data. Otherwise, a
segmentation fault may happen.

The arguments to CDFgetVarAllRecordsByVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The variable’s name.

buffer The buffer that holds the returned data.

6.3.10.1. Example(s)

The following example returns the whole record data for zVariable “MY_ VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.
#include "cdf.h"

CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */

103

status = CDFgetVarAllRecordsByVarName (id, “MY_VAR?”, buffer);
if (status != CDF_OK) UserStatusHandler (status);

A more general approach: for a variable of double type, but not knowing the total number of records, number of
dimensions, etc,:

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

long numRecs; /* Number of written records. */

long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF MAX DIMS]; /* zVariable’s dimensioality. */

long numValues; /* Total numer of values. */

double *buffer; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarMaxWrittenRecNum (id, varNum, &numRecs);
if (status != CDF_OK)

status = CDFgetzVarNumDims (id, varNum, &numDims);

if (status != CDF_OK)

status = CDFgetzVarDimSizes (id, varNum, dimSizes);

if (status != CDF_OK)

numValues = 1;

for (i=1; i<numDims;++i) numValues *= dimSizes[i];

numvalue *= numRecs;

buffer = (double *) malloc((sizeof(double) * (size t) numValues);
status = CDFgetVarAllRecordsByVarName (id, “MY_VAR?”, buffer);
if (status != CDF_OK) UserStatusHandler (status);

free (buffer);

6.3.11 CDFgetVarNum *

long CDFgetVarNum(/* out-- Variable number. */
CDFid id, /* in -- CDF identifier. */
char *varName); /* in -- Variable name. */

*% Expanded from the original Standard Interface function CDFvarNum that returns the rVariable number. Since no two
variables, either rVariable or zVariable, can have the same name, this function now returns the variable number for the
given rVariable or zVariable name (if the variable name exists in a CDF).

104

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than
zero (0). The returned variable number should be used in the functions of the same variable type, rVariable or
zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables
should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varName The name of the variable to search. This may be at most CDF VAR NAME LEN256
characters (excluding the NUL terminator). Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

6.3.11.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

char varName[CDF_VAR NAME LEN256+1]; /* Variable name. */

long dataType; /* Data type of the zVariable. */

long numElements; /* Number of elements (of the data type). */
long numDims; /* Number of dimensions. */

long dimSizes[CDF_ MAX DIMS]; /* Dimension sizes. */

long recVariance; /* Record variance. */

long dimVariances]CDF_MAX DIMS]; /* Dimension variances. */

status = CDFinquirezVar (id, CDFgetVarNum(id,"LATITUDE"), varName, &dataType,
&numElements, &numDims, dimSizes , &recVariance, dimVariances);
if (status != CDF_OK) UserStatusHandler (status);

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 6.3.40.

105

6.3.12 CDFgetVarRangeRecordsByVarName

CDFstatus CDFgetVarRangeRecordsByVarName(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

char *varName, /* in -- Variable name. */

long startRec, /* in — Starting record number. */

long stopRec, /* in — Stopping record number. */

void *buffer); /* out — Buffer for the returned record data. */

CDFgetVarRangeRecordsByVarName reads a range of records from the specified variable in a CDF. This function
provides an easier way of getting data from a variable. Since a variable name is unique in a CDF, this function can be
used by either an rVariable or zVaribale. For zVariable, this function is similar to CDFgetzVarRangeRecordsByVarlD,
only it requires the variable’s id. Make sure that the buffer is big enough to hold the data. Otherwise, a segmentation
fault may happen.

The arguments to CDFgetVarRangeRecordsByVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The variable name.

startRec The zero-based starting record number.
stopRec The zero-based stopping record number.
buffer The buffer that holds the returned data.

6.3.12.1. Example(s)

The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */

status = CDFgetVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

More general approach: for a variable of double type:

#include "cdf.h"

106

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF MAX DIMS]; /* zVariable’s dimensioality. */

long numValues; /* Total numer of values. */

double *buffer; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarNumDims (id, varNum, &numDims);

if (status != CDF_OK)

status = CDFgetzVarDimSizes (id, varNum, dimSizes);

if (status != CDF_OK)

numValues = 1;

for (i=1; i<numDims;++i) numValues *= dimSizes[i];

numvalue *= (109-10+1);

buffer = (double *) malloc((sizeof(double) * (size t) numValues);

status = CDFgetVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

free (buffer);

6.3.13 CDFgetzVarAllocRecords

CDFstatus CDFgetzVarAllocRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long *numRecs); /* out -- Allocated number of records. */

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of allocated records.

6.3.13.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

107

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */
long numRecs; /* The allocated records. */

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarAllocRecords (id, varNum, &numRecs);

if (status != CDF_OK) UserStatusHandler (status);

6.3.14 CDFgetzVarAllRecordsByVarID

CDFstatus CDFgetzVarAllRecordsByVarID(/*
CDFid id, /*
long varNum, /*
void *buffer); /*

out -- Completion status code. */

in -- CDF identifier. */

in -- zVariable number. */

out — Buffer for thre returned record data. */

CDFgetzVarAllRecordsByVarlD reads the whole records from the specified zVariable in a CDF. This function
provides an easier way of getting all data from a variable. Make sure that the buffer is big enough to hold the data.

Otherwise, a segmentation fault may happen.

The arguments to CDFgetzVarAllRecordsByVarID are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

buffer The buffer that holds the returned data.

6.3.14.1. Example(s)

The following example returns the whole record data for zVariable “MY_ VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

108

double buffer[100][3]; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarAllRecordsByVarID (id, varNum, buffer);
if (status |= CDF_OK) UserStatusHandler (status);

More general approach: for a variable of double type, but not knowing the total number of records, number of
dimensions, etc,:

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

long numRecs; /* Number of written records. */

long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF MAX DIMS]; /* zVariable’s dimensioality. */

long numValues; /* Total numer of values. */

double *buffer; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarMaxWrittenRecNum (id, varNum, &numRecs);
if (status != CDF_OK)

status = CDFgetzVarNumDims (id, varNum, &numDims);

if (status != CDF_OK)

status = CDFgetzVarDimSizes (id, varNum, dimSizes);

if (status != CDF_OK)

numValues = 1;

for (i=1; i<numDims;++i) numValues *= dimSizes[i];

numvalue *= numRecs;

buffer = (double *) malloc((sizeof(double) * (size t) numValues);
status = CDFgetzVarAllRecordsByVarID (id, varNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);

free (buffer);

6.3.15 CDFgetzVarBlockingFactor

CDFstatus CDFgetzVarBlockingFactor(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */

109

long *bf); /* out -- Blocking factor. */

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

6.3.15.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */
long bf; /* The blocking factor. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarBlockingFactor (id, varNum, &bf);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.16 CDFgetzVarCacheSize

CDFstatus CDFgetzVarCacheSize(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numBuffers); /* out -- Number of cache buffers. */

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

110

id

varNum

numBuffers

6.3.16.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The zVariable number.

The number of cache buffers.

The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id;
long varNum,;

long numBuffers;

/* CDF identifier. */
/* zVariable number. */
/* The number of cache buffers. */

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarCacheSize (id, varNum, &numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.3.17 CDFgetzVarCompression

CDFstatus CDFgetzVarCompression(/* out -- Completion status code. */

CDFid id,
long varNum,
long *cType,
long cParms[],
long *cPct);

/* in -- CDF identifier. */

/* in -- Variable number. */

/* out -- Compression type. */

/* out -- Compression parameters. */
/* out -- Compression percentage. */

CDFgetzVarCompression returns the compression type/parameters and the compression percentage of the specified
zVariable in a CDF. Refer to Section 4.10 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,

uncompressed varible size.

The arguments to CDFgetzVarCompression are defined as follows:

id

varNum

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The zVariable number.

111

cType The compression type.
cParms The compression parameters.

cPct The percentage of the uncompressed size of zVariable’s data values needed to store the
compressed values.

6.3.17.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

long cType; /* The compression type. */

long cParms[CDF_MAX PARMS]; /* The compression parameters. */
long cPct; /* The compression percentage. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarCompression (id, varNum, &cType, cParms, &cPct);
if (status != CDF_OK) UserStatusHandler (status);

6.3.18 CDFgetzVarData

CDFstatus CDFgetzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long recNum, /* in -- Record number. */

long indices[], /* in -- Dimension indices. */

void *value); /* out -- Data value. */

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFgetzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

112

recNum The record number.
indices The dimension indices within the record.

value The data value.

6.3.18.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3) CDF _DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */

double valuel, value2; /* The data values. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

recNum = 0L;

indices[0] = OL;

indices[1] = OL;

status = CDFgetzVarData (id, varNum, recNum, indices, &valuel);
if (status != CDF_OK) UserStatusHandler (status);

indices[0] = IL;

indices[1] = 1L;

status = CDFgetzVarData (id, varNum, recNum, indices, &value2);
if (status != CDF_OK) UserStatusHandler (status);

6.3.19 CDFgetzVarDataType

CDFstatus CDFgetzVarDataType(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *dataType); /* out -- Data type. */

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 4.5 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

113

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The data type.

6.3.19.1. Example(s)

The following example returns the data type of zVariable “MY_VAR” ina CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */

long dataType; /* The data type. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarDataType (id, varNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);

6.3.20 CDFgetzVarDimSizes

CDFstatus CDFgetzVarDimSizes(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long dimSizes[]); /* out -- Dimension sizes. */

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.

The arguments to CDFgetzVarDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

114

6.3.20.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long dimSizes[CDF MAX DIMS]; /* The dimension sizes. */

status = CDFgetzVarDimSizes (id, CDFgetVarNum(id, “MY_VAR”), dimSizes);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.21 CDFgetzVarDimVariances

CDFstatus CDFgetzVarDimVariances(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long dimVarys[]); /* out -- Dimension variances. */

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 4.9.

The arguments to CDFgetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

6.3.21.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.
#include "cdf.h"

CDFid id; /* CDF identifier. */
long dimVarys[2]; /* The dimension variances. */

115

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys);
if (status != CDF_OK) UserStatusHandler (status);

6.3.22 CDFgetzVarMaxAllocRecNum

CDFstatus CDFgetzVarMaxAllocRecNum(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long *maxRec); /* out -- Maximum allocated record number. */

CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.
The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The number of records allocated.

6.3.22.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.23 CDFgetzVarMaxWrittenRecNum

CDFstatus CDFgetzVarMax WrittenRecNum (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

116

long varNum, /* in -- Variable number. */
long *maxRec); /* out -- Maximum written record number. */

CDFgetzVarMax WrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.
The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The maximum written record number.

6.3.23.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long maxRec; /* The maximum record number. */

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), &maxRec);
if (status != CDF_OK) UserStatusHandler (status);

6.3.24 CDFgetzVarName

CDFstatus CDFgetzVarName(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
char *varName); /* out -- Variable name. */

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.
The arguments to CDFgetzVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

varName The name of the variable.

117

6.3.24.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */
char varName[CDF VAR NAME LEN256]; /* The name of the variable. */

varNum = 1L;
status = CDFgetzVarName (id, varNum, varName);
if (status != CDF_OK) UserStatusHandler (status);

6.3.25 CDFgetzVarNumDims

CDFstatus CDFgetzVarNumDims(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *numDims); /* out -- Number of dimensions. */

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.
The arguments to CDFgetzVarNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

numDims The number of dimensions.

6.3.25.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

118

CDFid id; /* CDF identifier. */

long numDims; /* The dimensionality of the variable. */

status = CDFgetzVarNumDims (id, CDFgetVarNum(id, “MY_VAR”), &numDims);
if (status != CDF_OK) UserStatusHandler (status);

6.3.26 CDFgetzVarNumElements

CDFstatus CDFgetzVarNumElements(/*

CDFid id, /*
long varNum, /*
long *numElems); /*

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

out -- Number of elements. */

For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numElems The number of elements.

6.3.26.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long numElems; /* The number of elements. */

status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR?”), &numElems)

if (status != CDF_OK) UserStatusHandler (status);

119

6.3.27 CDFgetzVarNumRecsWritten

CDFstatus CDFgetzVarNumRecsWritten(/* out -- Completion status code. */

CDFid id,
long varNum,
long *numRecs);

/* in -- CDF identifier. */
/* in -- Variable number. */
/* out -- Number of written records. */

CDFgetzVarNumRecs returns the number of records written for the specified zVariable in a CDF. This number may
not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of written records.

6.3.27.1. Example(s)

The following example returns the number of written records from zVariable “MY_ VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numRecs; /* The number of written records. */

status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR?”), &numRecs);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.28 CDFgetzVarPadValue

CDFstatus CDFgetzVarPadValue(/*

CDFid id, /*
long varNum, /*
void *value); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

out -- Pad value. */

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue or something similar from the Internal Interface function, the
informational status code NO PADVALUE SPECIFIED will be returned and the default pad value for the variable’s
data type will be placed in the pad value buffer provided.

120

The arguments to CDFgetzVarPadvalue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

6.3.28.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR?”, a CDF INT4 type variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
int padValue; /* The pad value. */

status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), &padValue);
if (status = NO_PADVALUE_SPECIFIED) {

RN

6.3.29 CDFgetzVarRangeRecordsByVarID

CDFstatus CDFgetzVarRangeRecordsByVarID(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- zZVariable number. */

long startRec, /* in — Starting record number. */

long stopRec, /* in — Stopping record number. */

void *buffer); /* out — Buffer for the returned record data. */

CDFgetzVarRangeRecordsByVarlD reads a range of records from the specified zVariable in a CDF. This function
provides an easier way of getting data from a variable. Make sure that the buffer is big enough to hold the data.
Otherwise, a segmentation fault may happen.

The arguments to CDFgetzVarRangeRecordsByVarlD are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

121

startRec The zero-based starting record number.
stopRec The zero-based stopping record number.

buffer The buffer that holds the returned data.

6.3.29.1. Example(s)

The following example reads the 100 record data, from record number 10 to 109 for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */

double buffer[100][3]; /* The buffer holding the data. */
varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

More general approach: for a variable of double type:

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

long numDims; /* Numer of zVariable’s dimensions. */
long dimSizes[CDF MAX DIMS]; /* zVariable’s dimensioality. */

long numValues; /* Total numer of values. */

double *buffer; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);

status = CDFgetzVarNumDims (id, varNum, &numDims);
if (status != CDF_OK)

status = CDFgetzVarDimSizes (id, varNum, dimSizes);

if (status != CDF_OK)

numValues = 1;

for (i=1; i<numDims;++i) numValues *= dimSizes[i];

122

numvalue *= (109-10+1);

buffer = (double *) malloc((sizeof(double) * (size t) numValues);
status = CDFgetzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

free (buffer);

6.3.30 CDFgetzVarRecordData

CDFstatus CDFgetzVarRecordData(/* out -- Completion status code. */

CDFid id, /*
long varNum, /*
long recNum, /*
void *buffer); /*

in -- CDF identifier. */
in -- Variable number. */
in -- Record number. */
out -- Record data. */

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

6.3.30.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

int *bufferl; /* The data holding buffer — dynamical allocation. */
int buffer2[2][3]; /* The data holding buffer — static allocation. */
long size;

varNum = CDFgetVarNum (id, “MY_VAR?”);

if (varNum < CDF_OK) Quit (“..

n),
e)

status = CDFgetDataTypeSize (CDF_INT4, &size);

123

bufferl = (int *) malloc(2*3*(int)size);

status = CDFgetzVarRecordData (id, varNum, 2L, bufferl);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFgetzVarRecordData (id, varNum, 5L, buffer2);
if (status |= CDF_OK) UserStatusHandler (status);

free (bufferl);

6.3.31 CDFgetzVarRecVariance

CDFstatus CDFgetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long *recVary); /* out -- Record variance. */

CDFgetzVarRecVariance returns the record variance of the specified zVariable in a CDF. The record variances are
described in Section 4.9.

The arguments to CDFgetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

6.3.31.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long recVary; /* The record variance. */

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), &recVary);
if (status != CDF_OK) UserStatusHandler (status);

124

6.3.32 CDFgetzVarReservePercent

CDFstatus CDFgetzVarReservePercent(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *percent); /* out -- Reserve percentage. */

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

ercent The reserve percentage.
p p g

6.3.32.1. Example(s)

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long percent; /* The compression reserve percentage. */

status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR”), &percent);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.33 CDFgetzVarSeqData

CDFstatus CDFgetzVarSeqData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* out -- Data value. */

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the

125

current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos function to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data.

value The buffer to store the value.

6.3.33.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* The variable number from which to read data */
int valuel, value2; /* The data value. */

long indices[2]; /* The indices in a record. */

long recNum; /* The record number. */

recNum = 2L;

indices[0] = OL;

indices[1] = OL;

status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &valuel);
if (status != CDF_OK) UserStatusHandler (status);

status = CDFgetzVarSeqData (id, varNum, &value2);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.34 CDFgetzVarSeqPos

CDFstatus CDFgetzVarSeqPos(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long *recNum, /* out -- Record number. */
long indices[]); /* out -- Indices in a record. */

126

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos
function to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id

varNum

recNum

indices

6.3.34.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The zVariable number.
The zVariable record number.

The dimension indices. Each element of indices receives the corresponding dimension
index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

#include "cdf.h"

CDFid id;

long recNum;
long indices[2];

/* CDF identifier. */
/* The record number. */
/* The indices. */

status = CDFgetzVarSeqPos (id, CDFgetVarNum(id, “MY_VAR?”), &recNum, indices);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.35 CDFgetzVarsMaxWrittenRecNum

CDFstatus CDFgetzVarsMaxWrittenRecNum(/* out -- Completion status code. */

CDFid id,

long *recNum);

/* in -- CDF identifier. */
/* out -- Maximum record number. */

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zVariable may be acquired using the CDFgetzVarMaxWrittenRecNum function call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

127

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

6.3.35.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long recNum; /* The maximum record number. */

status = CDFgetzVarsMaxWrittenRecNum (id, &recNum);
if (status != CDF_OK) UserStatusHandler (status);

6.3.36 CDFgetzVarSparseRecords

CDFstatus CDFgetzVarSparseRecords(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- The variable number. */
long *sRecordsType); /* out -- The sparse records type. */

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 4.11.1 for the
description of sparse records.

The arguments to CDFgetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

6.3.36.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_ VAR” in a CDF.

128

#include "cdf.h"

CDFid id; /* CDF identifier. */
long sRecordsType; /* The sparse records type. */

status = CDFgetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR”), &sRecordsType);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.37 CDFgetzVarsRecordDatabyNumbers

CDFstatus CDFgetzVarsRecordDatabyNumbers(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long numVars, /*in -- Number of zVariables. */
long varNums[], /*in -- zVariables’ numbers. */
long varRecNum, /*in -- Number of record. */

void *buffer; /* out -- Buffer for holding data. */

CDFgetzVarsRecordDatabyNumbers reads an entire record of the specified record number from the specified zVariable
numbers in a CDF. This function provides an easier and higher level interface to acquire data for a group of variables,
instead of doing it one variable at a time if calling the lower-level function. The retrieved record data from the
zVariable group is added to the buffer. The specified variables are identified by their variable numbers. Use the
CDFgetzVarsRecordData function to perform the same operation by providing the variable names, instead of the
variable numbers.

The arguments to CDFgetzVarsRecordDatabyNumbers are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this read operation.
varNums The zVariables’ numbers from which to read data.
varRecNum The record number at which to read data.

buffer Buffer that holds the retrieved data for the given zVariables. It should be big enough to allow
full physical record data from all variables to fill.

6.3.37.1. Example(s)

The following example will read an entire single record data for a group of zVariables: Time, Longitude, Delta and
Name. The record to be read is the sixth record that is record number 5 (record number starts at 0). For Longitude, a 1-
dimensional array of type short (size [3]) is given based on its dimension variance [VARY] and data type CDF_INT2.
For Delta, it is 2-dimensional of type int (sizes [3,2]) for its dimension variances [VARY,VARY] and data type

129

CDF INT4. For zVariable Time, a 2-dimensional array of type unsigned int (size [3,2]) is needed. It has dimension
variances [VARY,VARY] and data type CDF_UINT4. For Name, a 2-dimensional array of type char (size [2,10]) is
allocated for its [VARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

CDFid id;

CDFstatus status;

long numVars = 4;

long varRecNum = 5;

char *zVarl = "Longitude",

*zVar2 = "Delta",
*zVar3 = "Time",
*zVar4 = "Name";

long varNums[4];

void *puffer, *bufferptr;
unsigned int time[3][2];

short longitude[3];

int delta[3][2];

char name[2][10];

varNums[0] = CDFgetVarNum(id, zVarl);
varNums[1] = CDFgetVarNum(id, zVar2);
varNums[2] = CDFgetVarNum(id, zVar3);
varNums[3] = CDFgetVarNum(id, zVar4);

/* CDF identifier. */

/* Returned status code. */

/* Number of zVariables to read. */
/* The record number to read data. */
/* Names of the zVariables to read. */

/* Buffer for holding retrieved data. */

/* zVariable: Time; Datatype: UINT4. */

/* Dimensions: 2:[3,2]; Dim/Rec Variances: T/TT. */
/* zVariable: Longitude; Datatype: INT2. */

/* Dimensions: 1:[3]; Dim/Rec Variances: T/T. */

/* zVariable: Delta; Datatype: INT4. */

/* Dimensions: 2:[3,2], Dim/Rec Variances: T/TT. */
/* zVariable: Name; Datatype: CHAR/10. */

/* Dimensions: 1:[2]; Dim/Rec Variances: T/T. */

/* Number of each zVariable. */

buffer = (void *) malloc(sizeof(longitude) + sizeof(delta) + sizeof(time) + sizeof(name));

status = CDFgetzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);

bufferptr = buffer;

memcpy(time, bufferptr, sizeof(time));

bufferptr += sizeof{(time);

memcpy(logitude, bufferptr, sizeof(longitude));

bufferptr += sizeof(longitude);

memcpy(latitude, bufferptr, sizeof(latitude));

bufferptr += sizeof(latitude);

memcpy(temperature, bufferptr, sizeof(temperature));

bufferptr += sizeof(temperature);

memcpy(name, bufferptr, sizeof(name));

free (buffer);

130

6.3.38 CDFhyperGetzVarData

CDFstatus CDFhyperGetzVarData(/* out -- Completion status code. */

CDFid id,

long varNum,
long recStart,
long recCount,
long reclnterval,
long indices[],
long counts[],
long intervals[],
void *buffer);

/* in -- CDF identifier. */

/* in -- zVariable number. */

/* in -- Starting record number. */

/* in -- Number of records. */

/* in -- Reading interval between records. */

/* in -- Dimension indices of starting value. */

/* in -- Number of values along each dimension. */
/* in -- Reading intervals along each dimension. */
/* out -- Buffer of values. */

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this function because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,

respectively.

The arguments to CDFhyperGetzVarData are defined as follows:

id

varNum

recStart

recCount

recInterval

indices

counts

intervals

buffer

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start reading.
The number of records to read.
The reading interval between records (e.g., an interval of 2 means read every other record).

The dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariable, this argument is
ignored (but must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value.

131

6.3.38.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes [180,91,10] and the CDF’s variable majority is
ROW_MAJOR. The record variance is VARY, the dimension variances are [VARY,VARY,VARY], and the data type
is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

float tmp[3][180][91][10]; /* Temperature values. */

long varN; /* zVariable number. */

long recStart = 13; /* Start record number. */

long recCount = 3; /* Number of records to read */

long recInterval = 1; /* Record interval — read every record */
static long indices[3] = {0,0,0}; /* Dimension indices. */

static long counts[3] = {180,91,10}; /* Dimension counts. */

static long intervals[3] = {1,1,1}; /* Dimension intervals — read every value*/

varN = CDFgetVarNum (id, "Temperature");

if (varN < CDF_OK) UserStatusHandler (varN);

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp);
if (status != CDF_OK) UserStatusHandler (status);

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp[10][91][180][3] for proper indexing.

6.3.39 CDFhyperPutzVarData

CDFstatus CDFhyperPutzVarData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- zVariable number. */

long recStart, /* in -- Starting record number. */

long recCount, /* in -- Number of records. */

long reclnterval, /* in -- Writing interval between records. */

long indices[], /* in -- Dimension indices of starting value. */
long counts[], /* in -- Number of values along each dimension. */
long intervals[], /* in -- Writing intervals along each dimension. */
void *buffer); /* in -- Buffer of values. */

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this function because the values in the data buffer will
be written using that majority. CDFinquireCDF can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

132

The record number starts at 0, not 1. For example, if you want to write 2 records (10th and 1

1" record), the starting

record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,

and 1, respectively.

The arguments to CDFhyperPutzVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start writing.

recCount The number of records to write.

recInterval The interval between records for writing (e.g., an interval of 2 means write every other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For 0-dimensional zVariable this argument is ignored (but must
be present).

counts The number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable this argument is ignored (but must
be present).

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the

same as that of the CDF. The values starting at memory address buffer are written to the CDF.

6.3.39.1. Example(s)

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with
dimension sizes [181]. The dimension variances are [VARY], and the data type is CDF _INT2. This example is similar
to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than numerous calls

to CDFputzVarData.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
short lat; /* Latitude value. */

short i, lats[2][181]; /* Buffer of latitude values. */
long varN; /* zVariable number. */

long recStart = 0; /* Record number. */

long recCount = 2; /* Record counts. */

133

long recInterval = 1; /* Record interval. */
static long indices[] = {0}; /* Dimension indices. */
static long counts[] = {181}; /* Dimension counts. */

static long intervals[]

= {1}; /* Dimension intervals. */

varN = CDFgetVarNum (id, "LATITUDE");
if (varN < CDF_OK) UserStatusHandler (varN); /* If less than zero (0), not a zVariable number but

for(i=0; 1<2; i++)

rather a warning/error code. */

for (lat = -90; lat <= 90; lat ++)
lats[i][90+1at] = lat;

status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats);
if (status != CDF_OK) UserStatusHandler (status);

6.3.40 CDFinquirezVar

CDFstatus CDFinquirezVar(
CDFid id,

long varNum,

char varName,

long *dataType,

long *numElements,

long *numDims,

long dimSizes[],

long *recVariance,

long dimVariances[]);

/* out -- Completion status code. */

/* in -- CDF identifier. */

/* in -- zVariable number. */

/* out -- zVariable name. */

/* out -- Data type. */

/* out -- Number of elements (of the data type). */
/* out -- Number of dimensions. */

/* out -- Dimension sizes */

/* out -- Record variance. */

/* out -- Dimension variances. */

CDFinquirezVar is used to inquire about the specified zVariable. This function would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName

dataType

numElements

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 6.3.10).

The zVariable's name. This character string must be large enough to hold
CDF VAR NAME LEN256 + 1 characters (including the NUL terminator).

The data type of the zVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each

134

numDims

dimSizes

recVariance

dimVariances

6.3.40.1. Example(s)

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 4.9. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about an zVariable named HEAT FLUX in a CDF.

#include "cdf.h"

CDFid
CDFstatus
char

long

long

long

long

long

long

id;
status;

/* CDF identifier. */
/* Returned status code. */

varName[CDF VAR NAME LEN256+1]; /* zVariable name, +1 for NUL terminator. */

dataType; /* Data type of the zVariable. */

numElems; /* Number of elements (of data type). */

recVary; /* Record variance. */

numDims; /* Number of dimensions. */

dimSizes[CDF_ MAX DIMS]; /* Dimension sizes (allocate to allow the
maximum number of dimensions). */

dimVarys[CDF_ MAX DIMS]; /* Dimension variances (allocate to allow the

maximum number of dimensions). */

status = CDFinquirezVar(id, CDFgetVarNum(id,"HEAT FLUX"), varName, &dataType,

&numElems, &numDims, dimSizes, &recVary, dimVarys);

if (status |= CDF_OK) UserStatusHandler (status);

varNum

The zVariable number.

6.3.41 CDFinsertrVarRecordsByVarID

CDFstatus CDFinsertrVarRecordsByVarlD(/* out -- Completion status code. */

CDFid id,
long varNum,

/* in -- CDF identifier */
/* in -- rVariable number. */

135

long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */
void *buffer); /* in -- Data holding buffer. */

CDFinsertrVarRecordsByVarID inserts a number of records for the specified rVariable in a CDF. This function will
move down the existing records in range by the number of inserted records, as passed numRecs. The data buffer
should be big enough to hold all data values in the records. Segementation could occur if the buffer does not have
enough data. The function is only applicable to rVariables defined as non-sparsed records.

The arguments to CDFinsertrVarRecordsByVarID are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

startRec The starting record to insert

numRecs The number of records to insert.

buffer The buffer that holds the full data values for the inserted records.

6.3.41.1. Example(s)

The following example shows how 10 records, from (zero-based) record number 5, are inserted for an rVariable “Test”,
a scalar of CDF_INT4 type, in a CDF.

#include "cdf.h"

CDFid id, /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long varNum; /* rVariable number. */

long startRec; /* Starting record to insert. */

long numRecs; /* Number of records to insert. */
int byffer[10]; /* Data buffer for inserted records. */

varNum = CDFvarNum (id, “Test”);
startRec = 5L;
numRecs = 10L;

.. fill buffer

status = CDFinsertrVarRecordsByVarID (id, varNum, startRec, numRecs, buffer);
if (status != CDF_OK) UserStatusHandler (status);

136

6.3.42 CDFinsertVarRecordsByVarName

CDFstatus CDFinsertVarRecordsByVarName(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */

char *varName, /* in -- r/zVariable name. */

long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */

void *buffer); /* in -- Data holding buffer. */

CDFinsertVarRecordsByVarName inserts a number of records for the specified r/zVariable in a CDF. As a variable
name is unique in a CDF, this function can be used for both rVariables and zVariables. This function will move down
the existing records in range by the number of inserted records, as passed numRecs. The data buffer should be big
enough to hold all data values in the records. Segementation could occur if the buffer does not have enough data. The
function is only applicable to variables defined as non-sparsed records.

The arguments to CDFinsertVarRecordsByVarName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The r/zVariable name.

startRec The starting record to insert

numRecs The number of records to insert.

buffer The buffer that holds the full data values for the inserted records.

6.3.42.1. Example(s)

The following example shows how 10 records, from (zero-based) record number 5, are inserted for a zVariable “Test”,
a scalar of CDF_INT4 type, in a CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long startRec; /* Starting record to insert. */

long numRecs; /* Number of records to insert. */

int byffer[10]; /* Data buffer for inserted records. */

startRec = 5L;
numRecs = 10L;

.. fill buffer

137

status = CDFinsertVarRecordsByVarName (id, “Test”, startRec, numRecs, buffer);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.43 CDFinsertzVarRecordsByVarID

CDFstatus CDFinsertzVarRecordsByVarlD(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier */

long varNum, /* in -- zVariable number. */

long startRec, /* in -- Starting record number to insert. */
long numRecs, /* in -- Number of records to insert. */
void *buffer); /* in -- Data holding buffer. */

CDFinsertzVarRecordsByVarID inserts a number of records for the specified zVariable in a CDF. This function will
move down the existing records in range by the number of inserted records, as passed numRecs. The data buffer
should be big enough to hold all data values in the records. Segementation could occur if the buffer does not have
enough data. The function is only applicable to zVariables defined as non-sparsed records.

The arguments to CDFinsertzVarRecordsByVarID are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

startRec The starting record to insert

numRecs The number of records to insert.

buffer The buffer that holds the full data values for the inserted records.

6.3.43.1. Example(s)

The following example shows how 10 records, from (zero-based) record number 5, are inserted for an zVariable
“Test”, a scalar of CDF_INT4 type, in a CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long varNum; /* zVariable number. */

long startRec; /* Starting record to insert. */
long numRecs; /* Number of records to insert. */

int byffer[10]; /* Data buffer for inserted records. */

138

varNum = CDFvarNum (id, “Test”);
startRec = 5L;
numRecs = 10L;

.. fill buffer

status = CDFinsertzVarRecordsByVarID (id, varNum, startRec, numRecs, buffer);
if (status != CDF_OK) UserStatusHandler (status);

6.3.44 CDFputVarAllRecordsByVarName

CDFstatus CDFputVarAllRecordsByVarName(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

char *varName, /* in -- Variable name. */

long numRecs, /* in — The total number of records to write. */
void *buffer); /* in — Buffer for the written record data. */

CDFputVarAllRecordsByVarName writes/updates®” the whole data records from the specified variable in a CDF. This
function provides an easier way of writing data from a variable. Since a variable name is unique in a CDF, this name
can be either a zVariable or rVariable. The variable shall be created before this function can be called.

The arguments to CDFputVarAllRecordsByVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The Variable name.
numRecs The total number of records to write.
buffer The buffer that holds the written data.

6.3.44.1. Example(s)

The following example writes out a total of 100 records , for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */

3% If the variable already has more records than the numRecs in this function call, those records out of the range will
stay after the call. If you want to remove those records, you can delete all records before calling this function.

139

... fill the buffer

status = CDFputVarAllRecordsByVarName (id, “MY_VAR”, 100L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

6.3.45 CDFputVarRangeRecordsByVarName

CDFstatus CDFputVarRangeRecordsByVarName(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

char *varName, /* in -- Variable name. */

long startRec, /* in — The starting record to write. */

long stopRec, /* in — The stopping record to write. */
void *buffer); /* in — Buffer for the written record data. */

CDFputVarRangeRecordsByVarName writes the whole data records from the specified variable in a CDF. This
function provides an easier way of writing data from a variable. Since the variable name is unique in a CDF, this name
can be either a zVariable or rVariable. The variable shall be created before this function can be called.

The arguments to CDFputVarRangeRecordsByVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The variable name.

startRec The starting record number to write.
stopRec The stopping record number to write.
buffer The buffer that holds the written data.

6.3.45.1. Example(s)

The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */
double buffer[100][3]; /* The buffer holding the data. */
... fill the buffer

140

status = CDFputVarRangeRecordsByVarName (id, “MY_VAR”, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

6.3.46 CDFputzVarAllRecordsByVarID

CDFstatus CDFputzVarAllRecordsByVarID(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- zZVariable number. */

long numRecs, /* in — Number of records in total to write. */
void *buffer); /* in — Buffer for the written record data. */

CDFputzVarAllRecordsByVarID writes/updates’' the whole records from the specified zVariable in a CDF. This
function provides an easier way of writing all data from a variable. Make sure that the buffer has the enough data to
cover the records to be written. The zVariable shall be created before this function can be called.

The arguments to CDFputzVarAllRecordsByVarlID are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
numRecs The total number of records to write.
buffer The buffer that holds the written data.

6.3.46.1. Example(s)

The following example writes out the whole record data for zVariable “MY_VAR” in a CDF.

Assuming that the variable has 100 records, each record being a 1-dimensional, with 3 elements, of double type.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */
double buffer[100][3]; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR”);

U If the variable already has more records than the numRecs in this function call, those records out of the range will
stay after the call. If you want to remove those records, you can delete all records before calling this function.

141

if (varNum < CDF_OK) Quit (*....”);
... fill the buffer

status = CDFputzVarAllRecordsByVarlID (id, varNum, 100L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

6.3.47 CDFputzVarData

CDFstatus CDFputzVarData(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long recNum, /* in -- Record number. */

long indices[], /* in -- Dimension indices. */

void *value); /* in -- Data value. */

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.

The arguments to CDFputzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

6.3.47.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */
long recNum; /* The record number. */
long indices[2]; /* The dimension indices. */

double valuel, value2; /* The data values. */

142

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);
recNum = 0L;

indices[0] = OL;

indices[1] = OL;

valuel =10.1;

status = CDFputzVarData (id, varNum, recNum, indices, &valuel);

if (status != CDF_OK) UserStatusHandler (status);

indices[0] = 1L;
indices[1] = 1L;
value2 =20.2;

status = CDFputzVarData (id, varNum, recNum, indices, &value2);

if (status |= CDF_OK) UserStatusHandler (status);

6.3.48 CDFputzVarRangeRecordsByVarID

CDFstatus CDFputzVarRangeRecordsByVarlD(/*
CDFid id, /*
long varNum, /*
long startRec, /*
long stopRec, /*
void *buffer); /*

out -- Completion status code. */

in -- CDF identifier. */

in -- zVariable number. */

in — The starting record to write. */

in — The stopping record to write. */

in — Buffer for the written record data. */

CDFputzVarRangeRecordsByVarID writes/updates a range of records from the specified zVariable in a CDF. This
function provides an easier way of writing data from a variable. The zVariable shall be created before this function can

be called.

The arguments to CDFputzVarRangeRecordsByVarID are defined as follows:

The identifier of the current CDF. This identifier must have been initialized by a call to

o CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

startRec The starting record number to write.

stopRec The stopping record number to write.

buffer The buffer that holds the written data.

6.3.48.1. Example(s)

The following example writes out a range of record data, from record 10 to 109, for zVariable “MY_VAR” in a CDF.
Assuming each record is a 1-dimensional, with 3 elements, of double type.

143

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */

double buffer[100][3]; /* The buffer holding the data. */

varNum = CDFgetVarNum (id, “MY_VAR?”);

if (varNum < CDF_OK) Quit (*....”);

... fill the buffer

status = CDFputzVarRangeRecordsByVarID (id, varNum, 10L, 109L, buffer);
if (status != CDF_OK) UserStatusHandler (status);

6.3.49 CDFputzVarRecordData

CDFstatus CDFputzVarRecordData(/*
CDFid id, /*

long varNum, /*
long recNum, /*
void *buffer); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

in -- Record number. */

in -- Record data. */

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

6.3.49.1. Example(s)

The following example will write two full records (numbered 2 and 5) from zVariable “MY_VAR”, a 2-dimension (2
by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY..

#include "cdf.h"

144

CDFid id; /* CDF identifier. */

long varNum,; /* zVariable number. */

int *bufferl; /* The data holding buffer — dynamical allocation. */
int buffer2[2][3]; /* The data holding buffer — static allocation. */

long size;

int 1,j;

varNum = CDFgetVarNum (id, “MY_VAR?”);
if (varNum < CDF_OK) Quit (*....”);
status = CDFgetDataTypeSize (CDF_INT4, &size);
bufferl = (int *) malloc(2*3*(int)size);
for (i=0; i<6; i++) *(((int *) bufferl)+i) =1I;
status = CDFputzVarRecordData (id, varNum, 2L, bufferl);
if (status |= CDF_OK) UserStatusHandler (status);
for (i=0; i<2; [++)

for (j=0; j<3; j++)

buffer2[i][j] = i*j;

status = CDFputzVarRecordData (id, varNum, 5L, buffer2);
if (status |= CDF_OK) UserStatusHandler (status);

free (bufferl);,

6.3.50 CDFputzVarSeqData

CDFstatus CDFputzVarSeqData(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* in -- Data value. */

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos function to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The buffer holding the data value.

6.3.50.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4.

145

#include "cdf.h"

CDFid id; /* CDF identifier. */

long varNum,; /* The variable number. */
int valuel, value2; /* The data value. */

long indices[2]; /* The indices in a record. */
long recNum; /* The record number. */
recNum = 2L;

indices[0] = OL;

indices[1] = OL;

status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFputzVarSeqData (id, varNum, &valuel);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFputzVarSeqData (id, varNum, &value?2);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.51 CDFputzVarsRecordDatabyNumbers

CDFstatus CDFputzVarsRecordDatabyNumbers(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long numVars, /*in -- Number of zVariables. */
long varNums[], /*in -- zVariables’s numbers. */
long varRecNum, /*in -- Record number. */

void *buffer; /*in -- Buffer for input data. */

CDFputzVarsRecordDatabyNumbers is used to write a whole record data at a specific record number for a group of
zVariables in a CDF. It expects that the data buffer matches up to the total full physical record size of all requested
zVariables. Passed record data is filled into its respective zVariable. This function provides an easier and higher level
interface to write data for a group of variables, instead of doing it one variable at a time if calling the lower-level
function. The specified variables are identified by their variable numbers. Use CDFputzVarsRecordData function to
perform the similar operation by providing the variable names, instead of the numbers.

The arguments to CDFputzVarsRecordDatabyNumbers are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopenCDF or a similar CDF creation or opening functionality from the Internal Interface.

numVars The number of the zVariables in the group involved this write operation.
varNums The zVariables’s numbers in the group involved this write operation.

varRecNum The record number at which to write the whole record data for the group of zVariables.

146

buffer

A buffer that holds the output data for the given zVariables.

6.3.51.1. Example(s)

The following example will write an entire single record data for a group of zVariables. The CDF's zVariables are 2-
dimensional with sizes [2,2]. The zVariables involved in the write are Time, Longitude, Latitude and Temperature. The
record to be written is 4. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
type int is allocated for its data type CDF _INT4. For Longitude, a 1-dimensional array of type float (size [2]) is
allocated as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar 1-dimensional
array is provided for Latitude for its NONVARY,VARY] dimension variances and CDF_REAL4 data type. For
Temperature, since its [VARY,VARY] dimension variances and CDF_REAL4 data type, a 2-dimensional array of type
float is provided. For NAME, a 2-dimensional array of type char (size [2,10]) is allocated due to its [VARY,
NONVARY] dimension variances and CDF_CHAR data type with the number of element 10.

#include "cdf.h"

CDFid
CDFstatus
long

long

char

long
void
void
int

float
float

float

char

varNums[0] = CDFgetVarNum(id, zVarl);
varNums[1] = CDFgetVarNum(id, zVar2);
varNums[2] = CDFgetVarNum(id, zVar3);
varNums[3] = CDFgetVarNum(id, zVar4);
varNums[4] = CDFgetVarNum(id, zVar5);

id;

status;

numVars = 5;
varRecNum = 4;
*zVarl = "Time",
*zVar2 = "Longitude",
*zVar3 = "Latitude",

*zVar4 = "Temperature",

*zVar5 = "NAME";
varNums[5];
*buffer;

*bufferptr;

time = {123};

longitude[2] =
{11.1,22.2};
latitude[2] =
{-11.1,-22.2};
temperature[2][2] =
{100.0, 200.0,
300.0, 400.0};
name[2][10] =

/* Dim/Rec Variances: T/TF. */

/* CDF identifier. */

/* Returned status code. */

/* Number of zVariables to write. */
/* The record number to write data. */
/* Names of the zVariables to write. */

/* Buffer for holding the output data */
/* Buffer place keeper */
/* zVariable: Time; Datatype: INT4. */
/* Dim/Rec Variances: T/FF. */
/* zVariable: Longitude; Datatype: REAL4. */
/* Dim/Rec Variances: T/TF. */
/* zVariable: Latitude; Datatype: REAL4. */
/* Dim/Rec Variances: T/FT. */
/* zVariable: Temperature; Datatype: REAL4. */
/* Dim/Rec Variances: T/TT. */

/* zVariable: NAME; Datatype: CHAR/10. */
/* Dim/Rec Variances: T/TF. */

{717’ l3" VSI’ ’77, l9l, 721’ V4|, 167’ l8" VOI,
YZY’ VZV’ lyV’ VYV’ VXY’ VXY’ VWY’ VW’, VVY’ VV!};

/* Number of each zVariable. */

buffer = (void *) malloc(sizeof(time) + sizeof(longitude) + sizeof(latitude) + sizeof(temperature) + sizeof(name));
bufferptr = buffer;
memcpy(bufferptr, (void *) time, sizeof(time));

147

bufferptr += sizeof{(time);

memcpy(bufferptr, (void *) longitude, sizeof(longitude));
bufferptr += sizeof(longitude);

memcpy(bufferptr, (void *) latitude, sizeof(latitude));
bufferptr += sizeof(latitude);

memcpy(bufferptr, (void *) temperature, sizeof(temperature));
bufferptr += sizeof(temperature);

memcpy(bufferptr, (void *) name, sizeof(name));

status = CDFputzVarsRecordDatabyNumbers(id, numVars, varNums, varRecNum, buffer);
if (status != CDF_OK) UserStatusHandler (status);

free (buffer);

6.3.52 CDFrenamezVar

CDFstatus CDFrenamezVar(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- zVariable number. */

char *varName); /* in -- New name. */

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFrenamezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF_ VAR NAME LEN256 characters

(excluding the NUL terminator). Variable names are case-sensitive.

6.3.52.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather a warning/error
code.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
long varNum; /* zVariable number. */

148

varNum = CDFgetVarNum (id, "TEMPERATURE");

if (varNum <CDF_OK) {

if (varNum != NO_SUCH_VAR) UserStatusHandler (varNum);

H

else {

status = CDFrenamezVar (id, varNum, "TMP");
if (status != CDF_OK) UserStatusHandler (status);

RN

6.3.53 CDFsetzVarAllocBlockRecords

CDFstatus CDFsetzVarAllocBlockRecords(/*

CDFid id, /*
long varNum, /*
long firstRec, /*

long lastRec); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

in -- First record number. */

in -- Last record number. */

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

6.3.53.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long firstRec, lastRec; /* The first/last record numbers. */

firstRec = 10L;
lastRec = 19L;

149

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum(id, “MY_VAR”), firstRec, lastRec);
if (status != CDF_OK) UserStatusHandler (status);

6.3.54 CDFsetzVarAllocRecords

CDFstatus CDFsetzVarAllocRecords(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long numRecs); /* in -- Number of records. */

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of records to allocate.

6.3.54.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR?” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numRecs; /* The number of records. */

numRecs = 100L;
status = CDFsetzVarAllocRecords (id, CDFgetVarNum(id, “MY_VAR”), numRecs);
if (status != CDF_OK) UserStatusHandler (status);

6.3.55 CDFsetzVarBlockingFactor

150

CDFstatus CDFsetzVarBlockingFactor(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long bf); /* 1in -- Blocking factor. */

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.

The arguments to CDFsetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

6.3.55.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long bf; /* The blocking factor. */
bf=100L;

status = CDFsetzVarBlockingFactor (id, CDFgetVarNum(id, “MY_VAR?”), bf);
if (status != CDF_OK) UserStatusHandler (status);

6.3.56 CDFsetzVarCacheSize

CDFstatus CDFsetzVarCacheSize(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

151

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

6.3.56.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long numBuffers; /* The number of cache buffers. */

numBuffers = 10L;
status = CDFsetzVarCacheSize (id, CDFgetVarNum(id, “MY_VAR”), numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.3.57 CDFsetzVarCompression

CDFstatus CDFsetzVarCompression(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long cType, /* in -- Compression type. */

long cParms|[]); /* in -- Compression parameters. */

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 4.10 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
cType The compression type.
cParms The compression parameters.

152

6.3.57.1. Example(s)

The following example sets the compression to GZIP.9 for zVariable “MY_VAR?” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long cType; /* The compression type. */
long cParms[CDF_ MAX PARMS]; /* The compression parameters. */

cType = GZIP_COMPRESSION;

cParms[0] = 9L;

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), cType, cParms);
if (status != CDF_OK) UserStatusHandler (status);

6.3.58 CDFsetzVarDataSpec

CDFstatus CDFsetzVarDataSpec(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long datyeType) /* in -- Data type. */

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent to the old data type and any values (including the pad value) have been
written. Data specifications are considered equivalent if the data types are equivalent. Refer to the CDF User’s Guide
for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The new data type.

6.3.58.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF UINT2) for zVariable
“MY_VAR” in a CDF.

153

#include "cdf.h"

CDFid id; /* CDF identifier. */
long dataType; /* The data type. */

dataType = CDF_INT2;
status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType);
if (status != CDF_OK) UserStatusHandler (status);

6.3.59 CDFsetzVarDimVariances

CDFstatus CDFsetzVarDimVariances(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long dimVarys[]); /* in -- Dimension variances. */

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 4.9.

The arguments to CDFsetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

6.3.59.1. Example(s)

The following example resets the dimension variances to true (VARY) and false (NOVARY) for zVariable
“MY_VAR?”, a 2-dimensional variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */

long dimVarys[2]; /* The dimension variances. */

varNum = CDFgetVarNum (id, “MY_VAR”);
if (varNum < CDF_OK) Quit (*....”);

154

dimVarys[0] = VARY;

dimVarys[1] = NOVARY;

status = CDFsetzVarDimVariances (id, varNum, dimVarys);
if (status != CDF_OK) UserStatusHandler (status);

6.3.60 CDFsetzVarlnitialRecs

CDFstatus CDFsetzVarlnitialRecs(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long numRecs); /* in -- Number of records. */

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarlInitialRecs are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The initially written records.

6.3.60.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* zVariable number. */
long numRecs /* The number of records. */

varNum = CDFgetVarNum (id, “MY_VAR”);

if (varNum < CDF_OK) Quit (*....”);

numRecs = 100L;

status = CDFsetzVarlnitialRecs (id, varNum, numRecs);
if (status != CDF_OK) UserStatusHandler (status);

155

6.3.61 CDFsetzVarPadValue

CDFstatus CDFsetzVarPadValue(/* out-- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
void *value); /* in -- Pad value. */

CDFsetzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFsetzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

6.3.61.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
int padValue; /* The pad value. */

padValue =-9999L,;
status = CDFsetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), &padValue);
if (status != CDF_OK) UserStatusHandler (status);

6.3.62 CDFsetzVarRecVariance

CDFstatus CDFsetzVarRecVariance(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long varNum, /* in -- Variable number. */

long recVary); /* in -- Record variance. */

156

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are

described in Section 4.9.

The arguments to CDFsetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

6.3.62.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

long recVary; /* The record variance. */

recVary = VARY,;

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR”), recVary);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.63 CDFsetzVarReservePercent

CDFstatus CDFsetzVarReservePercent(/*

CDFid id, /*
long varNum, /*
long percent); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Variable number. */

in -- Reserve percentage. */

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the

reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

157

percent The reserve percentage.

6.3.63.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long percent; /* The reserve percentage. */

percent = 10L;
status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.64 CDFsetzVarsCacheSize

CDFstatus CDFsetzVarsCacheSize(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long numBuffers); /* in -- Number of cache buffers. */

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

The arguments to CDFsetzVarsCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

6.3.64.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

#include "cdf.h"

158

CDFid id; /* CDF identifier. */
long numBuffers; /* The number of cache buffers. */

numBuffers = 10L;
status = CDFsetzVarsCacheSize (id, numBuffers);
if (status != CDF_OK) UserStatusHandler (status);

6.3.65 CDFsetzVarSeqPos

CDFstatus CDFsetzVarSeqPos(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long varNum, /* in -- Variable number. */
long recNum, /* in -- Record number. */
long indices[]); /* in -- Indices in a record. */

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
function to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

6.3.65.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
long varNum,; /* The variable number. */
long recNum; /* The record number. */

long indices[2]; /* The indices. */

159

recNum = 2L;
indices[0] = OL;
indices[1] = OL;

status = CDFsetzVarSeqPos (id, varNum, recNum, indices);
if (status |= CDF_OK) UserStatusHandler (status);

6.3.66 CDFsetzVarSparseRecords

CDFstatus CDFsetzVarSparseRecords(/*

CDFid id, /*
long varNum, /*
long sRecordsType); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- The variable number. */

in -- The sparse records type. */

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section

4.11.1 for the description of sparse records.

The arguments to CDFsetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

sRecordsType The sparse records type.

6.3.66.1. Example(s)

The following example sets the sparse records type to PAD SPARSERECORDS from its original type for zVariable

“MY_VAR” in a CDF.

#include "cdf.h"

CDFid id,;
long sRecordsType;

/* CDF identifier. */
/* The sparse records type. */

sRecordsType = PAD_SPARSERECORDS;
status = CDFsetzVarSparseRecords (id, CDFgetVarNum(id, “MY_VAR?”), sRecordsType);
if (status |= CDF_OK) UserStatusHandler (status);

160

6.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

6.4.1 CDFconfirmAttrExistence

CDFstatus CDFconfirmAttrExistence(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
char *attrName) /* in -- Attribute name. */

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, an error is returned.

The arguments to CDFconfirmAttrExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName The attribute name to check.

6.4.1.1. Example(s)

The following example checks whether the attribute by the name of “ATTR NAME]1” is in a CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFconfirmAttrExistence (id, “ATTR_NAME1");
if (status != CDF_OK) UserStatusHandler (status);

6.4.2 CDFconfirmgEntryExistence

CDFstatus CDFconfirmgEntryExistence(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- gEntry number. */

161

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (global) attribute number.

entryNum The gEntry number.

6.4.2.1. Example(s)

The following example checks the existence of gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id, /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 1L;

status = CDFconfirmgEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.3 CDFconfirmrEntryExistence

CDFstatus CDFconfirmrEntryExistence(/¥ out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- rEntry number. */

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

162

attrNum The variable attribute number.

entryNum The rEntry number.

6.4.3.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_ VAR”, for attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFconfirmrEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.4 CDFconfirmzEntryExistence

CDFstatus CDFconfirmzEntryExistence(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum); /* in -- zEntry number. */

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO SUCH_ENTRY will be
returned.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The zEntry number.

163

6.4.4.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_ VAR?” for the variable
attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid 1id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VAR”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFconfirmzEntryExistence (id, attrNum, entryNum);
if (status == NO_SUCH_ENTRY) UserStatusHandler (status);

6.4.5 CDFcreateAttr

CDFstatus CDFcreateAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

char *attrName, /* in -- Attribute name. */

long attrScope, /* in -- Scope of attribute. */

long *attrNum); /* out -- Attribute number. */

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the original Standard Interface
function CDFattrCreate. An attribute with the same name must not already exist in the CDF.

The arguments to CDFcreateAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute to create. This may be at most CDF_ ATTR NAME LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

164

6.4.5.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
static char ~ UNITSattrName[] = {"Units"}; /* Name of "Units" attribute. */
long UNITSattrNum; /* "Units" attribute number. */
long TITLEattrNum,; /¥ "TITLE" attribute number. */

static long TITLEattrScope = GLOBAL SCOPE; /* "TITLE" attribute scope. */

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, & TITLEattrNum);

if (status != CDF_OK) UserStatusHandler (status);

status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, &UNITSattrnum);
if (status != CDF_OK) UserStatusHandler (status);

6.4.6 CDFdeleteAttr

CDFstatus CDFdeleteAttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long attrNum); /* in -- Attribute identifier. */

CDFdeleteAttr deletes the specified attribute from a CDF.
The arguments to CDFdeleteAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to be deleted.

6.4.6.1. Example(s)

The following example deletes an existing attribute named MY ATTR from a CDF.

#include "cdf.h"

165

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) UserStatusHandler (status);
status = CDFdeleteAttr (id, attrNum);

if (status != CDF_OK) UserStatusHandler (status);

6.4.7 CDFdeleteAttrgEntry

CDFstatus CDFdeleteAttrgEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- gEntry identifier. */

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number from which to delete an attribute entry.

entryNum The gEntry number to delete.

6.4.7.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 5L;

status = CDFdeleteAttrgEntry (id, attrNum, entryNum);

166

if (status != CDF_OK) UserStatusHandler (status);

6.4.8 CDFdeleteAttrrEntry

CDFstatus CDFdeleteAttrrEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- rEntry identifier. */

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from
a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The rEntry number.

6.4.8.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_ VAR1” from the variable attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1"”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFdeleteAttrrEntry (id, attrNum, entryNum);
if (status != CDF_OK) UserStatusHandler (status);

167

6.4.9 CDFdeleteAttrzEntry

CDFstatus CDFdeleteAttrzEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum); /* in -- zEntry identifier. */

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number to be deleted that is the zVariable number.

6.4.9.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY _ VARI.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* zEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFdeleteAttrzEntry (id, attrNum, entryNum);
if (status != CDF_OK) UserStatusHandler (status);

6.4.10 CDFgetAttrgEntry

168

CDFstatus CDFgetAttrgEntry (- /* out -- Completion status code. */
/* in-- CDF identifier. */

/* in -- Attribute identifier. */

/* in -- gEntry number. */

/* out -- gEntry data. */

CDFid id,

long attrNum,
long entryNum,
void *value);

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrgEntry is used to read a
global attribute entry from a CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling
CDFgetAttrgEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id

attrNum
entryNum

value

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The global attribute entry number.

The value read. This buffer must be large enough to hold the value.
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at

address value.

6.4.10.1. Example(s)

The following example displays the value of the global attribute called HISTORY. Note that the CDF library does not
automatically NUL terminate character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries

(or variable values).

#include "cdf.h"

CDFid
CDFstatus
long

long

long

long

void

attrN = CDFattrNum (id, "HISTORY");

id;

status;
attrN;
entryN;
dataType;
numElems;
*buffer;

/*
/*
/*
/*
/*
/*
/*

if (attrN < CDF_OK) UserStatusHandler (attrN);

code. */

entryN = 0;

CDF identifier. */

Returned status code. */

Attribute number. */

Entry number. */

Data type. */

Number of elements (of data type). */
Buffer to receive value. */

/* If less than zero (0), then it must be a warning/error

status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);

169

The function

if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (buffer == NULL)...

status = CDFgetAttrgEntry (id, attrN, entryN, buffer);
if (status != CDF_OK) UserStatusHandler (status);

buffer[numElems] = "0';

/* NUL terminate. */

printf ("Units of PRES LVL variable: %s\n", buffer);

free (buffer);

6.4.11 CDFgetAttrgEntryDataType

CDFstatus CDFgetAttrgEntryDataType (= /*

CDFid id, /*
long attrNum, /*
long entryNum, /*

long *dataType); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Attribute identifier. */

in -- gEntry number. */

out -- gEntry data type. */

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The

data types are described in Section 4.5.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.

dataType The data type of the gEntry.

6.4.11.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id;

/* CDF identifier. */

170

CDFstatus status; /* Returned status code. */

long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */
long dataType; /* gEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 2L;

status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);

6.4.12 CDFgetAttrgEntryNumElements

CDFstatus CDFgetAttrgEntryNumElements (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute identifier. */

long entryNum, /* in -- gEntry number. */

long *numElems); /* out -- gEntry’s number of elements. */

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.

The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.
entryNum The gEntry number.

numElems The number of elements of the gEntry.

6.4.12.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* gEntry number. */

171

long numElements; /* gEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = 2L;

status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);

6.4.13 CDFgetAttrrEntry

CDFstatus CDFgetAttrrEntry (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long entryNum, /* in -- Entry number. */
void *value); /* out -- Entry data. */

This function is identical to the original Standard Interface function CDFattrGet. CDFgetAttrrEntry is used to read an
rVariable attribute entry from a CDF. In most cases it will be necessary to call CDFattrEntrylnquire before calling
CDFinquireAttrrEntry in order to determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The rVariable attribute entry number that is the rVariable number from which the attribute is
read.

value The entry value read. This buffer must be large enough to hold the value. The function

CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

6.4.13.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF _CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

172

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; /* Attribute number. */

long entryN; /* Entry number. */

long dataType; /* Data type. */

long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */

attrN = CDFattrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a warning/error
code. */
entryN = CDFvarNum (id, "PRES _LVL"); /* The rEntry number is the rVariable number. */
if (entryN <CDF _OK) UserStatusHandler (entryN); /* If less than zero (0), then it must be a warning/error
code. */
status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);
if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {
buffer = (char *) malloc (numElems + 1);
if (buffer == NULL)...

status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
if (status != CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0'; /* NUL terminate. */
printf ("Units of PRES LVL variable: %s\n", buffer);

free (buffer);

6.4.14 CDFgetAttrMaxgEntry

CDFstatus CDFgetAttrMaxgEntry (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The last gEntry number. */

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.

173

maxEntry The last gEntry number.

6.4.14.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */

long maxEntry; /* The last gEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxgEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

6.4.15 CDFgetAttrMaxrEntry

CDFstatus CDFgetAttrMaxrEntry (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The maximum rEntry number. */

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is
attached.

The arguments to CDFgetAttrMaxrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last rEntry number (rVariable number) to which attrNum is attached..

6.4.15.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

174

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */

long maxEntry; /* The last rEntry number. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxrEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

6.4.16 CDFgetAttrMaxzEntry

CDFstatus CDFgetAttrMaxzEntry (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
long *maxEntry); /* out -- The maximum zEntry number. */

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.

The arguments to CDFgetAttrMaxzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

6.4.16.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY _ATTR in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

175

long attrNum; /* Attribute number. */
long maxEntry; /* The last zEntry number that is the last zVariable added */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrMaxzEntry (id, attrNum, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

6.4.17 CDFgetAttrName

CDFstatus CDFgetAttrName (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute identifier. */
char *attrName); /* out -- The attribute name. */

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the attribute.

attrName The name of the attribute.

6.4.17.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
char attrName[CDF _ATTR NAME LEN256]; /* The attribute name. */
attrNum = 2L;

status = CDFgetAttrName (id, attrNum, attrName);
if (status != CDF_OK) UserStatusHandler (status);

176

6.4.18 CDFgetAttrNum

long CDFgetAttrNum (
CDFid id,
char *attrName);

/* out -- Attribute number. */
/* in -- CDF identifier. */
/* in -- The attribute name. */

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type CDFstatus) is returned. Error codes are less than zero

(0).

The arguments to CDFgetAttrNum are defined as follows:

id

attrName

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

The name of the attribute for which to search. This may be at most
CDF _ATTR NAME LEN256 characters (excluding the NUL terminator). Attribute names
are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

6.4.18.1. Example(s)

In the following example

the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being

used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

#include "cdf.h"

CDFid id;
CDFstatus status;

/* CDF identifier. */
/* Returned status code. */

status = CDFrenameAttr (id, CDFgetAttrNum(id,"pressure"), "PRESSURE");
if (status != CDF_OK) UserStatusHandler (status);

6.4.19 CDFgetAttrrEntryDataType

CDFstatus CDFgetAttrrEntryDataType (/* out -- Completion status code. */

CDFid id,

long attrNum,
long entryNum,
long *dataType);

/* in-- CDF identifier. */

/* in -- Attribute identifier. */
/* in -- rEntry number. */

/* out -- rEntry data type. */

177

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 4.5.

The arguments to CDFgetAttrrEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

dataType The data type of the rEntry.

6.4.19.1. Example(s)

The following example gets the data type for the entry of rVariable “MY VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long entryNum; /* rEntry number. */

long dataType; /* rEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1"”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);

6.4.20 CDFgetAttrrEntryNumElements

CDFstatus CDFgetAttrrEntryNumElements (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute identifier. */

long startRec, /* in -- rEntry number. */

long *numElems); /* out -- rEntry’s number of elements. */

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

178

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

numElems The number of elements of the rEntry.

6.4.20.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrNum; /* Attribute number. */

long entryNum; /* rEntry number. */

long numElements; /* rEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1"”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);

6.4.21 CDFgetAttrScope

CDFstatus CDFgetAttrScope (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long *attrScope); /* out -- Attribute scope. */

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in
a CDF. Refer to Section 4.12 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

179

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

attrScope The scope of the attribute.

6.4.21.1. Example(s)

The following example gets the scope of the attribute “MY_ ATTR” in a CDF.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrNum; /* Attribute number. */
long attrScope; /* Attribute scope. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetAttrScope (id, attrNum, &attrScope);
if (status != CDF_OK) UserStatusHandler (status);

6.4.22 CDFgetAttrzEntry

CDFstatus CDFgetAttrzEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Variable attribute number. */
long entryNum, /* in -- Entry number. */

void *value); /* out -- Entry value. */

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this function in order to determine the data type and number of elements (of that
data type) for dynamical space allocation for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number. This number may be determined with a call to
CDFgetAttrNum.

180

entryNum The variable attribute entry number that is the zVariable number from which the attribute
entry is read

value The entry value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

6.4.22.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data
type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate character data (when the data
type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; /* Attribute number. */

long entryN; /* Entry number. */

long dataType; /* Data type. */

long numElems; /* Number of elements (of data type). */
void *buffer; /* Buffer to receive value. */

attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);

entryN = CDFgetVarNum (id, "PRES LVL"); /* The zEntry number is the zVariable number. */

if (entryN <CDF _OK) UserStatusHandler (entryN); /* If less than zero (0), then it must be a warning/error
code. */

status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &numElems);

if (status != CDF_OK) UserStatusHandler (status);
if (dataType == CDF_CHAR) {

buffer = (char *) malloc (numElems + 1);

if (buffer == NULL)...

status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
if (status != CDF_OK) UserStatusHandler (status);

buffer[numElems] = "0'; /* NUL terminate. */
printf ("Units of PRES LVL variable: %s\n", buffer);
free (buffer);

RN

181

6.4.23 CDFgetAttrzEntryDataType

CDFstatus CDFgetAttrzEntryDataType (= /*

CDFid id, /*
long attrNum, /*
long entryNum, /*
long *dataType); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Attribute identifier. */

in -- zEntry number. */

out -- zEntry data type. */

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data

types are described in Section 4.5.

The arguments to CDFgetAttrzEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number that is the zVariable number.

dataType The data type of the zEntry.

6.4.23.1. Example(s)

The following example gets the data type of the attribute named MY ATTR for the zVariable MY VARI in a CDF.

#include "cdf.h"

CDFid id;
CDFstatus status;
long attrNum;
long entryNum;

long dataType;

/* CDF identifier. */

/* Returned status code. */
/* Attribute number. */

/* zEntry number. */

/* zEntry data type. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1"”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, &dataType);
if (status != CDF_OK) UserStatusHandler (status);

182

6.4.24 CDFgetAttrzEntryNumElements

CDFstatus CDFgetAttrzEntryNumElements (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute identifier. */

long entryNum, /* in -- zEntry number. */

long *numElems); /* out -- zEntry’s number of elements. */

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.

The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

numElems The number of elements of the zEntry.

6.4.24.1. Example(s)

The following example returns the number of elements for attribute named MY ATTR for the zVariable MY VARI in
a CDF

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrNum; /* Attribute number. */

long entryNum; /* zEntry number. */

long numElements; /* zEntry’s number of elements. */

attrNum = CDFgetAttrNum (id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

entryNum = CDFgetVarNum(id, “MY_VARI1"”);

if (entryNum < CDF_OK) QuitError(....);

status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, &numElements);
if (status != CDF_OK) UserStatusHandler (status);

183

6.4.25 CDFgetNumAttrgEntries

CDFstatus CDFgetNumAttrgEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

long *entries); /* out -- Total gEntries. */

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a
CDF.

The arguments to CDFgetNumAttrgEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Number of gEntries for attrNum.

6.4.25.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; /* Attribute number. */
long numEntries; /* Number of entries. */
int i

attrNum = CDFgetAttrNum(id, “MUY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrgEntries (id, attrNum, &numEntries);
if (status != CDF_OK) UserStatusHandler (status);

for (i=0; i < numEntries; i++) {

/* process an entry */

-~

184

6.4.26 CDFgetNumAttributes

CDFstatus CDFgetNumAttributes (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long *numAttrs); /* out -- Total number of attributes. */
CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numaA_ttrs The total number of global and variable attributes.

6.4.26.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of attributes. */

status = CDFgetNumAttributes (id, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);

6.4.27 CDFgetNumAttrrEntries

CDFstatus CDFgetNumAttrrEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

long *entries); /* out -- Total rEntries. */

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.

The arguments to CDFgetNumAttrrEntries are defined as follows:

185

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total rEntries.

6.4.27.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; /* Attribute number. */
long entries; /* Number of entries. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrrEntries (id, attrNum, &entries);
if (status != CDF_OK) UserStatusHandler (status);

6.4.28 CDFgetNumAttrzEntries

CDFstatus CDFgetNumAttrzEntries (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

long *entries); /* out -- Total zEntries. */

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.

The arguments to CDFgetNumAttrzEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total zEntries.

186

6.4.28.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */

long attrNum; /* Attribute number. */
long entries; /* Number of entries. */

attrNum = CDFgetAttrNum(id, “MY_ATTR”);

if (attrNum < CDF_OK) QuitError(....);

status = CDFgetNumAttrzEntries (id, attrNum, &entries);
if (status != CDF_OK) UserStatusHandler (status);

6.4.29 CDFgetNumgAttributes

CDFstatus CDFgetNumgAttributes (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numAttrs); /* out -- Total number of global attributes. */

CDFgetNumgAttributes returns the total number of global attributes in a CDF.
The arguments to CDFgetNumgAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The number of global attributes.

6.4.29.1. Example(s)

The following example returns the total number of global attributes in a CDF.

#include "cdf.h"

187

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of global attributes. */

status = CDFgetNumgAttributes (id, &numAttrs);
if (status != CDF_OK) UserStatusHandler (status);

6.4.30 CDFgetNumvAttributes

CDFstatus CDFgetNumvAttributes (/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */
long *numAttrs); /* out -- Total number of variable attributes. */

CDFgetNumvAttributes returns the total number of variable attributes in a CDF.
The arguments to CDFgetNumvAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The number of variable attributes.

6.4.30.1. Example(s)

The following example returns the total number of variable attributes of a CDF.

#include "cdf.h"

CDFstatus status; /* Returned status code. */
CDFid id; /* CDF identifier. */
long numAttrs; /* Number of variable attributes. */

status = CDFgetNumvAttributes (id, &numAdttrs);
if (status != CDF_OK) UserStatusHandler (status);

188

6.4.31 CDFinquireAttr

CDFstatus CDFinquireAttr(
CDFid id,

long attrNum,

char *attrName,

long *attrScope,

long *maxgEntry,

long *maxrEntry,

long *maxzEntry);

/* out -- Completion status code. */
/* in -- CDF identifier. */

/* in -- Attribute number. */

/* out -- Attribute name. */

/* out -- Attribute scope. */

/* out -- Maximum gEntry number. */
/* out -- Maximum rEntry number. */
/* out -- Maximum zEntry number. */

CDFinquireAttr is used to inquire information about the specified attribute. This function expands the original Standard
Interface function CDFattrInquire to provide an extra information about zEntry if the attribute has a variable scope.

The arguments to CDFinqui

id

attrNum

attrName

attrScope

maxgEntry

maxrEntry

maxzEntry

6.4.31.1. Example(s)

reAttr are defined as follows:

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

The attribute's name that corresponds to attrNum. This character string must be large
enough to hold CDF ATTR NAME LEN256 + 1 characters (including the NUL
terminator).

The scope of the attribute (GLOBAL _SCOPE or VARIABLE _SCOPE). Attribute scopes
are defined in Section 4.12.

For vAttributes, this value of this field is -1 as it doesn’t apply to global attribute entry
(gEntry). For gAttributes, this is the maximum entry (gentry) number used. This number
may not correspond with the number of entries (if some entry numbers were not used). If
no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to rVariable attribute entry
(tEntry). For vAttributes, this is the maximum rVariable attribute entry (rEntry) number
used. This number may not correspond with the number of entries (if some entry numbers
were not used). If no entries exist for the attribute, then the value of -1 is returned.

For gAttributes, this value of this field is -1 as it doesn’t apply to zVariable attribute entry
(zEntry). For vAttributes, this is the maximum zVariable attribute entry (zEntry) number
used. This may not correspond with the number of entries (if some entry numbers were not
used). If no entries exist for the attribute, then the value of -1 is returned.

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined by calling the function CDFinquireCDF. Note that attribute numbers start at zero (0) and are consecutive.

#include "cdf.h"

189

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long numDims; /* Number of dimensions. */
long dimSizes[CDF_MAX DIMS]; /* Dimension sizes (allocate to allow the maximum
number of dimensions). */
long encoding; /* Data encoding. */
long majority; /* Variable majority. */
long maxRec; /* Maximum record number in CDF. */
long numVars; /* Number of variables in CDF. */
long numaAttrs; /* Number of attributes in CDF. */
int attrN; /* attribute number. */
char attrName[CDF_ATTR NAME LEN256+1];
/* attribute name -- +1 for NUL terminator. */
long attrScope; /* attribute scope. */
long maxgEntry, maxrEntry, maxzEntry; /* Maximum entry numbers. */

status = CDFinquireCDF (id, &numDims, dimSizes, &encoding, &majority, &maxRec,

&numVars, &numAttrs);

if (status != CDF_OK) UserStatusHandler (status);

for (attrN = 0; attrN < (int)numAttrs; attrN++) {
status = CDFinquireAttr (id, (long)attrN, attrName, &attrScope, &maxgEntry, &maxrEntry, &maxzEntry);

if (status < CDF_OK)

/* INFO status codes ignored. */

UserStatusHandler (status);

else

printf ("%s\n", attrName);

- e~

6.4.32 CDFinquireAttrgEntry

CDFstatus CDFinquireAttrgEntry (/* out -- Completion status code. */

CDFid id,

long attrNum,

long entryNum,

long *dataType,
long *numElements);

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* in -- Entry number. */

/* out -- Data type. */

/* out -- Number of elements (of the data type). */

This function is identical to the original Standard Interface function CDFattrEntrylnquire. CDFinquireAttrgEntry is
used to inquire information about a global attribute entry.

The arguments to CDFinquireAttrgEntry are defined as follows:

id

attrNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number to inquire. This number may be determined with a call to
CDFgetAttrNum.

190

entryNum The entry number to inquire.

dataType The data type of the specified entry. The data types are defined in Section 4.5.

NumElements The number of elements of the data type. For character data types (CDF_CHAR and

6.4.32.

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

1. Example(s)

The following example returns each entry for a global attribute named TITLE. Note that entry numbers need not be
consecutive - not every entry number between zero (0) and the maximum entry number must exist. For this reason
NO SUCH_ENTRY is an expected error code.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long attrN; /* attribute number. */
long entryN; /* Entry number. */
char attrName[CDF_ATTR NAME LEN256+1];
/* attribute name, +1 for NUL terminator. */

long attrScope; /* attribute scope. */
long maxEntry; /* Maximum entry number used. */
long dataType; /* Data type. */

numElems; /* Number of elements (of the data type). */

long

attrN = CDFgetAttrNum (id, "TITLE");
if (attrN < CDF_OK) UserStatusHandler (attrN); /* If less than zero (0), then it must be a

warning/error code. */

status = CDFattrInquire (id, attrN, attrName, &attrScope, &maxEntry);
if (status != CDF_OK) UserStatusHandler (status);

for (entryN = 0; entryN <= maxEntry; entryN++) {

-~

status = CDFinquireAttrgEntry (id, attrN, entryN, &dataType, &numElems);
if (status < CDF_OK) {
if (status = NO_SUCH_ENTRY) UserStatusHandler (status);
}
else {
/* process entries */

191

6.4.33 CDFinquireAttrrEntry

CDFstatus CDFinquireAttrrEntry (/* out -- Completion status code. */

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* in -- Entry number. */

/* out -- Data type. */

long *numElements); /* out -- Number of elements (of the data type). */

CDFid id,

long attrNum,
long entryNum,
long *dataType,

This function is identical to the original Standard Interface function CDFattrEntrylnquire. CDFinquireAttrrEntry is

used to inquire about an rVariable’s attribute entry.

The arguments to CDFinquireAttrrEntry are defined as follows:

The identifier of the CDF. This identifier must have been initialized by a call to

This number may be determined with a call to

This is the rVariable number (the rVariable being

The data type of the specified entry. The data types are defined in Section 4.5.

id
CDFcreate (or CDFcreateCDF) or CDFopenCDF.
attrNum The attribute number to inquire.
CDFgetAttrNum.
entryNum The entry number to inquire.
described in some way by the rEntry).
dataType
NumElements

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string. For all other data types

this is the number of elements in an array of that data type.

6.4.33.1. Example(s)

The following example determines the data type of the “UNITS” attribute for the rVariable “Temperature”, then

retrieves and displays the value of the UNITS attribute.

#include "cdf.h"

CDFid
CDFstatus
long

long

char

long

long

id;

status;
attrN;
entryN;
*buffer;
dataType;
numElems;

attrN = CDFgetAttrNum (id, "UNITS");
if (attrN < CDF_OK) UserStatusHandler (attrN);

entryN = CDFgetVarNum(id, "Temperature")
if (entryN < CDF_OK) UserStatusHandler (entryN);

192

/*
/*
/*
/*

/*
/*

CDF identifier. */
Returned status code. */
Attribute number. */
Entry number. */

Data type. */
Number of elements (of the data type). */

/* Ifless than zero (0), then it must be a
warning/error code. */

status = CDFinquireAttrrEntry (id, attrN, entryN, &dataType, &numElems);

if (status >= CDF_OK) {

if (dataType == CDF_CHAR) {
buffer = (char *) malloc (numElems + 1);
if (buffer == NULL)...

status = CDFgetAttrrEntry (id, attrN, entryN, buffer);
if (status != CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0'; /* NUL terminate. */
printf ("Units of Temperature : %s\n", buffer);

free (buffer);

. =

6.4.34 CDFinquireAttrzEntry

CDFstatus CDFinquireAttrzEntry (/* out -- Completion status code. */

CDFid id,

long attrNum,

long entryNum,

long *dataType,
long *numElements);

/* in -- CDF identifier. */

/* in -- (Variable) Attribute number. */

/* in -- zEntry number. */

/* out -- Data type. */

/* out -- Number of elements (of the data type). */

CDFinquireAttrzEntry is used to inquire about a zVariable’s attribute entry.

The arguments to CDFinquireAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

NumElements

6.4.34.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number for which to inquire an entry. This number may be
determined with a call to CDFgetAttrNum (see Section 6.4.18).

The entry number to inquire. This is the zVariable number (the zVariable being
described in some way by the zEntry).

The data type of the specified entry. The data types are defined in Section 4.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string. For all other data types
this is the number of elements in an array of that data type.

The following example determines the data type of the UNITS attribute for the zVariable Temperature, then retrieves
and displays the value of the UNITS attribute.

193

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long attrN; /* attribute number. */

long entryN; /* Entry number. */

char *buffer;

long dataType; /* Data type. */

long numElems; /* Number of elements (of the data type). */

attrN = CDFgetAttrNum (id, "UNITS");

if (attrN < CDF_OK) UserStatusHandler (attrN);
entryN = CDFgetVarNum(id, "Temperature")

if (entryN < CDF_OK) UserStatusHandler (entryN);

status = CDFinquireAttrzEntry (id, attrN, entryN, &dataType, &numElems);
if (status >= CDF_OK) {
if (dataType == CDF_CHAR) {
buffer = (char *) malloc (numElems + 1);
if (buffer == NULL)...

status = CDFgetAttrzEntry (id, attrN, entryN, buffer);
if (status |= CDF_OK) UserStatusHandler (status);

buffer[numElems] = "\0'; /* NUL terminate. */
printf ("Units of Temperature : %s\n", buffer);
free (buffer);

B N

6.4.35 CDFputAttrgEntry

CDFstatus CDFputAttrgEntry(/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

long entryNum, /* in -- Attribute entry number. */

long dataType, /* in -- Data type of this entry. */

long numElements, /* in -- Number of elements in the entry (of the data type). */
void *value); /* in -- Attribute entry value. */

CDFputAttrgEntry is used to write a global attribute entry. The entry may or may not already exist. If it does exist, it
is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing
entry. A global attribute can have one or more attribute entries.

The arguments to CDFputAttrgEntry are defined as follows:

194

id

attrNum
entryNum

dataType

numElements

value

6.4.35.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.
The attribute entry number.

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a global attribute entry to the global attribute called TITLE.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long entryNum; /* Attribute entry number. */

static char title[] = {"CDF title."}; /* Value of TITLE attribute, entry number 0. */

entryNum = 0;

status = CDFputAttrgEntry (id, CDFgetAttrNum(id,"TITLE"), entryNum, CDF CHAR, strlen(title), title);
if (status != CDF_OK) UserStatusHandler (status);

6.4.36 CDFputAttrrEntry

CDFstatus CDFputAttrrEntry(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElems,

void *value);

/* out -- Completion status code. */

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* in — Attribute entry number. */

/* in -- Data type. */

/* in -- Number of elements in the entry. */
/* in -- Attribute entry value. */

195

This function is identical to the original Standard Interface function CDFattrPut. CDFputAttrrEntry is used to write

rVariable’s attribute entry. The
and number of elements (of that

entry may or may not already exist. If it does exist, it is overwritten. The data type
data type) may be changed when overwriting an existing entry.

The arguments to CDFputAttrrEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

6.4.36.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The attribute entry number that is the rVariable number to which this attribute entry
belongs.

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes to the variable scope attribute VALIDs for the entry that corresponds to the rVariable

TMP.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */

long entryNum; /* Entry number. */

long numElements; /* Number of elements (of data type). */
static short TMPvalids[] = {15,30}; /* Value(s) of VALIDs attribute,

numElements = 2;

rEntry for rVariable TMP. */

status = CDFputAttrrEntry (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);

196

6.4.37 CDFputAttrzEntry

CDFstatus CDFputAttrzEntry(
CDFid id,

long attrNum,

long entryNum,

long dataType,

long numElements,

void *value);

/* out -- Completion status code. */

/* in -- CDF identifier. */

/* in -- Attribute number. */

/* in -- Attribute entry number. */

/* in -- Data type of this entry. */

/* in -- Number of elements in the entry (of the data type). */
/* in -- Attribute entry value. */

CDFputAttrzEntry is used to write zVariable’s attribute entry. The entry may or may not already exist. If it does exist,
it is overwritten. The data type and number of elements (of that data type) may be changed when overwriting an

existing entry.

The arguments to CDFputAttrzEntry are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

6.4.37.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The (variable) attribute number. This number may be determined with a call to
CDFgetAttrNum (see Section 6.4.18).

The entry number that is the zVariable number to which this attribute entry belongs.

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes a zVariable’s attribute entry. The entry has two elements (that is two values for non-
CDF_CHAR type). The zEntry in the variable scope attribute VALIDs corresponds to the zVariable TMP.

#include "cdf.h"

CDFid id;
CDFstatus status;

long numElements;

static short TMPvalids[]

numElements = 2;

= {15,30};

/* CDF identifier. */
/* Returned status code. */
/* Number of elements (of data type). */

~
*

Value(s) of VALIDs attribute,
zEntry for zVariable TMP. */

197

status = CDFputAttrzEntry (id, CDFgetAttrNum(id,"VALIDs"), CDFgetVarNum(id,"TMP"),
CDF_INT2, numElements, TMPvalids);
if (status != CDF_OK) UserStatusHandler (status);

6.4.38 CDFrenameAttr

CDFstatus CDFrenameA ttr(/* out -- Completion status code. */
CDFid id, /* in -- CDF identifier. */

long attrNum, /* in -- Attribute number. */

char *attrName); /* in -- New attribute name. */

This function is identical to the original Standard Interface function CDFattrRename. CDFrenameAttr renames an
existing attribute.

6.4.38.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */

status = CDFrenameAttr (id, CDFgetAttrNum(id,"LAT"), "LATITUDE");
if (status |= CDF_OK) UserStatusHandler (status);

6.4.39 CDFsetAttrgEntryDataSpec

CDFstatus CDFsetAttrgEntryDataSpec (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- gEntry number. */
long dataType) /* in -- Data type. */

CDFsetAttrgEntryDataSpec respecifies the data type of a gEntry of a global attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrgEntryDataSpec are defined as follows:

198

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.
dataType The new data type.

6.4.39.1. Example(s)

The following example modifies the third entry’s (entry number 2) data type of the global attribute MY ATTR in a
CDF. It will change its original data type from CDF INT2 to CDF_UINT2.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long entryNum; /* gEntry number. */

long dataType; /* The new data type */

entryNum = 2L,;
dataType = CDF_UINT2;
numElems = 1L;

status = CDFsetAttrgEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”), entryNum, dataType);
if (status != CDF_OK) UserStatusHandler (status);

6.4.40 CDFsetAttrrEntryDataSpec

CDFstatus CDFsetAttrrEntryDataSpec (/*

CDFid id, /*
long attrNum, /*
long entryNum, /*

long dataType, /*
long numElements); /*

out -- Completion status code. */
in -- CDF identifier. */

in -- Attribute number. */

in -- rEntry number. */

in -- Data type. */

in -- Number of elements. */

CDFsetAttrrEntryDataSpec respecifies the data specification (data type and number of elements) of an rEntry of a
variable attribute in a CDF. The new and old data type must be equivalent, and the number of elements must not be
changed. Refer to the CDF User’s Guide for descriptions of equivalent data types.

The arguments to CDFsetAttrrEntryDataSpec are defined as follows:

199

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The rEntry number.
dataType The new data type.
numElements The new number of elements.

6.4.40.1. Example(s)

The following example modifies the data specification for an rEntry, corresponding to rVariable “MY_VAR?”, in the
variable attribute “MY_ATTR” in a CDF. It will change its original data type from CDF INT2 to CDF _UINT?2.

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long dataType, numElements; /* Data type and number of elements. */

dataType = CDF_UINT2;

numElems = 1L;

status = CDFsetAttrrEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”), CDFgetVarNum(id, “MY_VAR”),
dataType, numElems);

if (status != CDF_OK) UserStatusHandler (status);

6.4.41 CDFsetAttrScope

CDFstatus CDFsetAttrScope (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long scope); /* in -- Attribute scope. */

CDFsetAttrScope respecifies the scope of an attribute in a CDF. Specify one of the scopes described in Section 4.12.
Global-scoped attributes will contain only gEntries, while variable-scoped attributes can hold rEntries and zEntries.

The arguments to CDFsetAttrScope are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

200

scope The new attribute scope. The value should be either VARIABLE SCOPE or
GLOBAL_SCOPE.

6.4.41.1. Example(s)

The following example changes the scope of the global attribute named MY ATTR to a variable attribute
(VARIABLE SCOPE).

#include "cdf.h"

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long scope; /* New attribute scope. */

scope = VARIABLE SCOPE;
status = CDFsetAttrScope (id, CDFgetAttrNum(id, “MY_ATTR”), scope);
if (status != CDF_OK) UserStatusHandler (status);

6.4.42 CDFsetAttrzEntryDataSpec

CDFstatus CDFsetAttrzEntryDataSpec (/* out -- Completion status code. */

CDFid id, /* in -- CDF identifier. */
long attrNum, /* in -- Attribute number. */
long entryNum, /* in -- zEntry number. */
long dataType) /* in -- Data type. */

CDFsetAttrzEntryDataSpec modifies the data type of a zEntry of a variable attribute in a CDF. The new and old data
type must be equivalent. Refer to the CDF User’s Guide for the description of equivalent data types.

The arguments to CDFsetAttrzEntryDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.
entryNum The zEntry number that is the zVariable number.
dataType The new data type.

201

6.4.42.1. Example(s)

The following example respecifies the data type of the attribute entry of the attribute named MY ATTR that is
associated with the zVariable MY VAR. It will change its original data type from CDF INT2 to CDF UINT2.

#include "cdf.h"

CDFid id; /* CDF identifier. */

CDFstatus status; /* Returned status code. */
long dataType; /* Data type and number of elements. */

dataType = CDF_UINT2;

numElems = 1L;

status = CDFsetAttrzEntryDataSpec (id, CDFgetAttrNum(id, “MY_ATTR”),
CDFgetVarNum(id, “MY_VAR?”), dataType);

if (status != CDF_OK) UserStatusHandler (status);

202

Chapter 7

7 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 7.6.
The function prototype for CDFlib is as follows:

CDFstatus CDFlib (long function, ...);

This function prototype is found in the include file cdf.h.

7.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

#include "cdf.h"

CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
static char CDFname[] = {"testl"}; /* File name of the CDF. */

long numDims = 2; /* Number of dimensions. */

static long dimSizes[2] = {100,200}; /* Dimension sizes. */

long encoding = HOST ENCODING; /* Data encoding. */

203

long
long

majority = ROW_MAJOR; /* Variable data majority. */
format = SINGLE FILE; /* Format of CDF. */

status = CDFcreate (CDFname, numDims, dimSizes, encoding, majority, &id);
if (status |= CDF_OK) UserStatusHandler (status);

status = CDFlib (PUT _, CDF FORMAT , format, NULL);
if (status |= CDF_OK) UserStatusHandler (status);

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFIib is then used to change the format to single-file (which must be done before any variables are created in

the CDF).

The arguments to CDFIib in this example are explained as follows:

PUT_

CDF_FORMAT

format

NULL_

The first function to be performed. In this case an item is going to be put to the “current”
CDF (anew format). PUT _is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.*> This is the case since all of the Standard Interface
functions actually call the Internal Interface to perform their operations.

The item to be put. in this case it is the CDF's format.

The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL function. NULL
indicates the end of the call to CDFlib. Specifying NULL at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations

would be the same.)

status = CDFlib (CREATE , CDF_, CDFname, numDims, dimSizes, &id,

PUT_, CDF ENCODING , encoding,
CDF_MAJORITY _, majority,
CDF_FORMAT _, format,

NULL);

if (status != CDF_OK) UserStatusHandler (status);

The purpose of each argument is as follows:

CREATE_

The first function to be performed. In this case something will be created.

* In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

204

CDF The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

CDFname The file name of the CDF.

numDims The number of dimensions in the CDF.

dimSizes The dimension sizes.

id The identifier to be used when referencing the created CDF in subsequent
operations.

PUT_ This argument could have been one of two things. Another item to create or a new

CDF_ENCODING _

encoding

CDF_MAIJORITY _

function to perform. In this case it is another function to perform - something will
be put to the CDF.

The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

The encoding to be put to the CDF.

This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

majority The majority to be put to the CDF.

CDF_FORMAT Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

format The format to be put to the CDF.

NULL _ This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

7.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)
A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT ,CDF_>’ operation.

*3 This notation is used to specify a function to be performed on an item. The syntax is <function_,item >.

205

There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly
selected.™

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR > or <SELECT ,r/VAR NAME >
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zZVAR > or <SELECT ,zVAR NAME >
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR > or <SELECT ,ATTR NAME >
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT ,gENTRY > operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT ,rENTRY > operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zZENTRY > operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT ,rVARs RECNUMBER > operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

** In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

206

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT > operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT ,rVARs DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT ,rVARs DIMCOUNTS > operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT ,rVARs DIMINTERVALS > operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,rVAR_SEQPOS_> operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT ,zZVAR _RECNUMBER > operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)

207

A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR RECCOUNT > operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR _RECINTERVAL > operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zZVAR DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT ,zVAR DIMCOUNTS >
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)
A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT ,zZVAR DIMINTERVALS > operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)
A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,zZVAR SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)
When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT ,CDF STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.*

** The CDF library now maintains the current status code from one call to the next of CDFlib.

208

7.3 Returned Status

CDF]Iib returns a status code of type CDFstatus. Since more than one operation may be performed with a single call to
CDFlib, the following rules apply:

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF_OK is returned.

Chapter 8 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error
, warning, or informational.

7.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

status = CDFlib (CREATE , CDF_, CDFname, numDims, dimSizes, &id,
PUT_, CDF FORMAT , format,
CDF_MAIJORITY , majority,
CREATE , ATTR , attrName, scope, &attrNum,
rVAR , varName, dataType, numElements,
recVary, dimVarys, &varNum,
NULL);

Note that the functions (CREATE , PUT , and NULL) are indented the same and that the items (CDF ,
CDF FORMAT , CDF MAJORITY , ATTR , and rVAR) are indented the same under their corresponding
functions.
The following example shows the same call to CDFlib without the proper indentation.
status = CDFlib (CREATE , CDF_, CDFname, numDims, dimSizes, &id, PUT _,
CDF FORMAT , format, CDF MAJORITY , majority, CREATE ,
ATTR , attrName, scope, &attrNum, rVAR , varName, dataType,
numElements, recVary, dimVarys, &varNum, NULL);

The need for proper indentation to ensure the readability of your applications should be obvious.

7.5 Syntax

CDF1lib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather the C compiler and operating system being used. Under normal

209

circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFIib is as follows:
status = CDFlib (fncl, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,
fnc2, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ..argN,

fncN, item1, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,
NULL);
where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required

argument for the operation. The NULL _function must be used to end the call to CDFlib. The completion status, status,
is returned.

7.6 Operations. ..

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE _ Used to close an item.

CONFIRM Used to confirm the value of an item.

CREATE Used to create an item.

DELETE Used to delete an item.

GET Used to get (read) something from an item.

NULL _ Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT _ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT _
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 7.2.

<CLOSE_,CDF >
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to

ensure that it will be properly written to disk.

There are no required arguments.

210

The only required preselected object/state is the current CDF.

<CLOSE ,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE ,zZVAR >
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM ,ATTR >
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: long *attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE >
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: char *attrName

The attribute name. This may be at most CDF ATTR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF >
Confirms the current CDF. Required arguments are as follows:

out: CDFid *id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS >
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO MORE ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_CACHESIZE_>

211

Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
out: long *numBuffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_DECODING >
Confirms the decoding for the current CDF. Required arguments are as follows:

out: long *decoding
The decoding. The decodings are described in Section 4.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME >
Confirms the file name of the current CDF. Required arguments are as follows:

out: char CDFname[CDF PATHNAME LEN-+1]
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_ MODE >
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: long *mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 4.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_READONLY_MODE >
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: long *mode
The read-only mode. The read-only modes are described in Section 4.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF_STATUS > operation).
Required arguments are as follows:

out: CDFstatus *status

The status code.

212

The only required preselected object/state is the current status code.

<CONFIRM_,zZMODE >
Confirms the zMode for the current CDF. Required arguments are as follows:

out: long *mode
The zMode. The zModes are described in Section 4.14.

The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS_CACHESIZE >

Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The

Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required

arguments are as follows:

out: long *numBuffers
The number of cache buffers being used.

The only required preselected object/state is the current CDF.
<CONFIRM_,CUREENTRY EXISTENCE >

Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).

If the gEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM_,CURrENTRY_EXISTENCE >

Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).

If the rEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM_,CURZENTRY_EXISTENCE >

Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).

If the zEntry does not exist, an error code will be returned.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,gENTRY >
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum

213

The gEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,gENTRY EXISTENCE_ >

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The gEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,rENTRY_EXISTENCE_>

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,rVAR >
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: long *varNum
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE >
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the

caching scheme used by the CDF library. Required arguments are as follows:

out: long *numBuffers

214

The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_EXISTENCE_>
Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: long *percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,r'VAR_SEQPOS >
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: long *recNum
Record number.

out: long indicesfCDF_MAX DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVARs DIMCOUNTS >
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this

operation is not applicable. Required arguments are as follows:

out: long countsfCDF_MAX DIMS]

215

Dimension counts. Each element of counts receives the corresponding dimension count.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs DIMINDICES >
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: long indicesfCDF_MAX DIMS]
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: long intervalsfCDF_MAX DIMS]
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM ,rVARs RECCOUNT >
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: long *recCount
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECINTERVAL >
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: long *reclnterval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECNUMBER_ >
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: long *recNum
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE_CACHESIZE_>
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The

Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

216

out: long *numBuffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.

<CONFIRM _,zENTRY >
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: long *entryNum
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zZENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: long entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR >
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: long *varNum
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR_CACHESIZE >
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: long *numBuffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_DIMCOUNTS >
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long countsfCDF_MAX DIMS]

Dimension counts. Each element of counts receives the corresponding dimension count.

217

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR DIMINDICES >
Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: long indicesfCDF_MAX DIMS]
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR DIMINTERVALS >
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: long intervalsfCDF_MAX DIMS]
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR EXISTENCE >
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR PADVALUE >
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO_ PADVALUE_SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM ,zZVAR RECCOUNT >
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
out: long *recCount
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR RECINTERVAL >

Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

218

out: long *reclnterval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR_RECNUMBER >
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: long *recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: long *percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM _,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: long *recNum
Record number.

out: long indicesfCDF_MAX DIMS]

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE_,ATTR >
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: char *attrName

Name of the attribute to be created. This can be at most CDF_ ATTR _NAME LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: long scope

Scope of the new attribute. Specify one of the scopes described in Section 4.12.

219

out: long *attrNum

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF >

A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.
in: long numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF _MAX DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: long dimSizes[]

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: CDFid *id
CDF identifier to be used in subsequent operations on the CDF.

A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT ,CDF FORMAT >, <PUT ,CDF ENCODING >, and
<PUT ,CDF_MAIJORITY > operations if necessary.

A CDF must be closed with the <CLOSE ,CDF > operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE ,rVAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name

must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: char *varName

220

Name of the rVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: long dataType

Data type of the new rVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long recVary

Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]

Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

out: long *varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls

when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET_,rVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,zZVAR >

A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in: char *varName

Name of the zVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

in: long dataType

Data type of the new zVariable. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

in: long numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF_ MAX DIMS.

221

in: long dimSizes[]
The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).

in: long recVary
Record variance. Specify one of the variances described in Section 4.9.

in: long dimVarys[]
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 4.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).

out: long *varNum
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zZVAR_NUMBER > operation.

The only required preselected object/state is the current CDF.

<DELETE ,ATTR >
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is
deleted, there is no longer a current attribute.
There are no required arguments.

The required preselected objects/states are the current CDF and its current attribute.

<DELETE_,CDF >
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.

<DELETE_,gENTRY >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<DELETE ENTRY >

Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

222

There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,rVAR >
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE_,rVAR_RECORDS_>
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:
in: long firstRecord
The record number of the first record to be deleted.
in: long lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zENTRY >
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE ,zZVAR >
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.

The required preselected objects/states are the current CDF and its current rVariable.

223

<DELETE_,zZVAR_RECORDS_>
Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: long firstRecord
The record number of the first record to be deleted.
in: long lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,ATTR_MAXgENTRY >
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_MAXrENTRY >

Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not

necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR MAXzENTRY >
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: long *maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

224

<GET_,ATTR _NAME >
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

out: char attrName[CDF ATTR NAME LEN256+1]
Attribute name.
The required preselected objects/states are the current CDF and its current attribute.
<GET_,ATTR_NUMBER_ >
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

out: long *attrNum
The attribute number.
The only required preselected object/state is the current CDF.
<GET ,ATTR _NUMgENTRIES >
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: long *numkEntries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,ATTR NUMIENTRIES >
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: long *numkEntries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR NUMzENTRIES >
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:

out: long *numEntries

The number of zEntries for the attribute.

225

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET _,ATTR_SCOPE >
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: long *scope
Attribute scope. The scopes are described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM__ >
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: long *checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5_CHECKSUM). The checksum
mode is described in Section 4.19.

The required preselected objects/states is the current CDF.
<GET_,CDF_COMPRESSION >
Inquires the compression type/parameters of the current CDF. This refers to the compression of the CDF - not
of any compressed variables. Required arguments are as follows:
out: long *cType
The compression type. The types of compressions are described in Section 4.10.
out: long cParms[CDF_MAX PARMS]
The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET_,CDF_COPYRIGHT >
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:
out: char Copyrightf CDF COPYRIGHT LEN+I]
CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING >
Inquires the data encoding of the current CDF. Required arguments are as follows:

out: long *encoding

226

Data encoding. The encodings are described in Section 4.6.
The only required preselected object/state is the current CDF.

<GET_,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: long *format
CDF format. The formats are described in Section 4.4.
The only required preselected object/state is the current CDF.
<GET_,CDF_INCREMENT >
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: long *increment
Incremental number.

The only required preselected object/state is the current CDF.

<GET_,CDF_INFO_>

Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:

in: char *CDFname

File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

out: long *cType

The CDF compression type. The types of compressions are described in Section 4.10.
out: long cParms[CDF_MAX PARMS]

The compression parameters. The compression parameters are described in Section 4.10.
out: OFF_T*° *cSize

If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).
out: OFF_T° *uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

%% It is type long for V2.6 and V2.7.

227

There are no required preselected objects/states.

<GET_,CDF_MAIJORITY_>
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: long *majority
Variable majority. The majorities are described in Section 4.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET_,CDF _NUMgATTRS >
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET_,CDF_NUMrVARS_>
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: long *numVars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMvVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: long *numAttrs
Number of vAttributes.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMzVARS >
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: long *numVars

Number of zVariables.

228

The only required preselected object/state is the current CDF.

<GET ,CDF RELEASE >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: long *release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION >
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: long *version
Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: long dataType
Data type.
out: long *numBytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_DATA >
Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,gENTRY DATATYPE >
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

229

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET_,gENTRY NUMELEMS_>

Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this

is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,LIB_COPYRIGHT >

Reads the Copyright notice of the CDF library being used. Required arguments are as follows:
out: char Copyrightf CDF COPYRIGHT LEN+1
CDF library Copyright text.

There are no required preselected objects/states.

<GET ,LIB INCREMENT >
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: long *increment
Incremental number.
There are no required preselected objects/states.
<GET_,LIB_RELEASE >

Inquires the release number of the CDF library being used. Required arguments are as follows:

out: long *release
Release number.

There are no required preselected objects/states.

<GET ,LIB subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

out: char *subincrement
Subincremental character.

There are no required preselected objects/states.
<GET_,LIB_VERSION >

Inquires the version number of the CDF library being used. Required arguments are as follows:

230

out: long *version
Version number.

There are no required preselected objects/states.

<GET_fENTRY_DATA >

Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF)
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,rENTRY_DATATYPE >

Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType
Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_rENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)

this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET ,rVAR ALLOCATEDFROM >
Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: long *nextRecord

231

The number of the next allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_ALLOCATEDTO >

Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:

in: long startRecord

The record number at which to begin searching for the last allocated record.

out: long *nextRecord
The number of the last allocated record.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_BLOCKINGFACTOR >’

Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:

out: long *blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_COMPRESSION >

Inquires the compression type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX PARMS]

The compression parameters. The compression parameters are described in Section 4.10.

out: long *cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_DATA >

Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: void *value

*7 The item r'VAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

232

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET_,rVAR DATATYPE >
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: long *dataType
Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_DIMVARYS >

Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF MAX DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_HYPERDATA >

Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,

record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<GET_,rVAR MAXallocREC >

Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:

out: long *varMaxRecAlloc
Maximum record number allocated.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_MAXREC >

Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:

233

out: long *varMaxRec
Maximum record number.
The required preselected objects/states are the current CDF and its current rVariable.

<GET ,r'VAR NAME >
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF VAR NAME LEN256+1
Name of the rVariable.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXENTRIES >
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numkEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXLEVELS >
Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXRECORDS >
Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR NUMallocRECS >
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: long *numRecords

Number of allocated records.

234

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_NUMBER >

Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: char *varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: long *varNum
The rVariable number.

The only required preselected object/state is the current CDF.

<GET_,r'VAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_NUMRECS_>

Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond

to the maximum record written (see <GET ,rVAR MAXREC >) if the rVariable has sparse records. Required
arguments are as follows:

out: long *numRecords
Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_PADVALUE_>

Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT ,rVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_RECVARY >

235

Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:
out: long *recVary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_SEQDATA >
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
rVariable. Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.
<GET_,rVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: long *sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
out: long sArraysParms[CDF _MAX PARMS]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.

out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR SPARSERECORDS >
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:
out: long *sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVARs DIMSIZES >

Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

236

out: long dimSizes[CDF_MAX DIMS]
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The only required preselected object/state is the current CDF.

<GET ,rVARs MAXREC >
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET ,rVAR MAXREC > operation. Required arguments are
as follows:

out: long *maxRec
Maximum record number.
The only required preselected object/state is the current CDF.

<GET_,rVARs NUMDIMS >
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: long *numDims
Number of dimensions.
The only required preselected object/state is the current CDF.
<GET_,rVARs_RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are

read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: long numVars
The number of rVariables from which to read. This must be at least one (1).
in: long varNums|[]

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: void *buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful if using C
struct objects to receive multiple full-physical rVariable records. C compilers on some operating
systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. **

** A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.

237

<GET ,STATUS_TEXT >

Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:

out: char text{CDF STATUSTEXT LEN+I
Text explaining the status code.
The only required preselected object/state is the current status code.

<GET_,zENTRY_DATA >

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF)
Required arguments are as follows:

out: void *value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed into
memory at address value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_DATATYPE_>

Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:

out: long *dataType

Data type. The data types are described in Section 4.5.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_NUMELEMS_>

Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:

out: long *numElements

Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this

is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current zZEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,zVAR ALLOCATEDFROM >

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).
Required arguments are as follows:

in: long startRecord

238

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: long *nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: long startRecord
The record number at which to begin searching for the last allocated record.
out: long *nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_BLOCKINGFACTOR >*
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: long *blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_COMPRESSION >
Inquires the compression type/parameters of the current zVariable (in the current CDF). Required arguments are
as follows:

out: long *cType

The compression type. The types of compressions are described in Section 4.10.

out: long cParms[CDF_MAX PARMS]
The compression parameters. The compression parameters are described in Section 4.10.
out: long *cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_DATA >

** The item zZVAR_BLOCKINGFACTOR was previously named zVAR_EXTENDRECS .

239

Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zZVAR_DATATYPE >
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *dataType
Data type. The data types are described in Section 4.5.
The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimSizes[CDF_MAX DIMS]
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR DIMVARYS >
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

out: long dimVarys[CDF MAX DIMS]

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: void *buffer

Values. This buffer must be large enough to hold the values. The values are read from the CDF and
placed into memory starting at address buffer.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,

record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

240

<GET_,zVAR_MAXallocREC_>
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: long *varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_MAXREC_>
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: long *varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NAME >
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: char varName[CDF VAR NAME LEN256+1
Name of the zVariable.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXENTRIES >
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXLEVELS_>
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: long *numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_nINDEXRECORDS >
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance

for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

241

out: long *numRecords
Number of index records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMallocRECS_>

Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter

in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:

out: long *numRecords
Number of allocated records.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMBER >

Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: char *varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: long *varNum
The zVariable number.

The only required preselected object/state is the current CDF.

<GET_,zVAR_NUMDIMS >

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

out: long *numDims
Number of dimensions.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: long *numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire

string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

242

<GET_,zVAR_NUMRECS_>
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,zZVAR _MAXREC >) if the zVariable has sparse records. Required
arguments are as follows:

out: long *numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_PADVALUE >

Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT ,zZVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:

out: void *value

Pad value. This buffer must be large enough to hold the pad value. The pad value is read from the
CDF and placed in memory at address value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zZVAR_RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: long *recVary
Record variance. The variances are described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zZVAR_SEQDATA >

Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

out: void *value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed into memory at address value.

The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.

<GET ,zVAR SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:

out: long *sArraysType

The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.

243

out: long sArraysParms[CDF_MAX PARMS]
The sparse arrays parameters.
out: long *sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: long *sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zZVARs MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET ,zZVAR MAXREC > operation. Required arguments are
as follows:
out: long *maxRec
Maximum record number.
The only required preselected object/state is the current CDF.
<GET ,zZVARs RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to
be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:
in: long numVars
The number of zVariables from which to read. This must be at least one (1).

in: long varNums|[]

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

out: void *buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful if using C
struct objects to receive multiple full-physical zVariable records. C compilers on some operating

244

systems will pad between the elements of a struct in order to prevent memory alignment errors (i.e.,
the elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to allocate this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). *

<NULL >
Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed
after it.
<OPEN ,CDF >
Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as
follows:
in: char *CDFname
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: CDFid *id
CDF identifier to be used in subsequent operations on the CDF.
There are no required preselected objects/states.
<PUT ,ATTR NAME >
Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in
the CDF. Required arguments are as follows:

in: char *attrName

New attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the
NUL terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT _,ATTR_SCOPE >
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: long scope
New attribute scope. Specify one of the scopes described in Section 4.12.
The required preselected objects/states are the current CDF and its current attribute.

<PUT_,CDF_CHECKSUM__ >
Respecifies the checksum mode of the current CDF. Required arguments are as follows:

* A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

245

in: long checksum

The checksum mode to be used (NO_CHECKSUM or MD5_CHECKSUM). The checksum mode is
described in Section 4.19.

The required preselected objects/states is the current CDF.
<PUT_,CDF_COMPRESSION_>
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:
in: long cType
The compression type. The types of compressions are described in Section 4.10.
in: long cParms|[]
The compression parameters. The compression parameters are described in Section 4.10.
The only required preselected object/state is the current CDF.
<PUT_,CDF_ENCODING >
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:
in: long encoding
New data encoding. Specify one of the encodings described in Section 4.6.
The only required preselected object/state is the current CDF.
<PUT_,CDF_FORMAT >
Respecifies the format of the current CDF. A CDF’s format may not be changed after any variables have been
created. Required arguments are as follows:
in: long format
New CDF format. Specify one of the formats described in Section 4.4.
The only required preselected object/state is the current CDF.
<PUT_,CDF_MAIJORITY >
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:
in: long majority
New variable majority. Specify one of the majorities described in Section 4.8.
The only required preselected object/state is the current CDF.
<PUT_,gENTRY DATA >
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry

may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

246

in: long dataType

Data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF _UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value
Value(s). The entry value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_,gENTRY_DATASPEC >

Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

in: long dataType

New data type of the gEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<PUT_rENTRY_DATA >

Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the rEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value

247

Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,rENTRY DATASPEC >
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of

the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s

Guide. Required arguments are as follows:
in: long dataType
New data type of the rEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,rVAR ALLOCATEBLOCK >
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only

applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:
in: long firstRecord
The first record number to allocate.
in: long lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: long nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR >*!

* The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS .

248

Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_COMPRESSION >

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: long cType
The compression type. The types of compressions are described in Section 4.10.
in: long cParms|[]
The compression parameters. The compression parameters are described in Section 4.10.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_DATA >

Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: void *value
Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT ,rVAR DATASPEC >
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:
in: long dataType

New data type. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists

at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VAR_DIMVARYS >

249

Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR HYPERDATA >
Writes one or more values to the current rVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:

in: void *buffer
Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT_,rVAR_INITIALRECS >
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: long nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_NAME_>
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the rVariable. This may consist of at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR PADVALUE >
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

250

in: void *value
Pad value. The pad value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_RECVARY >
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: long recVary
New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_SEQDATA_>
Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:
in: void *value
Value. The value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.
<PUT_,r'VAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: long sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
in: long sArraysParmsl]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_SPARSERECORDS >
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:
in: long sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,r'VARs RECDATA >

251

Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: long numVars

The number of rVariables to which to write. This must be at least one (1).

in: long varNums|[]

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful if using C
struct objects to store multiple full-physical rVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a sturct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and its current record number for rVariables. **

<PUT_,zZENTRY_DATA >

Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:

in: long dataType

Data type of the zEntry. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in

the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.

in: void *value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT ,zZENTRY DATASPEC >
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of

elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:

2 A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

252

in: long dataType
New data type of the zEntry. Specify one of the data types described in Section 4.5.
in: long numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<PUT _,zVAR_ALLOCATEBLOCK >
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only

applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: long firstRecord

The first record number to allocate.
in: long lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: long nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zVAR_BLOCKINGFACTOR >*
Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF

User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV
variables or multi-file CDFs. Required arguments are as follows:

in: long blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_COMPRESSION_>

Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are
as follows:

* The item zZVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

253

in: long cType
The compression type. The types of compressions are described in Section 4.10.

in: long cParms|[]

The compression parameters. The compression parameters are described in Section 4.10.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DATA >

Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: void *value
Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT_,zZVAR_DATASPEC >

Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: long dataType
New data type. Specify one of the data types described in Section 4.5.

in: long numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists

at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DIMVARYS >

Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as

follows:

in: long dimVarys[]

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 4.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zVAR INITIALRECS >

254

Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: long nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zVAR_HYPERDATA >
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: void *buffer
Values. The values starting at memory address buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<PUT ,zZVAR NAME >
Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: char *varName

New name of the zVariable. This may consist of at most CDF VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_PADVALUE >

Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified

(or respecified) at any time without affecting already written values (including where pad values were used).

The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as

follows:

in: void *value
Pad value. The pad value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zZVAR_RECVARY >

Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may

not be changed if any values have been written (except for an explicit pad value - it may have been written).

Required arguments are as follows:

in: long recVary

255

New record variance. Specify one of the variances described in Section 4.9.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_SEQDATA_>
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record
boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:
in: void *value
Value. The value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.
<PUT_,zVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:
in: long sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 4.11.2.
in: long sArraysParmsl]
The sparse arrays parameters. The sparse arrays parameters are described in Section 4.11.2.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_SPARSERECORDS >
Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:
in: long sRecordsType
The sparse records type. The types of sparse records are described in Section 4.11.1.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVARs RECDATA >
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:
in: long numVars

The number of zVariables to which to write. This must be at least one (1).

in: long varNums|[]

256

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: void *buffer

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful if using C
struct objects to store multiple full-physical zVariable records. C compilers on some operating systems
will pad between the elements of a struct in order to prevent memory alignment errors (i.e., the
elements of a struct may not be contiguous). See the Concepts chapter in the CDF User's Guide for
more details on how to create this buffer.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). *

<SELECT ,ATTR >
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: long attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT ,ATTR _NAME >
Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT ,ATTR >) is more efficient. Required arguments are as follows:

in: char *attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,CDF >
Explicitly selects the current CDF. Required arguments are as follows:

in: CDFid id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE ,CDF >
or <OPEN ,CDF_> operation.

There are no required preselected objects/states.

<SELECT ,CDF CACHESIZE >
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter
in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as

follows:

in: long numBuffers

* A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

257

The number of cache buffers to be used.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_DECODING >
Selects a decoding (for the current CDF). Required arguments are as follows:

in: long decoding
The decoding. Specify one of the decodings described in Section 4.7.
The only required preselected object/state is the current CDF.

<SELECT ,CDF_NEGtoPOS{p0_MODE >
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: long mode
The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 4.15.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_READONLY MODE_>
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: long mode
The read-only mode. Specify one of the read-only modes described in Section 4.13.
The only required preselected object/state is the current CDF.

<SELECT_,CDF_SCRATCHDIR >

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the CDF$TMP logical name (on OpenVMS systems) or CDF TMP environment

variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: char *scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by

the operating system being used.
The only required preselected object/state is the current CDF.

<SELECT ,CDF_STATUS >
Selects the current status code. Required arguments are as follows:

in: CDFstatus status
CDF status code.
There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

258

in: long mode
The zMode. Specify one of the zZModes described in Section 4.14.
The only required preselected object/state is the current CDF.
<SELECT ,COMPRESS CACHESIZE >
Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
in: long numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,gENTRY >
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: long entryNum
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT ,rENTRY >
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum
rEntry number.
The only required preselected object/state is the current CDF.
<SELECT ,rENTRY NAME >

Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY >) is more efficient. Required arguments are as
follows:

in: char *varName

rVariable name. This may be at most CDF VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum

rVariable number.

259

The only required preselected object/state is the current CDF.
<SELECT_,rVAR_CACHESIZE >

Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This

operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the

caching scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers
The number of cache buffers to be used.

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT_,rVAR_NAME >

Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable

by number (see <SELECT ,rVAR _>) is more efficient. Required arguments are as follows:

in: char *varName

rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT_,rVAR_RESERVEPERCENT >
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: long percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT _,rVAR_SEQPOS >
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: long recNum
Record number.

in: long indices|[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.

<SELECT ,rVARs_CACHESIZE >
Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching

scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

260

The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMCOUNTS >
Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: long counts[]
Dimension counts. Each element of counts specifies the corresponding dimension count.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINDICES >
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: long indices|[]
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINTERVALS >
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: long intervals[]
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECCOUNT >
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: long recCount
Record count.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECINTERVAL >
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: long reclnterval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECNUMBER >
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

261

in: long recNum
Record number.
The only required preselected object/state is the current CDF.
<SELECT ,STAGE CACHESIZE >
Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
in: long numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,zZENTRY >
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: long entryNum
zEntry number.
The only required preselected object/state is the current CDF.
<SELECT ,zZENTRY_NAME >

Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT ,zENTRY_>) is more efficient. Required arguments are
as follows:

in: char *varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,zVAR >
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: long varNum
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT_,zZVAR_CACHESIZE >
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:

in: long numBuffers

The number of cache buffers to be used.

262

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_DIMCOUNTS_>
Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
in: long counts[]
Dimension counts. Each element of counts specifies the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_DIMINDICES >
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
in: long indices|[]
Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: long intervals[]
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_NAME >
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT ,zVAR >) is more efficient. Required arguments are as follows:

in: char *varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT ,zZVAR_RECCOUNT >
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
in: long recCount
Record count.

The required preselected objects/states are the current CDF and its current zVariable.

<SELECT_,zZVAR_RECINTERVAL >

263

Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

in: long reclnterval
Record interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
in: long recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_RESERVEPERCENT >
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: long percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: long recNum
Record number.

in: long indices|[]

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVARs_CACHESIZE >
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: long numBuffers

The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

264

<SELECT_,zZVARs RECNUMBER_>
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

in: long recNum
Record number.

The only required preselected object/state is the current CDF.

7.7 More Examples

Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT ,CDF >).

7.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
long dimVarys[2]; /* Dimension variances. */

long varNum; /* rVariable number. */

Float padValue = -999.9; /* Pad value. */

dimVarys[0] = VARY;
dimVarys[1] = VARY;
status = CDFlib (CREATE , rVAR , "HUMIDITY", CDF_REAL4, 1, VARY, dimVarys, &varNum,
PUT , rVAR PADVALUE , &padValue,
rVAR INITIALRECS , (long) 500,
rVAR_BLOCKINGFACTOR , (long) 50,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

7.7.2 zVariable Creation (Character Data Type)

265

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */

long dimVarys[1]; /* Dimension variances. */

long varNum; /* zVariable number. */

long numDims = 1; /* Number of dimensions. */

static long dimSizes[1] = { 20 }; /* Dimension sizes. */

long numElems = 10; /* Number of elements (characters in this case). */
static char padValue = "#¥xdsiksixn, /* Pad value. */

dimVarys[0] = VARY;
status = CDFlib (CREATE , zVAR , "Station", CDF _CHAR, numElems, numDims,
dimSizes, NOVARY, dimVarys, &varNum,
PUT_, zVAR PADVALUE , padValue,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

7.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF _UINT2. It is assumed that the
current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
unsigned short values[50][100]; /* Buffer to receive values. */
long recCount = 1; /* Record count, one record per hyper get. */
long recInterval = 1; /* Record interval, set to one to indicate contiguous records
(really meaningless since record count is one). */
static long indices[2] = {0,0}; /* Dimension indices, start each read at 0,0 of the array. */
static long counts[2] = {50,100}; /* Dimension counts, half of the values along
each dimension will be read. */
static long intervals[2] = {2,2}; /* Dimension intervals, every other value along
each dimension will be read. */
long recNum; /* Record number. */
long maxRec; /* Maximum rVariable record number in the CDF - this was

determined with a call to CDFinquire. */

status = CDFlib (SELECT , rVAR NAME , "BRIGHTNESS",

266

rVARs RECCOUNT , recCount,
rVARs RECINTERVAL , reclnterval,
rVARs DIMINDICES , indices,
rVARs DIMCOUNTS , counts,
rVARs DIMINTERVALS , intervals,
NULL),
if (status != CDF_OK) UserStatusHandler (status);

for (recNum = 0; recNum <= maxRec; recNum++) {
status = CDFlib (SELECT , rVARs RECNUMBER , recNum,
GET_, rVAR_HYPERDATA , values,
NULL);
if (status != CDF_OK) UserStatusHandler (status);

/* process values */

7.7.4 Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been
selected.

#include "cdf.h"
CDFstatus status; /* Status returned from CDF library. */

status = CDFlib (SELECT , ATTR NAME , "Tmp",
PUT__, ATTR NAME, "TMP",
NULL);

if (status != CDF_OK) UserStatusHandler (status);

7.7.5 Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current
CDF has already been selected.

267

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */

long recNum = 0; /* Record number, start at first record. */
static long indices[2] = {0,0}; /* Dimension indices. */

float value; /* Value read. */

double sum = 0.0; /* Sum of all values. */

long count = 0; /* Number of values. */

float ave; /* Average value. */

status = CDFlib (GET , zZVAR NUMBER , "FLUX", &varNum,
NULL);
if (status != CDF_OK) UserStatusHandler (status);
status = CDFlib (SELECT , zVAR , varNum,
zVAR_SEQPOS , recNum, indices,
GET , zVAR SEQDATA , &value,
NULL);

while (status _>= CDF_OK) {
sum += value;
count++;
status = CDFlib (GET , zZVAR SEQDATA , &value,
NULL);

if (status != END OF VAR) UserStatusHandler (status);

ave = sum / count;

7.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written. It is assumed that the current CDF
has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
static float scale[2] = {-90.0,90.0}; /* Scale, minimum/maximum. */

status = CDFlib (SELECT_, rENTRY NAME , "LATITUDE",
ATTR_NAME , "FIELDNAM",
PUT__, tENTRY DATA_, CDF_CHAR, (long) 20,
"Latitude “
SELECT , ATTR_NAME _, "SCALE",

268

PUT_, rENTRY DATA , CDF REALA4, (long) 2, scale,

SELECT , ATTR NAME , "UNITS",

PUT_, rENTRY DATA , CDF CHAR, (long) 20,
"Degrees north “

NULL);

if (status != CDF_OK) UserStatusHandler (status);

7.7.7 Multiple zVariable Write

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

#include "cdf.h"

CDFstatus status; /* Status returned from CDF library. */
short time; /* "Time' value. */

char vectorA[3]; /* “vectorA' values. */

double vectorB[5]; /* “vectorB' values. */

long recNumber; /* Record number. */

char buffer[45]; /* Buffer of full-physical records. */
long varNumbers[3]; /* Variable numbers. */

status = CDFlib (GET_, zVAR NUMBER , "vectorB", &varNumbers[0],
zVAR NUMBER , "time", &varNumbers[1],
zVAR_NUMBER , "vectorA", &varNumbers[2],
NULL);
if (status != CDF_OK) UserStatusHandler (status);

for (recNumber = 0; recNumber < 100; recNumber++) {
/* read values from input file */

memmove (&buffer[0], vectorB, 40);

memmove (&buffer[40], &time, 2);

memmove (&buffer[42], vectorA, 3);

status = CDFlib (SELECT , zVARs RECNUMBER , recNumber,
PUT_, zVARs RECDATA , 3L, varNumbers, buffer,

NULL);
if (status != CDF_OK) UserStatusHandler (status);

269

Note that it would be more efficient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

7.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a C
application. Please don't do something like the following:

#include "cdf.h"

CDFid id; /* CDF identifier (handle). */
CDFstatus status; /* Status returned from CDF library. */
long varNum; /* zVariable number. */

status = CDFlib (SELECT_, CDF_, id,
GET _, zVAR NUMBER , "EPOCH", &varNum,
SELECT , zVAR , varNum, /* ERROR! */
NULL);

if (status != CDF_OK) UserStatusHandler (status);

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET ,zVAR NUMBER > operation. ~What actually happens is that the zVariable number passed to the
<SELECT ,zVAR_ > operation is undefined. This is because the C compiler is passing varNum by value rather than
reference.”” Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a
value. Only after the <GET ,zZVAR NUMBER > operation is performed does varNum have a valid value. But at that
point it's too late since the argument list has already been created. In this type of situation you would have to make two
calls to CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

7.9 Custom C Functions

Most of the Standard Interface functions callable from C applications are implemented as C macros that call CDFlib
(Internal Interface). For example, the CDFcreate function is actually defined as the following C macro:

#define CDFcreate(CDFname,numDims,dimSizes,encoding,majority,id) \
CDFlib (CREATE , CDF_, CDFname, numDims, dimSizes, id, \
PUT_, CDF _ENCODING , encoding, \
CDF_MAIJORITY , majority, \
NULL)

These macros are defined in cdf.h. Where your application calls CDFcreate, the C compiler (preprocessor) expands the
macro into the corresponding call to CDFlib.

* Fortran programmers can get away with doing something like this because everything is passed by reference.

270

The flexibility of CDFlib allows you to define your own custom CDF functions using C macros. For instance, a
function that returns the format of a CDF could be defined as follows:

#define CDFinquireFormat(id,format) \
CDFlib (SELECT , CDF , id, \
GET , CDF FORMAT , format, \
NULL)

Your application would call the function as follows:

CDFid id; /* CDF identifier. */
CDFstatus status; /* Returned status code. */
long format; /* Format of CDF. */

status = CDFinquireFormat (id, &format);
if (status != CDF_OK) UserStatusHandler (status);

271

Chapter 8

8 Interpreting CDF Status Codes

Most CDF functions return a status code of type CDFstatus. The symbolic names for these codes are defined in cdf.h
and should be used in your applications rather than using the true numeric values. Appendix A explains each status
code. When the status code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

CDFstatus status;

status = CDFfunction (...); /* any CDF function returning CDFstatus */
if (status != CDF_OK) {
UserStatusHandler (status, ...);

H

In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

#include <stdio.h>

#include "cdf.h"

void UserStatusHandler (status)
CDFstatus status;

{
char message[CDF_STATUSTEXT LEN+1];

273

if (status < CDF_WARN) {
printf ("An error has occurred, halting...\n");
CDFerror (status, message);
printf ("%s\n", message);
exit (status);
¥
else {
if (status < CDF_OK) {
printf ("Warning, function may not have completed as expected...\n");
CDFerror (status, message);
printf ("%s\n", message);
¥
else {
if (status > CDF_OK) {
printf ("Function completed successfully, but be advised that...\n");
CDFerror (status, message);
printf ("%s\n", message);
¥
¥
¥

return;

}

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

274

Chapter 9

9 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH]16 values. These
functions may be called by applications using the CDF _EPOCH and CDF_EPOCH16 data types and are included in
the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter
in the CDF User's Guide describes EPOCH values. The date/time components for CDF_EPOCH and CDF_EPOCH16
are UTC-based, without leap seconds.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store time values referenced from a particular epoch.

For CDF that epoch values for CDF_EPOCH and CDF_EPOCH]16 are milliseconds from 01-Jan-0000 00:00:00.000
and pico-seconds from 01-Jan-0000 00:00:00.000.000.000.000, respectively.

9.1 computeEPOCH

computeEPOCH calculates a CDF _EPOCH value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_VALUE.

double computeEPOCH(/* out -- CDF_EPOCH value returned. */

long year, /* in -- Year (AD). */
long month, /* in -- Month */
long day, /* in -- Day */

long hour, /* in -- Hour */

long minute, /* in -- Minute */
long second, /* in -- Second */
long msec); /* in -- Millisecond */

NOTE: Previously, fields for month, day, hour, minute, second and msec should have a valid ranges, mainly 1-12 for
month, 1-31 for day, 0-23 for hour, 0-59 for minute and second, and 0-999 for msec. However, there are two variations
on how computeEPOCH can be used. The month argument is allowed to be 0 (zero), in which case, the day argument is
assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute, and second
arguments are all Os (zero), then the msec argument is assumed to be the millisecond of the day, having a range of 0
through 86400000. The modified computeEPOCH, since the CDF V3.3.1, allows month, day, hour minute, second and
msec to be any values, even negative ones, without range checking as long as the comulative date is after 0AD. Any
cumulative date before 0AD will cause this function to return ILLEGAL EPOCH VALUE (-1.0) By not checking the
range of dta fields, the epoch will be computed from any given values for month, day, hour, etc. For example, the
epoch can be computed by passing a Unix-time (seconds from 1970-1-1) in a set of arguments of “1970, 1, 1, 0, 0,

275

unix-time, 0”. While the second field is allowed to have a value of 60 (or greater), the CDF epoch still does not support
of leap second. An input of 60 for the second field will automatically be interpreted as 0 (zero) second in the following
minute. If the month field is 0, the day field is still considered as DOY. If the day field is 0, the date will fall back to
the last day of the previous month, e.g., a date of 2010-2-0 becoming 2010-1-31. The following table shows how the
year, month and day components of the epoch will be interpreted by the following EPOCHbreakdown function when
the month and/or day field is passed in with 0 or negative value to computeEPOCH function.

Year Month Day Year Month Day

2010 0 0 > 2009 12 31 Last day of the previous year

2010 1 0 > 2009 11 30 Last day of November of the previous
year

2010 0 1 2> 2010 1 1 First day of the year

2010 1 0 > 2009 12 31 Last day of the previous year

2010 0 1 > 2009 12 30 Two days before January 1* of current
year

2010 1 1 > 2009 11 29 Two months and two days before

January 1* of current year
Input Year/Month/Day Interpreted Year/Month/Day

9.2 EPOCHbreakdown

EPOCHbreakdown decomposes a CDF_EPOCH value into the individual components.

void EPOCHbreakdown(

double epoch, /* in -- The CDF_EPOCH value. */
long *year, /* out -- Year (AD, e.g., 1994). */
long *month, /* out -- Month (1-12). */

long *day, /* out -- Day (1-31). */

long *hour, /* out -- Hour (0-23). */

long *minute, /* out -- Minute (0-59). */

long *second, /* out -- Second (0-59). */

long *msec); /* out -- Millisecond (0-999). */

9.3 encodeEPOCH

encodeEPOCH encodes a CDF_EPOCH value into the standard date/time character string. The format of the string is
dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is the
second (0-59), and ccc is the millisecond (0-999).

void encodeEPOCH(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH_STRING LEN+1)); /* out -- The standard date/time character string. */

EPOCH_STRING_LEN is defined in cdf.h.

276

9.4 encodeEPOCHI1

encodeEPOCHI1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdad.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).
void encodeEPOCHI(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH1 STRING_ LEN+1]); /* out -- The alternate date/time character string. */

EPOCH1 STRING LEN is defined in cdf.h.

9.5 encodeEPOCH2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).
void encodeEPOCH2(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH2 STRING_ LEN+1]); /* out -- The alternate date/time character string. */

EPOCH2 STRING LEN is defined in cdf.h.

9.6 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).
void encodeEPOCH3(
double epoch; /* in -- The CDF_EPOCH value. */
char epString[EPOCH3 STRING_ LEN+1]); /* out -- The alternate date/time character string. */

EPOCH3_STRING_LEN is defined in cdf.h.

9.7 encodeEPOCH4

277

encodeEPOCH4 encodes a CDF_EPOCH value into an alternate, ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

void encodeEPOCH4(
double epoch;
char epString[EPOCH4 STRING LEN+1]);

/* in -- The CDF_EPOCH value. */
/* out -- The ISO 8601 date/time character string. */

EPOCH4 STRING LEN is defined in cdf.h.

9.8 encodeEPOCHXx

encodeEPOCHx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

void encodeEPOCHx(
double epoch;
char formatfEPOCHx FORMAT MAX];
char encoded[EPOCHx STRING MAX]);

/* in -- The CDF_EPOCH value. */
/* in ---The format string. */
/* out -- The custom date/time character string. */

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.
The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 9.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

278

EPOCHx_FORMAT LEN and EPOCHx STRING MAX are defined in cdf.h.

9.9 parseEPOCH

parseEPOCH parses a standard date/time character string and returns a CDF_EPOCH value. The format of the string is
that produced by the encodeEPOCH function described in Section 9.3. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH_STRING LEN+1)); /* in -- The standard date/time character string. */

EPOCH_STRING LEN is defined in cdf.h.

9.10 parseEPOCHI1

parseEPOCHI1 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 function described in Section 9.4. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCHI(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH1 STRING LEN+1]); /* in -- The alternate date/time character string. */

EPOCHI1_STRING LEN is defined in cdf.h.

9.11 parseEPOCH2

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH2 function described in Section 9.5. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH2(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH2 STRING_ LEN+1]); /* in -- The alternate date/time character string. */

EPOCH2 STRING LEN is defined in cdf.h.

9.12 parseEPOCH3

parseEPOCH3 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH3 function described in Section 9.6. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

279

double parseEPOCH3(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH3 STRING_ LEN+1]); /* in -- The alternate date/time character string. */

EPOCH3_STRING LEN is defined in cdf.h.

9.13 parseEPOCH4

parseEPOCH4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encodeEPOCH4 function described in Section 9.7. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH4(/* out -- CDF_EPOCH value returned. */
char epString[EPOCH4 STRING LEN+1]); /* in -- The alternate date/time character string. */

EPOCH4 STRING LEN is defined in cdf.h.

9.14 computeEPOCH16

computeEPOCH16 calculates a CDF_EPOCH16 value given the individual components. If an illegal component is
detected, the value returned will be ILLEGAL EPOCH_ VALUE.

double computeEPOCHI16(/* out -- status code returned. */

long year, /* in -- Year (AD, e.g., 1994). */
long month, /* in -- Month. */

long day, /¥ in -- Day. */

long hour, /* in -- Hour. */

long minute, /* in -- Minute. */

long second, /* in -- Second. */

long msec, /* in -- Millisecond. */

long microsec, /* in -- Microsecond. */

long nanosec, /* in -- Nanosecond. */

long picosec, /* in -- Picosecond. */

double epoch[2]); /* out -- CDF_EPOCH16 value returned */

Similar to computeEPOCH, this function no longer performs range checks for each individual componenet as long as
the cumulative date is after 0AD.

9.15 EPOCHI16breakdown

EPOCHI16breakdown decomposes a CDF _EPOCH16 value into the individual components.

void EPOCHI16breakdown(
double epoch[2], /¥ in -- The CDF_EPOCHI16 value. */

280

long *year, /* out -- Year (AD, e.g., 1994). */

long *month, /* out -- Month (1-12). */

long *day, /* out -- Day (1-31). */

long *hour, /* out -- Hour (0-23). */

long *minute, /* out -- Minute (0-59). */

long *second, /* out -- Second (0-59). */

long *msec, /* out -- Millisecond (0-999). */

long *microsec, /* out -- Microsecond (0-999). */
long *nanosec, /* out -- Nanosecond (0-999). */
long *picosec); /* out -- Picosecond (0-999). */

9.16 encodeEPOCHI16

encodeEPOCH16 encodes a CDF_EPOCH16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.mmm:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the
month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is
the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16(
double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char epString[EPOCH16_STRING LEN+1]); /* out -- The date/time character string. */

EPOCH16 STRING LEN is defined in cdf.h.

9.17 encodeEPOCHI16 1

encodeEPOCH16_1 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttttttttttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).
void encodeEPOCHI16_1(
double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char epString[EPOCH16 1 STRING LEN +1]); /* out -- The date/time character string. */

EPOCHI16 1 STRING LEN is defined in cdf.h.

9.18 encodeEPOCH16 2

encodeEPOCH16_2 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

void encodeEPOCHI16_2(

281

double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char epString[EPOCH16 2 STRING LEN+1]); /* out -- The date/time character string. */

EPOCHI16 2 STRING LEN is defined in cdf.h.

9.19 encodeEPOCH16 3

encodeEPOCH16_3 encodes a CDF_EPOCH16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mm:ss.mmm:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the millisecond (0-
999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16_3(
double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char epString[EPOCH16 3 STRING LEN+1]); /* out -- The alternate date/time character string. */

EPOCH16 3 STRING LEN is defined in cdf.h.

9.20 encodeEPOCHI16 4

encodeEPOCH16_4 encodes a CDF_EPOCH16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mm:ss.mmmuuunnnppp where yyyy is the year, mo is the month (1-12), dd is
the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

void encodeEPOCH16_4(
double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char epString[EPOCH16 4 STRING LEN+1]); /* out -- The ISO 8601 date/time character string. */

EPOCHI16 4 STRING LEN is defined in cdf.h.

9.21 encodeEPOCHI16 x

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

void encodeEPOCHI16_x(

double epoch[2]; /* in -- The CDF_EPOCHI16 value. */
char formatfEPOCHx FORMAT MAX]; /* in ---The format string. */
char encoded[EPOCHx_STRING MAX]); /* out -- The date/time character string. */

The format string consists of EPOCH components, which are encoded, and text that is simply copied to the encoded
custom string. Components are enclosed in angle brackets and consist of a component token and an optional width.

282

The syntax of a component is: <token[.width]>. If the optional width contains a leading zero, then the component will
be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (‘Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .
<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

EPOCHx_FORMAT LEN and EPOCHx STRING MAX are defined in cdf.h.

9.22 parseEPOCHI16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH]16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH VALUE.

double parseEPOCH16(/* out -- The status code returned. */
char epString[EPOCH16_STRING_LEN+1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCHI6 value returned */

EPOCHI16 STRING LEN is defined in cdf.h.

283

9.23 parseEPOCHI16 1

parseEPOCH16 1 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH16_1(/* out -- The status code returned. */
char epString[EPOCH16 1 STRING_LEN+1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH]16 value returned */

EPOCHI16 1 STRING LEN is defined in cdf.h.

9.24 parseEPOCH16 2

parseEPOCHI16_2 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH16_2(/* out -- The status code returned. */
char epString[EPOCH16 2 STRING LEN +1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH]16 value returned */

EPOCHI16 2 STRING LEN is defined in cdf.h.

9.25 parseEPOCH16 3

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH16_3(/* out -- The status code returned. */
char epStringl[EPOCH16 3 STRING_LEN +1], /* in -- The date/time character string. */
double epoch[2]); /* out -- The CDF_EPOCH]16 value returned */

EPOCHI16 3 STRING LEN is defined in cdf.h.

9.26 parseEPOCHI16 4

parseEPOCH16_4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encodeEPOCH16_4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL EPOCH_VALUE.

double parseEPOCH16_3(/* out -- The status code returned. */

284

char epString[EPOCH16 4 STRING LEN +1], /* in -- The ISO 8601 date/time string. */
double epoch[2]); /* out -- The CDF_EPOCH]16 value returned */

EPOCHI16 4 STRING LEN is defined in cdf.h.

285

10 TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF_TIME TT2000 data type and are included in the CDF library. Function
prototypes for these functions may be found in the include file cdf.h. The Concepts chapter in the CDF User's Guide
describes TT2000 values. The date/time components for CDF_TIME TT2000 are UTC-based, with leap seconds.

The CDF_TIME_TT2000 data types are used to store time values referenced from J2000 (2000-01-

01T12:00:00.000000000), the Terrestrial Time (TT). For CDF, values in CDF_TIME_TT2000 are nanoseconds. from
J2000 with leap seconds included. TT2000 data can cover years between 1707 and 2292.

10.1 CDF _TT2000 from UTC parts

CDF TT2000 from UTC parts calculates a CDF TIME TT2000 value, given the individual UTC-based time
components. If an illegal component is detected, the value returned will be ILLEGAL _TT2000 VALUE.

The variable argument form:

long long CDF_TT2000 from UTC parts(/* out -- CDF_TIME TT2000 value returned. */

double year, /* in -- Year (AD). */
double month, /* in -- Month */
double day, /* in -- Day */
double TT2000END);

The full form:

long long CDF_TT2000 from UTC parts(/* out -- CDF_TIME TT2000 value returned. */

double year, /* in -- Year (AD). */
double month, /* in -- Month */
double day, /* in -- Day */

double hour, /* in -- Hour. */
double minute, /* in -- Minute */
double second, /* in -- Second */
double msec, /* in -- Millisecond */
double usec, /* in -- Microsecond */
double nsec); /* in -- Nanosecond */

This function is also aliased as computeTT2000 for short. This function accepts variable number of arguments after
the first three components of year, month and day. It allows a full argument list of nine (9) fields: year, month, day,
hour, minute, second, millisecond, microsecond and nanosecond. If less than full arguments is passed in, a predefined
TT2000END has to be appended to signify the end of argument list. Without it, a unexpected value might be
returned.

287

Note: Note: Even all components are defined as double, to simplify the computation, this function only allows the very
last argument to have a non-zero fractional part. The followings are some samples.

For three date/time arguments (sub-day),

tt2000 = CDF_TT2000 from UTC parts(2010.0, 10.0,12.5, TT2000END);

For four date/time arguments (sub-hour),

tt2000 = CDF_TT2000 from UTC parts(2010.0, 10.0, 12.0,12.5, TT2000END);

For five date/time arguments (sub-minute),

tt2000 = CDF_TT2000 from UTC parts(2010.0, 10.0, 12.0, 12.0, 30.5, TT2000END);
For six date/time arguments (sub-second),

2000 = CDF_TT2000_from_UTC_parts(2010.0, 10.0, 12.0, 12.0, 30.0, 30.5, TT2000END);

For the complete argument list:
tt2000 = CDF_TT2000_from_UTC_parts(2010.0, 10.0, 12.0, 1.0, 2.0, 3.0, 111.0, 222.0, 333.5);

This call is not allowed,
tt2000 = CDF_TT2000_from UTC parts(2010.0, 10.0,12.5, 12.5, TT2000END);

Any invalid component is detected, an predefined ILLEGAL_TT2000_VALUE (-99999999999LL) is returned.

10.2 CDF _TIME to UTC parts

CDF TT2000 to UTC parts decomposes a CDF TIME TT2000 value into the individual UTC-based time
components.

The variable argument form:

void CDF_TT2000 to UTC_parts(

long long t2000, /* in -- The CDF_TIME TT2000 value. */
double *year, /* out -- Year (AD). */

double *month, /* out -- Month */

double *day, /* out -- Day */

double TT2000NULL);

The full form:

void CDF_TT2000 to UTC_parts(

long long t2000, /* in -- The CDF_TIME TT2000 value. */
double *year, /* out -- Year (AD). */

double *month, /* out -- Month */

double *day, /* out -- Day */

288

double *hour, /* out -- Hour. */

double *minute, /* out -- Minute */
double *second, /* out -- Second */
double *msec, /* out -- Millisecond */
double *usec, /* out -- Microsecond */
double *nsec); /* out -- Nanosecond */

This function is also aliased as TT2000breakdown for short. This function accepts variable number of arguments
after the first four components of TT2000 value, year, month and day. It allows a full argument list of ten (10) fields:
tt2000, year, month, day, hour, minute, second, millisecond, microsecond and nanosecond. If less than the full
arguments are passed in for the decomposed date/time fields, a predefined TT2000NULL has to be appended to
signify the end of argument list. Without it, an unexpected field value might be returned. Even all components are
defined as double, only the very last argument may have really fractional value, e.g.,

For decomposing into three date/time arguments (sub-day),

CDF_TT2000 to UTC parts(tt2000, &year, &month, &day, TT2000NULL);

For decomposing into four date/time arguments (sub-hour),

CDF_TT2000 to UTC parts(tt2000, &year, &month, &day, &hour, TT2000NULL);

For decomposing into five date/time arguments (sub-minute),

CDF_TT2000 to UTC parts(tt2000, &year, &month, &day, &hour, &minute, TT2000NULL);
For decomposing into six date/time arguments (sub-second),

CDF _TT2000 to UTC parts(tt2000, &year, &month, &day, &hour, &minute, &second, TT2000NULL);

For decomposing into the complete argument list:
CDF _TT2000 to UTC parts(tt2000, &year, &month, &day, &hour, &minute, &second, &milsec, &micsec,
&nansec);

10.3 CDF _TT2000 to UTC string

CDF_TT2000 to UTC string encodes a CDF_TIME_TT2000 value into the standard UTC-based date/time character
string. The default format of the string is of ISO 8601 format: yyyy-mn-ddT hh:ms:ss.mmmuuunnn where
yyyy is the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mn is
the minute (0-59), ss is the second (0-59 or 0-60 if leap second), mmm is the millisecond (0-999), uuu is the
microsecond (0-999) and nnn is the nanosecond (0-999).

The variable argument form:
void CDF_TT2000 to UTC_string(

long long t2000; /* in -- The CDF_TIME TT2000 value. */
char *string); /* out -- encode UTC string */

The full form:

289

void CDF_TT2000 to UTC_string(

long long t2000; /* in -- The CDF_TIME TT2000 value. */
char *string, /* out -- encode UTC string */
int form); /* in -- The string format . */

This function is also aliased as encodeTT2000 for short. This function accepts variable number of arguments after
the first two components of TT2000 value, and UTC string. It allows an optional argument field of an integer for
format. If the format is not passed in, a format of value 3 is assumed and the default encoded UTC string is returned.
The fomat has a valid value from 0 to 3.

For a format of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.mmmuuunnn, where DD is
the day of the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY
is the year, hh is the hour (0-23), mm is the minute (0-59 or 0-60 if leap second), ss is the second (0-59), mmm is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999). The encoded string has a
length of TT2000 0 STRING_LEN (30).

For a format of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999). The encoded string has a length
of TT2000_1 STRING_LEN (19).

For a format of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-
59 or 0-60 if leap second). The encoded string has a length of TT2000 2 STRING LEN (14).

For a format of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.mmmuuunnn, where YYYY
is the year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59

or 0-60 if leap second), ss is the second (0-59), mmm is the millisecond (0-999), uuu is the microsecond (0-999), and
nnn is the nanosecond (0-999). The encoded string has a length of TT2000_3 STRING_LEN (29).

104 CDF _TT2000 from UTC_string

CDF_TT2000 from UTC string parses a standard UTC-based date/time character string and returns a
CDF _TIME TT2000 value. The format of the string is one of the strings produced by the
CDF_TT2000 to UTC string function described in Section 10.3. If the epoch is outside the range for TT2000, the
value returned will be ILLEGAL TT2000 VALUE.

long long CDF_TT2000_from UTC string(/* out -- CDF_TIME TT2000 value returned. */
char *epString); /* in -- The standard date/time character string. */

This function is also aliased as parseTT2000 for short.

10.5 CDF_TT2000 from UTC_EPOCH

290

CDF _TT2000 from UTC EPOCH converts a value of CDF_EPOCH type to CDF_TIME TT2000 type. If the epoch
is outside the range for TT2000, the value returned will be ILLEGAL TT2000_ VALUE. If the epoch is a predefined,
filled dummy value, DUMMY TT2000 VALUE is returned.

long long CDF_TT2000 from UTC EPOCH(/* out -- CDF_TIME TT2000 value returned. */
double epoch); /* in -- CDF_EPOCH value. */

This function converts a CDF_EPOCH data value to CDF_TIME TT2000 value. Both microsecond and nanosecond
fields for TT2000 are zero-filled.

10.6 CDF_TT2000 to UTC_EPOCH

CDF_TT2000 to UTC_EPOCH converts a value in CDF_TIME TT2000 type to CDF_EPOCH type.

double CDF_TT2000_to UTC_EPOCH(/* out — The CDF_EPOCH value
long long tt2000); /* in -- The CDF_TIME TT2000 value. */

The microsecond and nanosecond fields in TT2000 are ignored. As the CDF_EPOCH type does not have leap seconds,
the date/time falls on a leap second from TT2000 type will be converted to the zero (0) second of the next day.

10.7 CDF_TT2000 _from_UTC_EPOCHI16

CDF_TT2000 from UTC_EPOCHI16 converts a data value in CDF_EPOCHI16 type to CDF_TT2000 type. If the
epoch is outside the range for TT2000, the value returned will be ILLEGAL TT2000 VALUE. If the epoch is a
predefined, filled dummy value, DUMMY TT2000 VALUE is returned.

long long CDF_TT2000_from UTC EPOCHI16(/* out -- CDF_TIME TT2000 value returned. */
double *epochl6); /* in -- The CDF_EPOCH16 value. */

The picoseconds from CDF_EPOCH16 is ignored.

10.8 CDF _TT2000 to UTC_EPOCHI16

CDF _TT2000 to UTC _EPOCH16 converts a data value in CDF_TIME TT2000 type to CDF_EPOCH]16 type.
void CDF _TT2000 to UTC EPOCHI16(

long long t2000; /* in -- The CDF_TIME TT2000 value. */
double *epochl6); /* out -- CDF_EPOCH16 value */

The picoseconds to CDF_EPOCH]16 are zero(0)-filled. As the CDF_EPOCH]16 type does not have leap seconds, the
date/time falls on a leap second in TT2000 type will be converted to the zero (0) second of the next day.

291

292

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be
used within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

293

BAD _ATTR_NAME

BAD _ATTR_NUM

BAD_ BLOCKING FACTOR*®

BAD CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_CHECKSUM

BAD_COMPRESSION PARM

BAD DATA_TYPE

BAD DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

BAD DIM_INTERVAL

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal checksum mode received. It is invlid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

* The status code BAD_BLOCKING FACTOR was previously named BAD_EXTEND_ RECS.

294

BAD_DIM_SIZE

BAD ENCODING

BAD_ENTRY NUM

BAD _FNC_OR_ITEM

BAD _FORMAT

BAD_INITIAL_RECS

BAD MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0 MODE

BAD _NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY_ _MODE

BAD_REC_COUNT

BAD REC_INTERVAL

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. =~ The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_ MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one

(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran

applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

295

BAD _REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD SPARSEARRAYS PARM

BAD VAR _NAME

BAD VAR _NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

N

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

3. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

296

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.
Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

exists to open it. Also check that an open file quota has not
already been reached. [Error]

297

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

COMPRESSION ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOT_COMPRESS

EMPTY COMPRESSED CDF

END OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL FOR_SCOPE

ILLEGAL_IN_zMODE

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

The data integrity verification through the checksum failed.
[Error]

The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal.
[Error]

298

ILLEGAL ON_VI1_CDF

MULTI FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was

returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

299

NO_VARS_IN_CDF

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

PRECEEDING_RECORDS ALLOCATED

READ ONLY DISTRIBUTION

READ ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR
SCRATCH_READ_ERROR
SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME ALREADY ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]
The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

300

UNKNOWN_SPARSENESS

UNSUPPORTED OPERATION
VAR_ALREADY_ CLOSED

VAR_CLOSE_ERROR

VAR_CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL RECORD DATA

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

301

Appendix B

B.1 Original Standard Interface

CDFstatus CDFattrCreate (id, attrName, attrScope, attrNum)

CDFid 1id; /*in */
char *attrName, /* in */
long attrScope; /*in */
long *attrNum,; /* out */

CDFstatus CDFattrEntryInquire (id, attrNum, entryNum, dataType, numElements)

CDFid id; /* in */
long attrNum; /*in */
long entryNum; /*in */
long *dataType; /* out */
long *numElements; /* out */

CDFstatus CDFattrGet (id, attrNum, entryNum, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
void *value; /* out */

CDFstatus CDFattrInquire (id, attrNum, attrName, attrScope, maxEntry)

CDFid id; /* in */
long attrNum; /*in */
char *attrName; /* out */
long *attrScope; /* out */
long *maxEntry; /* out */

long CDFattrNum (id, attrName)
CDFid 1id; /*in */
char *attrName; /* in */

CDFstatus CDFattrPut (id, attrNum, entryNum, dataType, numElements, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long dataType; /*in */
long numElements; /*in */
void *value; /* in */

CDFstatus CDFattrRename (id, attrNum, attrName)
CDFid 1id; /*in */
long attrNum; /*in */

303

char *attrName, /* in */

CDFstatus CDFclose (id)
CDFid id; /*in */

CDFstatus CDFcreate (CDFname, numDims, dimSizes, encoding, majority, id)

char *CDFname; /* in */
long numDims; /*in */
long dimSizes([]; /* in */
long encoding; /*in */
long majority; /*in */
CDFid *id; /* out */

CDFstatus CDFdelete (id)
CDFid id; /*in */

CDFstatus CDFdoc (id, version, release, text)

CDFid id; /*in */
long *version; /* out */
long *release; /* out */
char text{CDF_DOCUMENT_ LEN+1]; /* out */
CDFstatus CDFerror (status, message)

CDFstatus status; /* in */
char message[CDF_STATUSTEXT LEN+1]; /* out */
CDFstatus CDFgetrVarsRecordData (id, numVars, varNames, varRecNum, buffer)
CDFid id; /*in */
long numVars; /*in */
char *varNames[]; /*in */
long varRecNum,; /*in */
void *buffer|]; /* out */

CDFstatus CDFgetzVarsRecordData (id, numVars, varNames, varRecNum, buffer)

CDFid 1id; /*in */
long numVars; /*in */
char *varNames[]; /*in */
long varRecNum,; /*in */
void *puffer|]; /* out */

CDFstatus CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec,
numVars, numAttrs)

CDFid id; /* in */

long *numDims; /* out */
long dimSizes[CDF MAX DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */
long *maxRec; /* out */
long *numVars; /* out */
long *numAttrs; /* out */

CDFstatus CDFopen (CDFname, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFstatus CDFputrVarsRecordData (id, numVars, varNames, varRecNum, buffer)

304

CDFid id;

long numVars;
char *varNames[|;
long varRecNum;
void *buffer;

/*in */
/*in */
/*in */
/*in */
/*in */

CDFstatus CDFputzVarsRecordData (id, numVars, varNames, varRecNum, buffer)

CDFid 1id;
long numVars;
char *varNames[];

long varRecNum;
void *puffer|];

CDFstatus CDFvarClose (id, varNum)
CDFid 1id;
long varNum;

/*in */
/*in */
/*in */
/*in */
/*in */

/*1in */
/*1in */

CDFstatus CDFvarCreate (id, varName, dataType, numElements, recVariances,

dimVariances, varNum)
CDFid 1id;
char *yvarName;
long dataType;
long numElements;
long recVariance;
long dimVariances|[];
long *varNum,;

CDFstatus CDFvarGet (id, varNum, recNum, indices, value)
CDFid id;

long varNum,;

long recNum;

long indices[];

void *value;

CDFstatus CDFvarHyperGet (id, varNum, recStart, recCount, recInterval,

indices, counts, intervals, buffer)
CDFid id;
long varNum;
long recStart;
long recCount;
long recInterval;
long indices([];
long counts|];
long intervals[];
void *buffer;

CDFstatus CDFvarHyperPut (id, varNum, recStart, recCount, recInterval,

indices, counts, intervals, buffer)
CDFid id;
long varNum;
long recStart;
long recCount;
long recInterval;
long indices([];
long counts|];
long intervals[];

305

/* in */
/* in */
/* in */
/*in */
/* in */
/* in */
/* out */

/* in */
/* in */
/* in */
/*in */
/* out */

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/* out */

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */

void *buffer; /* in */

CDFstatus CDFvarlnquire (id, varNum, varName, dataType, numElements,
recVariance, dimVariances)

CDFid 1id; /*in */
long varNum; /*in */
char *varName; /* out */
long *dataType; /* out */
long *numElements; /* out */
long *recVariance, /* out */
long dimVariances]CDF_MAX DIMS]; /* out */
long CDFvarNum (id, varName)

CDFid 1id; /*in */
char *varName; /* in */

CDFstatus CDFvarPut (id, varNum, recNum, indices, value)

CDFid 1id; /*in */
long varNum; /*1in */
long recNum; /*in */
long indices[]; /*in */
void *value; /* in */

CDFstatus CDFvarRename (id, varNum, varName)

CDFid id; /*in */
long varNum; /*in */
char *varName; /* in */

306

B.2 Extended Standard Interface

CDFstatus CDFcloseCDF (id)
CDFid id;

CDFstatus CDFclosezVar (id, varNum)
CDFid 1id;
long varNum;

CDFstatus CDFconfirmAttrExistence (id, attrName)
CDFid 1id;
char *attrName,

CDFstatus CDFconfirmgEntryExistence (id, attrNum, entryNum)
CDFid 1id;

long attrNum;

long entryNum;

CDFstatus CDFconfirmrEntryExistence (id, attrNum, entryNum)
CDFid 1id;

long attrNum;

long entryNum;

CDFstatus CDFconfirmzEntryExistence (id, attrNum, entryNum)
CDFid 1id;

long attrNum;

long entryNum;

CDFstatus CDFconfirmzVarExistence (id, varNum)
CDFid 1id;
long varNum,;

CDFstatus CDFconfirmzVarPadValueExistence (id, varNum)
CDFid 1id;
long varNum;

CDFstatus CDFcreateAttr (id, attrName, scope, attrNum)
CDFid id;

char *attrName,

long scope;

long *attrNum;

CDFstatus CDFcreateCDF (CDFname, dimSizes, id)
char *CDFname;
CDFid *id;

CDFstatus CDFcreatezVar (id, varName, dataType, numElements, numDims,
dimSizes, recVary, dimVarys, varNum)

CDFid 1id;

char *varName;
long dataType;
long numElements;

307

/*1in */

/*1in */
/*1in */

/*1in */
/*1in */

/*1in */
/*1in */
/*1in */

/*1in */
/*1in */
/*1in */

/*1in */
/*1in */
/*1in */

/*1in */
/*1in */

/*1in */
/*1in */

/* in */
/*in */
/*in */
/* out */

/*1in */
/* out */

/*1in */
/*1in */
/*1in */
/*1in */

long numDims; /*in */

long dimSizes([]; /* in */
long recVary; /*in */
long dimVarysl[]; /*in */
long *varNum; /* out */

CDFstatus CDFdeleteCDF (id)

CDFid id; /*in */
CDFstatus CDFdeleteAttr (id, attrNum)

CDFid id; /*in */

long attrNum; /*in */

CDFstatus CDFdeleteAttrgEntry (id, attrNum, entryNum)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */

CDFstatus CDFdeleteAttrrEntry (id, attrNum, entryNum)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */

CDFstatus CDFdeleteAttrzEntry (id, attrNum, entryNum)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*1in */

CDFstatus CDFdeletezVar (id, varNum)
CDFid 1id; /*in */
long varNum; /*in */

CDFstatus CDFdeletezVarRecords (id, varNum, startRec, endRec)

CDFid id; /*in */
long varNum; /*in */
long startRec; /*1in */
long endRec; /*in */

CDFstatus CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long *dataType; /* out */
CDFstatus CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElems)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long *numElems; /* out */

CDFstatus CDFgetAttrgEntry (id, attrNum, entryNum, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
void *value; /* out */

308

CDFstatus CDFgetAttrrEntry (id, attrNum, entryNum, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
void *value; /* out */

CDFstatus CDFgetAttrMaxgEntry (id, attrNum, entryNum)

CDFid id; /*in */
long attrNum; /*in */
long *entryNum; /* out */

CDFstatus CDFgetAttrMaxrEntry (id, attrNum, entryNum)

CDFid id; /*in */
long attrNum; /*in */
long *entryNum; /* out */

CDFstatus CDFgetAttrMaxzEntry (id, attrNum, entryNum)

CDFid id; /*in */
long attrNum; /*in */
long *entryNum; /* out */

CDFstatus CDFgetAttrName (id, attrNum, attrName)

CDFid 1id; /*in */
long attrNum; /*in */
char *attrName; /* out */
long CDFgetAttrNum (id, attrName) /* out */
CDFid 1id; /*in */
char *attrName, /*in */

CDFstatus CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long *dataType; /* out */
CDFstatus CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElems)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long *numElems; /* out */

CDFstatus CDFgetAttrScope (id, attrNum, scope)

CDFid id; /*in */
long attrNum; /*in */
long *scope; /* out */

CDFstatus CDFgetAttrzEntry (id, attrNum, entryNum, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
void *value; /* out */

CDFstatus CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)
CDFid 1id; /*in */
long attrNum; /*in */

309

long entryNum;
long *dataType;

/*in */
/* out */

CDFstatus CDFgetAttrzEntryNumElements (id, attrNum, entryNum, numElems)

CDFid 1id;

long attrNum;
long entryNum;
long *numElems;

CDFstatus CDFgetCacheSize (id, numBuffers)
CDFid id;
long *numBuffers;

CDFstatus CDFgetChecksum (id, checksum)
CDFid id;
long *checksum,;

CDFstatus CDFgetCompression (id, compressionType, compressionParms,
compressionPercent)

CDFid 1id;

long *compressionType;

long compressionParmsl[];

long *compressionPercent;

CDFstatus CDFgetCompressionCacheSize (id, numBuffers)
CDFid 1id;
long *numBuffers;

/*in */
/*in */
/*in */
/* out */

/*1in */
/* out */

/*1in */
/* out */

[*1in */

/* out */
/* out */
/* out */

/*1in */
/* out */

CDFstatus CDFgetCompressionlnfo (cdfName, compressionType, compressionParms,

compressionSize, uncompressionSize)
char *cdfName;
long *compressionType;
long compressionParms([];
OFF T *compressionSize;
OFF T *uncompressionSize;

CDFstatus CDFgetCopyright (id, Copyright)
CDFid 1id;
char *Copyright;

CDFstatus CDFgetDataTypeSize (dataType, numBytes)
long dataType;
long *numBytes;

CDFstatus CDFgetDecoding (id, decoding)
CDFid id;

long *decoding;

CDFstatus CDFgetEncoding (id, encoding)
CDFid id;

long *encoding;

int CDFgetFileBackward ()

CDFstatus CDFgetFormat (id, format)
CDFid id;

310

[*1in */

/* out */
/* out */
/* out */
/* out */

/*1in */
/* out */

/*1in */
/* out */

/*1in */
/* out */

/*1in */
/* out */

/*in */

long *format;

CDFstatus CDFgetLibraryCopyright (Copyright)
char *Copyright;

CDFstatus CDFgetLibraryVersion (version, release, increment, subIncrement)
long *version;

long *release;

long *increment;

char *subIncrement;

CDFstatus CDFgetMajority (id, majority)
CDFid 1id;
long *majority;

CDFstatus CDFgetMaxWrittenRecNums (id, maxRecrVars, maxReczVars)
CDFid 1id;

long *maxRecrVars;

long *maxReczVars;

CDFstatus CDFgetName (id, name)
CDFid 1id;
char *name;

CDFstatus CDFgetNegtoPosfpOMode (id, negtoPosfp0)
CDFid id;
long *negtoPos{p0;

CDFstatus CDFgetNumAttrgEntries (id, attrNum, entries)
CDFid 1id;

long atrNum;

long *entries;

CDFstatus CDFgetNumAttributes (id, numAdttrs)
CDFid 1id;
long *numAttrs;

CDFstatus CDFgetNumAttrrEntries (id, attrNum, entries)
CDFid id;

long atrNum;

long *entries;

CDFstatus CDFgetNumAttrzEntries (id, attrNum, entries)
CDFid 1id;

long atrNum;

long *entries;

CDFstatus CDFgetNumgAttributes (id, numAttrs)
CDFid 1id;

long *numAttrs;

CDFstatus CDFgetNumvAttributes (id, numAttrs)
CDFid 1id;

long *numAttrs;

CDFstatus CDFgetNumrVars (id, numVars)

311

/* out

/* out

/* out
/* out
/* out
/* out

*/

*/

*/
*/
*/
*/

/*in */

/* out

*/

/*in */

/* out
/* out

*/
*/

/*in */

/* out

*/

/*in */

/* out

*/

/*in */
/*in */

/* out

*/

/*in */

/* out

*/

/*in */
/*in */

/* out

*/

/*in */
/*in */

/* out

*/

/*in */

/* out

*/

/*in */

/* out

*/

CDFid id; /*in */
long *numrVars; /* out */

CDFstatus CDFgetNumzVars (id, numVars)
CDFid 1id; /*in */
long *numzVars; /* out */

CDFstatus CDFgetReadOnlyMode (id, mode)
CDFid id; /*in */
long *mode; /* out */

CDFstatus CDFgetStageCacheSize (id, numBuffers)

CDFid 1id; /*in */
long *numBuffers; /* out */
CDFstatus CDFgetStatusText (status, text)

CDFstatus status; /*in */

char *text; /* out */

CDFstatus CDFgetVarAllRecordsByVarName (id, varName, buffer)

CDFid id; /*in */
char *yvarName; /*in */
void *buffer; /* out */

long CDFgetVarNum (id, varName)
CDFid 1id; /*in */
char *varName; /*in */

int CDFgetValidate ()

CDFstatus CDFgetVarAllRecordsByVarName (id, varName, buffer)

CDFid id; /*in */
char *varName; /*in */
void *buffer; /* out */

CDFstatus CDFgetVarRangeRecordsByVarName (id, varName, startRec, stopRec, buffer)

CDFid 1id; /*in */
char *varName; /*in */
long startRec; /*in */
long stopRec; /*in */
void *buffer; /* out */

CDFstatus CDFgetVersion (id, version, release, increment)

CDFid id; /*in */

long *version; /* out */
long *release; /* out */
long *increment; /* out */

CDFstatus CDFgetzMode (id, zMode)
CDFid 1id; /*in */
long *zMode; /* out */

CDFstatus CDFgetzVarAllocRecords (id, varNum, allocRecs)

CDFid id; /*in */
long varNum; /*in */
long *allocRecs; /* out */

312

CDFstatus CDFgetzVarAllRecordsByVarID (id, varNum, buffer)
CDFid 1id;

long varNum,;

void *buffer;

CDFstatus CDFgetzVarBlockingFactor (id, varNum, bf)

CDFid 1id;
long varNum;
long *bf;

CDFstatus CDFgetzVarCacheSize (id, varNum, numBuffers)
CDFid id;

long varNum;

long *numBuffers;

CDFstatus CDFgetzVarCompression (id, varNum, cType, cParms, cPercent)
CDFid 1id;

long varNum,;

long *cType;

long cParmsl[];

long *cPercent;

CDFstatus CDFgetzVarData (id, varNum, recNum, indices, value)
CDFid id;

long varNum;

long recNum;

long indices[];

void *value;

CDFstatus CDFgetzVarDataType (id, varNum, dataType)
CDFid 1id;

long varNum,;

long *dataType;

CDFstatus CDFgetzVarDimSizes (id, varNum, dimSizes)
CDFid id;

long varNum;

long dimSizes[];

CDFstatus CDFgetzVarDimVariances (id, varNum, dimVarys)
CDFid 1id;

long varNum;

long dimVarys[];

CDFstatus CDFgetzVarMaxAllocRecNum (id, varNum, maxRec)
CDFid id;

long varNum;

long *maxRec;

CDFstatus CDFgetzVarMaxWrittenRecNum (id, varNum, maxRec)
CDFid id;
long varNum;

lon, *maxRec;
b

CDFstatus CDFgetzVarName (id, varNum, varName)

313

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */
/* out */
/* out */

/* in
/* in
/* in
/* in

*/
*/
*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

/* in
/* in

*/
*/

/* out */

CDFid 1id; /*in */
long varNum; /*in */
char *varName; /* out */

CDFstatus CDFgetzVarNumDims (id, varNum, numDims)

CDFid id; /*in */
long varNum; /*in */
long *numDims; /* out */

CDFstatus CDFgetzVarNumElements (id, varNum, numElems)

CDFid id; /*in */
long varNum; /*in */
long *numElems; /* out */

CDFstatus CDFgetzVarNumRecsWritten (id, varNum, numRecs)

CDFid id; /*in */
long varNum; /*in */
long *numRecs; /* out */

CDFstatus CDFgetzVarPadValue (id, varNum, padValue)

CDFid id; /*in */
long varNum; /*in */
void *padValue; /* out */

CDFstatus CDFgetzVarRangeRecordsByVarID (id, varNum, startRec, stopRec, buffer)

CDFid 1id; /*in */
long varNum; /*in */
long startRec; /*in */
long stopRec; /*in */
void *buffer; /* out */

CDFstatus CDFgetzVarRecordData (id, varNum, recNum, buffer)

CDFid 1id; /*in */
long varNum; /*in */
long recNum; /*in */
void *buffer; /* out */

CDFstatus CDFgetzVarRecVariance (id, varNum, recVary)

CDFid id; /*in */
long varNum; /*in */
long *recVary; /* out */

CDFstatus CDFgetzVarReservePercent (id, varNum, percent)

CDFid id; /*in */
long varNum; /*in */
long *percent; /* out */

CDFstatus CDFgetzVarSeqData (id, varNum, value)

CDFid 1id; /*in */
long varNum; /*in */
void *value; /* out */

CDFstatus CDFgetzVarSeqPos (id, varNum, recNum, indices)

CDFid id; /*in */
long varNum; /*in */
long *recNum; /* out */

314

long indices[]; /* out */
CDFstatus CDFgetzVarsMaxWrittenRecNum (id, recNum)
CDFid id; /*in */

long *recNum; /* out */

CDFstatus CDFgetzVarSparseRecords (id, varNum, sRecords)

CDFid id; /*in */
long varNum; /*in */
long *sRecords; /* out */

CDFstatus CDFgetzVarsRecordDatabyNumbers (id, numVars, varNums,
varRecNum, buffer)

CDFid 1id; /*in */
long numVars; /*in */
long varNums(]; /*in */
long varRecNum,; /*in */
void *buffer; /* out */

CDFstatus CDFhyperGetzVarData (id, varNum, recNum, reCount, reclnterval,
indices, counts, intervals, buffer)

CDFid id; /*in */
long varNum; /*in */
long recNum; /*in */
long recCount; /*in */
long recnterval; /*in */
long indices([]; /*in */
long counts|]; /*in */
long intervals[]; /*in */
void *buffer; /* out */

CDFstatus CDFhyperPutzVarData (id, varNum, recNum, reCount, recInterval,
indices, counts, intervals, buffer)

CDFid id; /*in */
long varNum; /*in */
long recNum; /*in */
long recCount; /*in */
long recnterval; /*in */
long indices([]; /*in */
long counts|]; /*in */
long intervals[]; /*in */
void *buffer; /*1in */

CDFstatus CDFinquireAttr (id, attrNum, attrName, attrScope, maxgEntry, maxrEntry,

maxzEntry)
CDFid id; /* in */
long attrNum; /*in */
char *attrName; /* out */
long *attrScope; /* out */
long *maxgEntry; /* out */
long *maxrEntry; /* out */
long *maxzEntry; /* out */

CDFstatus CDFinquireAttrgEntry (id, attrNum, entryNum, dataType, numElems)
CDFid 1id; /*in */
long attrNum; /*in */

315

long entryNum; /*in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireAttrrEntry (id, attrNum, entryNum, dataType, numElems)

CDFid id; /* in */
long attrNum; /*in */
long entryNum; /*in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireAttrzEntry (id, attrNum, entryNum, dataType, numElems)

CDFid id; /* in */
long attrNum; /*in */
long entryNum; /*in */
long *dataType; /* out */
long *numElems; /* out */

CDFstatus CDFinquireCDF (id, numDims, dimSizes, encoding, majority, maxrRec,
numrVars, maxzRec, numzVars, numAttrs)

CDFid id; /* in */

long *numDims; /* out */
long dimSizes[CDF MAX DIMS]; /* out */
long *encoding; /* out */
long *majority; /* out */
long *maxrRec; /* out */
long *numrVars; /* out */
long *maxzRec; /* out */
long *numzVars; /* out */
long *numAttrs; /* out */

CDFstatus CDFinquirezVar (id, varNum, varName, dataType, numElems,
numDims, dimSizes, recVary, dimVarys)

CDFid id; /* in */
long varNum; /*in */
char *varName; /* out */
long *dataType; /* out */
long *numElems; /* out */
long *numDims; /* out */
long dimSizes|[]; /* out */
long *recVary; /* out */
long dimVarys[]; /* out */
CDFstatus CDFinsertVarAllRecordsByVarName (id, varName, startRec, numRecs, buffer)
CDFid id; /*in */
char *yvarName; /*in */
long startRec; /*in */
long numRecs; /*in */
void *buffer; /*1in */

CDFstatus CDFinsertrVarAllRecordsByVarlD (id, varNum, startRec, numRecs, buffer)

CDFid 1id; /*in */
long varNum; /*in */
long startRec; /*in */
long numRecs; /*in */
void *buffer; /*1in */

316

CDFstatus CDFinsertzVarAllRecordsByVarlD (id, varNum, startRec, numRecs, buffer)

CDFid 1id; /*in */
long varNum; /*in */
long startRec; /*in */
long numRecs; /*in */
void *buffer; /*1in */

CDFstatus CDFputAttrgEntry (id, attrNum, entryNum, dataType, numElems, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long dataType; /*in */
long numElems; /*in */
void *value; /*1in */

CDFstatus CDFopenCDF (CDFname, id)
char *CDFname; /* in */
CDFid *id; /* out */

CDFstatus CDFputAttrrEntry (id, attrNum, entryNum, dataType, numElems, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long dataType; /*in */
long numElems; /*in */
void *value; /*1in */

CDFstatus CDFputAttrzEntry (id, attrNum, entryNum, dataType, numElems, value)

CDFid 1id; /*in */
long attrNum; /*in */
long entryNum; /*in */
long dataType; /*in */
long numElems; /*in */
void *value; /*1in */

CDFstatus CDFputVarAllRecordsByVarName (id, varName, buffer)

CDFid id; /*in */
char *yvarName; /*in */
void *buffer; /*1in */

CDFstatus CDFputVarRangeRecordsByVarName (id, varName, startRec, stopRec, buffer)

CDFid 1id; /*in */
char *varName; /*in */
long startRec; /*in */
long stopRec; /*in */
void *buffer; /*1in */

CDFstatus CDFputzVarAllRecordsByVarID (id, varNum, buffer)

CDFid 1id; /*in */
long varNum; /*in */
void *buffer; /*1in */

CDFstatus CDFputzVarData (id, varNum, recNum, indices, value)
CDFid id; /*in */
long varNum; /*in */

317

long recNUm;
long indices([];
void *value;

/* in
/* in
/* in

*/
*/
*/

CDFstatus CDFputzVarRangeRecordsByVarlD (id, varNum, startRec, stopRec, buffer)

CDFid 1id;

long varNum,;
long startRec;
long stopRec;
void *buffer;

CDFstatus CDFputzVarRecordData (id, varNum, recNum, values)
CDFid 1id;

long varNum;

long recNUm,;

void *values;

CDFstatus CDFputzVarSeqData (id, varNum, value)
CDFid 1id;

long varNum;

void *value;

CDFstatus CDFputzVarsRecordDatabyNumbers (id, numVars, varNums,
varRecNum, buffer)

CDFid id;

long numVars;

long varNums([];

long varRecNum;

void *buffer;

CDFstatus CDFrenameAttr (id, attrNum, attrName)

CDFid id;
long attrNum;
char *attrName,

CDFstatus CDFrenamezVar (id, varNum, varName)

CDFid id;
long varNum;
char *yvarName;

CDFstatus CDFsetAttrgEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid 1id;

long attrNum;

long entryNum;

long dataType;

CDFstatus CDFsetAttrrEntryDataSpec (id, attrNum, entryNum, dataType)
CDFid 1id;

long attrNum;

long entryNum;

long dataType;

CDFstatus CDFsetAttrScope (id, attrNum, scope)
CDFid 1id;

long attrNum;

long scope;

318

/* in
/* in
/* in
/* in
/* in

/* in
/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in
/* in

/* in
/* in
/* in
/* in

/* in
/* in
/* in

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

CDFstatus CDFsetAttrzEntryDataSpec (id, attrNum, entryNum, dataType)

CDFid 1id;

long attrNum;
long entryNum;
long dataType;

CDFstatus CDFsetCacheSize (id, numBuffers)
CDFid 1id;
long numBuffers;

CDFstatus CDFsetChecksum (id, checksum)
CDFid 1id;
long checksum;

CDFstatus CDFsetCompression (id, compressionType, compressionParms)

CDFid 1id;
long compressionType;
long compressionParms([];

CDFstatus CDFsetCompressionCacheSize (id, numBuffers)
CDFid 1id;
long numBuffers;

CDFstatus CDFsetDecoding (id, decoding)
CDFid id;
long decoding;

CDFstatus CDFsetEncoding (id, encoding)
CDFid id;
long encoding;

void CDFsetFileBackward (mode)
long mode;

CDFstatus CDFsetFormat (id, format)
CDFid 1id;
long format;

CDFstatus CDFsetMajority (id, majority)
CDFid 1id;
long majority;

CDFstatus CDFsetNegtoPosfpOMode (id, negtoPosfp0)
CDFid id;
long negtoPosfp0;

CDFstatus CDFsetReadOnlyMode (id, readOnly)

CDFid 1id;

long readOnly;

CDFstatus CDFsetStageCacheSize (id, numBuffers)
CDFid 1id;

long numBuffers;

void CDFsetValidate (mode)

319

/* in
/* in
/* in
/* in

/* in
/* in

/* in
/* in

/* in
/* in
/* in

/* in
/* in

/* in
/* in

/* in
/* in

/* in

/* in
/* in

/* in
/* in

/* in
/* in

/* in
/* in

/* in
/* in

*/
*/
*/

*/
*/

*/
*/

*/
*/
*/

*/
*/

*/
*/

*/
*/

*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

long mode;

CDFstatus CDFsetzMode (id, zMode)
CDFid id;
long zMode;

CDFstatus CDFsetzVarAllocBlockRecords (id, varNum, firstRec, lastRec)

CDFid 1id;

long varNum;
long firstRec;
long lastRec;

CDFstatus CDFsetzVarAllocRecords (id, varNum, numRecs)
CDFid id;

long varNum;

long numRecs;

CDFstatus CDFsetzVarBlockingFactor (id, varNum, bf)
CDFid id;

long varNum;

long bf;

CDFstatus CDFsetzVarCacheSize (id, varNum, numBuffers)
CDFid id;

long varNum;

long numBuffers;

CDFstatus CDFsetzVarCompression (id, varNum, compressionType,
compressionParms)

CDFid 1id;

long varNum;

long compressionType;

long compressionParms([];

CDFstatus CDFsetzVarDataSpec (id, varNum, dataType)
CDFid 1id;

long varNum;

long dataType;

CDFstatus CDFsetzVarDimVariances (id, varNum, dimVarys)
CDFid 1id;

long varNum;

long dimVarys[];

CDFstatus CDFsetzVarlnitialRecs (id, varNum, initialRecs)
CDFid id;

long varNum;

long initialRecs;

CDFstatus CDFsetzVarPadValue (id, varNum, padValue)
CDFid id;

long varNum;

void *padValue;

CDFstatus CDFsetzVarRecVariance (id, varNum, recVary)
CDFid 1id;

320

/* in

/* in
/* in

/* in
/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in
/* in
/* in

/* in

*/

*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/

long varNum,;
long recVary;

CDFstatus CDFsetzVarReservePercent (id, varNum, reservePercent)

CDFid 1id;
long varNum;
long reservePercent;

CDFstatus CDFsetzVarsCacheSize (id, numBuffers)
CDFid id;
long numBuffers;

CDFstatus CDFsetzVarSeqPos (id, varNum, recNum, indices)
CDFid id;

long varNum;

long recNum;

long indices[];

CDFstatus CDFsetzVarSparseRecords (id, varNum, sRecords)
CDFid id;

long varNum;

long sRecords;

321

/* in
/* in

/* in
/* in
/* in

/* in
/* in

/* in

*/
*/

*/
*/
*/

*/
*/

*/

/*1in */
/*1in */

/* in

/* in

*/

*/

/*1in */
/*1in */

B.3

Internal Interface

CDFstatus CDFlib (op, ...)

long

op;

CLOSE_

CDF _
VAR
zVAR

CONFIRM _

ATTR
ATTR_EXISTENCE_
CDF_
CDF_ACCESS_
CDF_CACHESIZE_
CDF_DECODING _
CDF_NAME _

CDF_NEGtoPOSfp0_MODE _
CDF_READONLY_MODE
CDF_STATUS_
CDF_zMODE _
COMPRESS_CACHESIZE
CUREENTRY_EXISTENCE _
CURIENTRY_EXISTENCE _
CURzENTRY_EXISTENCE _
gENTRY
gENTRY_EXISTENCE _
rENTRY _
rENTRY_EXISTENCE _
VAR

rVAR_CACHESIZE _
rVAR_EXISTENCE _

rVAR PADVALUE
rVAR_RESERVEPERCENT _
rVAR_SEQPOS_

rVARs DIMCOUNTS
rVARs DIMINDICES
rVARs DIMINTERVALS
rVARs RECCOUNT _
rVARs RECINTERVAL
rVARs RECNUMBER
STAGE CACHESIZE
zENTRY _

zENTRY EXISTENCE
zVAR
zVAR_CACHESIZE
zVAR_DIMCOUNTS
zVAR_DIMINDICES
zVAR DIMINTERVALS
zVAR_EXISTENCE

long *attrNum
char *attrName
CDFid *id

long *numBuffers
long *decoding

/*1in */

/*
/*
/*

/*
/*

char CDFname[CDF PATHNAME LEN+1]

long *mode
long *mode
CDFstatus *status
long *mode
long *numBuffers

long *entryNum
long entryNum
long *entryNum
long entryNum
long *varNum
long *numBuffers
char *varName

long *percent

long *recNum

long indices[CDF_MAX DIMS]

long counts[CDF MAX DIMS)]

long indices[CDF_MAX DIMS]

long intervalsfCDF MAX DIMS]
long *recCount

long *recInterval

long *recNum

long *numBuffers

long *entryNum

long entryNum

long *varNum

long *numBuffers

long counts[CDF_ MAX DIMS)]

long indices[CDF_MAX DIMS]

long intervalsf CDF_ MAX DIMS]
char *varName

322

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

out */
in */
out */

out */
out */

out */
out */
out */
out */
out */
out */

out */
in */
out */
in */
out */
out */
in */

out */
out */
out */
out */
out */
out */
out */
out */
out */
out */
out */
in */

out */
out */
out */
out */
out */
in */

ZVAR_PADVALUE _
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _

zVAR RESERVEPERCENT

ZVAR_SEQPOS_

CREATE_

ATTR

CDF_

VAR

zVAR

DELETE_

GET_

ATTR

CDF_

gENTRY
rENTRY _

VAR
rVAR_RECORDS

zENTRY _
zVAR
zVAR_RECORDS _

ATTR_MAXgENTRY _
ATTR_MAXtENTRY _
ATTR_MAXZENTRY _
ATTR_NAME_

ATTR_NUMBER _

ATTR_NUMEENTRIES_

long
long
long
long
long

long 1

char
long
long

char
long
long
CDFi

char

*recCount
*recInterval
*recNum
*percent
*recNum

ndices[CDF_MAX DIMS]

*attrName
scope
*attrNum

*CDFname
numDims
dimSizes([]
d *id

*varName

long dataType

long
long
long
long

char

numElements
recVary
dimVarys[]
*varNum

*varName

long dataType

long
long
long
long
long
long

long
long

long
long

long
long
long

numElements
numDims
dimSizes([]
recVary
dimVarys[]
*varNum

firstRecord
lastRecord

firstRecord
lastRecord

*maxEntry
*maxEntry
*maxEntry

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*

/*
/*
/*

out */
out */
out */
out */
out */
out */

in */
in */
out */

in */
in */
in */
out */

in */
in */
in */
in */
in */
out */

in */
in */
in */
in */
in */
in */
in */
out */

in */
in */

in */
in */

out */
out */
out */

char attrName[CDF _ATTR NAME LEN256+1]

char
long
long

323

*attrName
*attrNum
*numEntries

/*
/*
/*
/*

out */
in */

out */
out */

ATTR NUMIENTRIES long *numEntries /* out */

ATTR NUMZzENTRIES long *numEntries /* out */
ATTR_SCOPE long *scope /* out */
CDF _CHECKSUM long *checksum /* out */
CDF_COMPRESSION long *cType /* out */
long cParms[CDF_MAX PARMS] /* out */
long *cPct /* out */
CDF_COPYRIGHT char CopyrightfCDF _COPYRIGHT LEN+1]
/* out */
CDF_ENCODING long *encoding /* out */
CDF FORMAT long *format /* out */
CDF _INCREMENT long *increment /* out */
CDF_INFO_ char *name /* in */
long *cType /* out */
long cParms[CDF_MAX PARMS] /* out */
OFF T *cSize /* out */
OFF T *uSize /* out */
CDF_MAIJORITY _ long *majority /* out */
CDF NUMATTRS long *numAttrs /* out */
CDF NUMgATTRS long *numAttrs /* out */
CDF NUMrVARS long *numVars /* out */
CDF_NUMVATTRS long *numAttrs /* out */
CDF NUMzVARS long *numVars /* out */
CDF RELEASE long *release /* out */
CDF_VERSION long *version /* out */
DATATYPE SIZE long dataType /* in */
long *numBytes /* out */
gENTRY DATA void *value /* out */
¢ENTRY DATATYPE long *dataType /* out */
gENTRY NUMELEMS long *numElements /* out */
LIB_ COPYRIGHT char CopyrightfCDF COPYRIGHT LEN+1]
/* out */
LIB INCREMENT long *increment /* out */
LIB RELEASE long *release /* out */
LIB subINCREMENT char *subincrement /* out */
LIB_VERSION long *version /* out */
rENTRY DATA void *value /* out */
rENTRY DATATYPE long *dataType /* out */
rENTRY NUMELEMS long *numElements /* out */
rVAR ALLOCATEDFROM _ long startRecord /* in */
long *nextRecord /* out */
rVAR ALLOCATEDTO _ long startRecord /* in */
long *lastRecord /* out */
rVAR_BLOCKINGFACTOR long *blockingFactor /* out */
rVAR_COMPRESSION long *cType /* out */
long cParms[CDF_MAX PARMS] /* out */
long *cPct /* out */
rVAR DATA void *value /* out */
rVAR DATATYPE long *dataType /* out */
rVAR DIMVARYS long dimVarys[CDF_MAX DIMS] /* out */
rVAR HYPERDATA void *buffer /* out */
rVAR_MAXallocREC long *maxRec /* out */
rVAR MAXREC long *maxRec /* out */
rVAR NAME _ char varName[CDF VAR NAME LEN256+1] /* out */
rVAR nINDEXENTRIES long *numEntries /* out */
rVAR nINDEXLEVELS long *numLevels /* out */

324

rVAR nINDEXRECORDS long *numRecords /* out */

rVAR _NUMallocRECS long *numRecords /* out */
rVAR NUMBER char *varName /*in */
long *varNum /* out */
rVAR NUMELEMS long *numElements /* out */
rVAR NUMRECS long *numRecords /* out */
rVAR PADVALUE void *value /* out */
rVAR RECVARY long *recVary /* out */
rVAR _SEQDATA void *value /* out */
rVAR SPARSEARRAYS long *sArraysType /* out */
long sArraysParms[CDF MAX PARMS] /* out */
long *sArraysPct /* out */
rVAR_SPARSERECORDS long *sRecordsType /* out */
rVARs DIMSIZES long dimSizesfCDF_MAX DIMS] /* out */
rVARs MAXREC long *maxRec /* out */
rVARs NUMDIMS long *numDims /* out */
rVARs RECDATA long numVars /*in */
long varNums(] /*in */
void *buffer /* out */
STATUS_TEXT _ char text{CDF_STATUSTEXT LEN+1] /* out*/
zENTRY DATA void *value /* out */
zENTRY DATATYPE long *dataType /* out */
zENTRY NUMELEMS long *numElements /* out */
zVAR ALLOCATEDFROM long startRecord /* in */
long *nextRecord /* out */
zVAR ALLOCATEDTO long startRecord /* in */
long *lastRecord /* out */
zVAR_BLOCKINGFACTOR long *blockingFactor /* out */
zVAR_COMPRESSION long *cType /* out */
long cParms[CDF_MAX PARMS] /* out */
long *cPct /* out */
zVAR DATA void *value /* out */
zVAR DATATYPE long *dataType /* out */
zVAR DIMSIZES long dimSizesfCDF_MAX DIMS] /* out */
zVAR DIMVARYS long dimVarys[CDF_MAX DIMS] /* out */
zVAR_HYPERDATA void *buffer /* out */
zVAR_MAXallocREC long *maxRec /* out */
zVAR_MAXREC long *maxRec /* out */
zVAR NAME char varName[CDF VAR NAME LEN256+1] /* out */
zVAR nINDEXENTRIES long *numEntries /* out */
zVAR nINDEXLEVELS long *numLevels /* out */
zVAR nINDEXRECORDS long *numRecords /* out */
zVAR NUMallocRECS long *numRecords /* out */
zVAR NUMBER char *varName /*in */
long *varNum /* out */
zVAR _NUMDIMS long *numDims /* out */
zVAR NUMELEMS long *numElements /* out */
zVAR NUMRECS long *numRecords /* out */
zVAR PADVALUE void *value /* out */
zVAR _RECVARY long *recVary /* out */
zVAR _SEQDATA void *value /* out */
zVAR _SPARSEARRAYS long *sArraysType /* out */
long sArraysParms[CDF MAX PARMS] /* out */
long *sArraysPct /* out */
zVAR_SPARSERECORDS long *sRecordsType /* out */
zVARs MAXREC long *maxRec /* out */

325

NULL_

OPEN_

PUT__

ZVARs RECDATA _

CDF_

ATTR_NAME _
ATTR_SCOPE_
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_ENCODING _
CDF_FORMAT_
CDF_MAJORITY _
gENTRY DATA _

gENTRY DATASPEC_

rENTRY DATA_

rENTRY_ DATASPEC
rVAR ALLOCATEBLOCK

rVAR ALLOCATERECS
rVAR BLOCKINGFACTOR
rVAR _COMPRESSION

rVAR _DATA_
rVAR_DATASPEC

rVAR_DIMVARYS
rVAR_HYPERDATA _
rVAR_INITIALRECS
rVAR_NAME_
rVAR_PADVALUE_
rVAR_RECVARY _
rVAR_SEQDATA _
rVAR_SPARSEARRAYS_

rVAR_SPARSERECORDS _
rVARs RECDATA _

ZENTRY DATA_

zENTRY DATASPEC

zVAR ALLOCATEBLOCK

long numVars
long varNums(]
void *buffer

char *CDFname
CDFid *id

char *attrName
long scope

long checksum
long cType

long cParmsl]
long encoding

long format

long majority
long dataType
long numElements
void *value

long dataType
long numElements
long dataType
long numElements
void *value

long dataType
long numElements
long firstRecord
long lastRecord
long numRecords
long blockingFactor
long cType

long cParmsl]
void *value

long dataType

long numElements
long dimVarys[]
void *buffer

long nRecords
char *varName
void *value

long recVary

void *value

long sArraysType
long sArraysParms[]
long sRecordsType
long numVars
long varNums(]
void *buffer

long dataType

long numElements
void *value

long dataType

long numElements
long firstRecord
long lastRecord

326

/* in */
/* in */
/* out */

/* in */
/* out */

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */

zVAR ALLOCATERECS

zVAR BLOCKINGFACTOR

zVAR_COMPRESSION

ZVAR_DATA_
ZVAR_DATASPEC

ZVAR_DIMVARYS _
ZVAR_INITIALRECS
ZVAR_HYPERDATA_
ZVAR_NAME _
ZVAR_PADVALUE _
ZVAR_RECVARY _
ZVAR_SEQDATA _
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS_
ZVARs RECDATA _

SELECT

ATTR

ATTR NAME

CDF_

CDF_CACHESIZE _
CDF_DECODING _
CDF_NEGtoPOSfp0_MODE _
CDF_READONLY_MODE
CDF_SCRATCHDIR _
CDF_STATUS_
CDF_zMODE _
COMPRESS_CACHESIZE
gENTRY

rENTRY _

rENTRY NAME

VAR

rVAR_CACHESIZE _

rVAR NAME
rVAR_RESERVEPERCENT _
rVAR_SEQPOS_

rVARs CACHESIZE
rVARs DIMCOUNTS
rVARs DIMINDICES
rVARs DIMINTERVALS
rVARs RECCOUNT _
rVARs RECINTERVAL
rVARs RECNUMBER
STAGE CACHESIZE
zENTRY _

zENTRY NAME

zVAR
zVAR_CACHESIZE
zVAR_DIMCOUNTS
zVAR_DIMINDICES
zVAR DIMINTERVALS

long numRecords

long blockingFactor

long cType
long cParmsl]
void *value
long dataType

long numElements

long dimVarys[]
long nRecords
void *buffer
char *varName
void *value

long recVary
void *value

long sArraysType

long sArraysParms[]
long sRecordsType

long numVars
long varNums|]
void *buffer

long attrNum
char *attrName
CDFid id

long numBuffers
long decoding
long mode

long mode

char *dirPath
CDFstatus status
long mode

long numBuffers
long entryNum
long entryNum
char *varName
long varNum
long numBuffers
char *varName
long percent
long recNum
long indices|]
long numBuffers
long counts|[]
long indices|]
long intervals[]
long recCount
long reclnterval
long recNum
long numBuffers
long entryNum
char *varName
long varNum
long numBuffers
long counts|[]
long indices|]
long intervals[]

327

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */

ZVAR_NAME _
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL _
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT _
ZVAR_SEQPOS_

ZVARs_CACHESIZE_
ZVARs RECNUMBER _

char *varName
long recCount
long reclnterval
long recNum
long percent
long recNum
long indices|]
long numBuffers
long recNum

328

/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */
/*1in */

B.4 EPOCH Utility Routines

double computeEPOCH (year, month, day, hour, minute, second, msec)

long year; /*in */
long month; /*in */
long day; /*1in */
long hour; /*in */
long minute; /*in */
long second; /*in */
long msec; /*in */

void EPOCHbreakdown (epoch, year, month, day, hour, minute, second, msec)

double epoch; /* in */
long *year; /* out */
long *month; /* out */
long *day; /* out */
long *hour; /* out */
long *minute; /* out */
long *second; /* out */
long *msec; /* out */

void encodeEPOCH (epoch, epString)

double epoch; /* in */
char epString[EPOCH_STRING LEN+1]; /* out */
void encodeEPOCH1 (epoch, epString)

double epoch; /* in */
char epString[EPOCH1_STRING LEN+1]; /* out */
void encodeEPOCH2 (epoch, epString)

double epoch; /* in */
char epString[EPOCH2 STRING LEN+1]; /* out */
void encodeEPOCH3 (epoch, epString)

double epoch; /* in */
char epString[EPOCH3 STRING LEN+1]; /* out */
void encodeEPOCH4 (epoch, epString)

double epoch; /* in */
char epString[EPOCH4 STRING LEN+1]; /* out */
void encodeEPOCHx (epoch, format, epString)

double epoch; /* in */
char formatfEPOCHx FORMAT MAX+1]; /* in */
char epString[EPOCHx_STRING MAX+1]; /* out */

double parseEPOCH (epString)
char epString[EPOCH_STRING_LEN+1]; /*in */

double parseEPOCHI1 (epString)
char epString[EPOCH1_STRING_LEN+1]; /*in */

double parseEPOCH2 (epString)
char epString[EPOCH2_STRING _LEN+1]; /*in */

329

double parseEPOCH3 (epString)

char epString[EPOCH3 STRING LEN+1]; /*in */
double parseEPOCH4 (epString)
char epString[EPOCH4 STRING LEN+I1]; /*in */

double computeEPOCHI16 (year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)

long year; /*in */
long month; /*1in */
long day; /*in */
long hour; /*in */
long minute; /*in */
long second; /*in */
long msec; /*in */
long microsec; /*in */
long nanosec; /*in */
long picosec; /*in */
double epoch[2]; /* out */
void EPOCH16breakdown (epoch, year, month, day, hour, minute, second, msec, microsec, nanosec, picosec)
double epoch[2]; /* in */
long *year; /* out */
long *month; /* out */
long *day; /* out */
long *hour; /* out */
long *minute; /* out */
long *second; /* out */
long *msec; /* out */
long *microsec; /* out */
long *nanosec; /* out */
long *picosec; /* out */

void encodeEPOCHI16 (epoch, epString)

double epoch[2]; /* in */
char epString[EPOCH16 STRING LEN +1]; /* out */
void encodeEPOCH16 1 (epoch, epString)

double epoch[2]; /* in */
char epString[EPOCH16 1 STRING LEN+1]; /* out */
void encodeEPOCHI16 2 (epoch, epString)

double epoch[2]; /* in */
char epString[EPOCH16 2 STRING LEN+I1]; /* out */
void encodeEPOCH16 3 (epoch, epString)

double epoch[2]; /* in */
char epString[EPOCH16 3 STRING LEN+I1]; /* out */
void encodeEPOCH16 4 (epoch, epString)

double epoch[2]; /* in */
char epString[EPOCH16 4 STRING LEN+I1]; /* out */
void encodeEPOCH16 x (epoch, format, epString)

double epoch[2]; /* in */
char formatfEPOCHx FORMAT MAX+1]; /* in */

330

char epString[EPOCHx_STRING MAX+1]; /* out */

double parseEPOCH16 (epString, epoch)

char epString[EPOCH16 STRING LEN+1]; /*1in */
double epoch[2]; /* out */
double parseEPOCH16 1 (epString)

char epString[EPOCH16 1 STRING LEN+I1]; /*in */
double epoch[2]; /* out */
double parseEPOCH16 2 (epString)

char epString[EPOCH16 2 STRING LEN+I1]; /*in */
double epoch[2]; /* out */
double parseEPOCH16 3 (epString)

char epString[EPOCH16 3 STRING LEN+I1]; /*in */
double epoch[2]; /* out */
double parseEPOCH16 4 (epString)

char epString[EPOCH16 4 STRING LEN+I1]; /*in */
double epoch[2]; /* out */

B.5 TT2000 Utility Routines

CDF_TT2000 from UTC_parts OR computeTT2000
long long computeTT2000 (year, month, day, ...) (*Variable argument form)

double year; /*in */
double month; /*in */
double day; /*in */
TT2000END; /*in */

long long computeTT2000 (year, month, day, hour, minute, second, msec, usec, nsec) (¥Full form)

double year; /*in */
double month; /* in */
double day; /*in */
double hour; /*1in */
double minute; /* in */
double second; /*in */
double msec; /*in */
double usec; /*in */
double nsec; /*in */

CDF_TT2000 to UTC_parts OR TT2000breakdown
void TT2000breakdown (tt2000, year, month, day, ...)"

long long t2000; /* in */
double *year; /* out */
double *month; /* out */
double *day; /* out */
TT2000NULL; /* in */

" Variable argument list form after the day field. But, need to have TT2000NULL to indicate the end of the list.

331

void TT2000breakdown (tt2000, year, month, day, hour, minute, second, msec, usec, nsec)48

long long t2000;
double *year;
double *month;
double *day;
double *hour;
double *minute;
double *second;
double *msec;
double *usec;
double *nsec;

CDF _TT2000 to UTC string OR encodeTT2000

void encodeTT2000 (tt2000, epString) (*Variable argument form)
long long t2000;

char *epString;

void encodeTT2000 (tt2000, epString, form) (*Full form)
long long t2000;

char *epString;

int form;

CDF_TT2000 from UTC_string OR parseTT2000
long long parseTT2000 (epString)
char *epString;

long CDF_TT2000 from UTC_EPOCH (epoch)
double epoch;

long CDF_TT2000 from UTC_EPOCH16 (epochl6)
double *epochl6;

double CDF_TT2000_to_UTC_EPOCH (tt2000)
long long t2000;

void CDF_TT2000 to UTC EPOCHI6 (tt2000, epoch16)
long long t2000;
double *epochl6;

*8 Full list form

332

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*

in */

out */
out */
out */
out */
out */
out */
out */
out */
out */

in */
out */

in */
out */
in */

/*1in */

/*1in */

/*1in */

/*1in */

/*1in */

/*

out */

Index

ALPHAOSF1_DECODING, 14
ALPHAOSF1_ENCODING, 13
ALPHAVMSd DECODING, 14
ALPHAVMSd ENCODING, 13
ALPHAVMSg DECODING, 14
ALPHAVMSg ENCODING, 13
ALPHAVMSi_DECODING, 14
ALPHAVMSi_ENCODING, 13
attribute
inquiring, 29
number
inquiring, 31
renaming, 33
Attributes
entries
global entry
deleting, 166
reading, 168
attributes
checking existence, 161
creating, 25, 164, 219
current, 206
confirming, 211
selecting
by name, 257
by number, 257
deleting, 165, 222
entries
rVariable entry
deleting, 167
entries
current, 206
confirming, 213, 214, 217
selecting
by name, 259, 262
by number, 259, 262
data specification
changing, 248, 252
data type

inquiring, 229, 231, 238

number of elements

inquiring, 230, 231, 238

deleting, 222, 223

existence, determining, 214, 217

global entries
number of
inquiring, 184
global entry
checking existence, 161
data specification
resetting, 198
data type
inquiring, 170, 177
inquiring, 190
last entry number
inquiring, 173
number of elements

333

inquiring, 171, 178
writing, 194
inquiring, 26
maximum
inquiring, 224
number of
inquiring, 225
reading, 28, 229, 231, 238
rEntries
number of
inquiring, 185
rVariable entry
checking existence, 162
data specification
resetting, 199
inquiring, 192
last entry number
inquiring, 174
reading, 172
writing, 195
writing, 32, 246, 247, 252
zEntries
number of
inquiring, 186
zVariable entry
checking existence, 163
data specification
resetting, 201
data type
inquiring, 182
deleting, 168
inquiring, 193
last entry number
inquiring, 175
number of elements
inquiring, 183
reading, 180
writing, 197
existence, determining, 211
inquiring, 189
name
inquiring, 176
naming, 19, 26, 164
inquiring, 30, 225
renaming, 245
number
inquiring, 177
number of
inquiring, 42, 185, 228
numbering
inquiring, 225
renaming, 198
scope
inquiring, 179
resetting, 200
scopes
changing, 245

constants, 17
GLOBAL_SCOPE, 17
VARIABLE SCOPE, 17

inquiring, 30, 189, 226

CDF
backward file, 19
backward file flag

getting, 20

setting, 19

cache size

compression

resetting, 86
Checksum, 20
Checksum mode

setting, 21, 22

closing, 34
Copyright
inquiring, 72
creating, 35
deleting, 36, 67
Long Integer, 23
opening, 44, 83
set
majority, 90
Validation, 22
CDF getNegtoPosfpOMode, 77
CDF library
copy right notice
max length, 19
reading, 230
Extended Standard Interface, 61
Internal interface, 203
modes

-0.0 to 0.0
confirming, 212
constants

NEGtoPOSfpOoft, 18
NEGtoPOSfpOon, 18

selecting, 258

decoding
confirming, 212
constants

ALPHAOSF1_DECODING, 14
ALPHAVMSd DECODING, 14
ALPHAVMSg DECODING, 14
ALPHAVMSi DECODING, 14
DECSTATION_DECODING, 14
HOST_DECODING, 14
HP_DECODING, 15
IBMRS_DECODING, 14
MAC_DECODING, 15
NETWORK_DECODING, 14
NeXT_DECODING, 15
PC_DECODING, 15
SGi_DECODING, 14
SUN_DECODING, 14

VAX_ DECODING, 14

selecting, 258

read-only
confirming, 212
constants

READONLYoff, 17

334

READONLYon, 17
selecting, 17, 258
zMode
confirming, 213
constants
zMODEoff, 18
zMODEonl, 18
zMODEon2, 18
selecting, 18, 258
Original Standard Interface, 25
shared CDF library, 7
version
inquiring, 230
CDF setNegtoPosfpOMode, 91
CDF_ATTR _NAME LEN, 19
CDF_BYTE, 12
CDF_CHAR, 12
CDF_COPYRIGHT LEN, 19
CDF_DOUBLE, 12
CDF_EPOCH, 12
CDF_EPOCHI16, 12
CDF _error or CDFerror, 293
CDF_FLOAT, 12
CDF_INC, 2
CDF_INTI, 12
CDF_INT2, 12
CDF _INT4, 12
CDF_INTS, 12
CDF _LIB, 5
CDF_MAX DIMS, 18
CDF_MAX PARMS, 18
CDF OK, 11
CDF_PATHNAME LEN, 18
CDF_REALA4, 12
CDF_REALS, 12
CDF_STATUSTEXT LEN, 19
CDF_TIME TT2000, 13
CDF_TT2000_from UTC_EPOCH, 290
CDF_TT2000 from UTC_ EPOCH16, 291
CDF_TT2000_from UTC_parts, 287
CDF_TT2000_from UTC_string, 290
CDF_TT2000 to UTC_EPOCH, 291
CDF_TT2000 to UTC_EPOCHI16, 291
CDF_TT2000 to UTC parts, 288
CDF_TT2000 to UTC_string, 289
CDF_UCHAR, 12
CDF _UINTI, 12
CDF _UINT2, 12
CDF _UINT4, 12
CDF_VAR NAME LEN, 19
CDF_WARN, 12
cdfh, 1, 11
CDFSING, 1
CDFSLIB, 5
CDFattrCreate, 25
CDFattrEntryInquire, 26
CDFattrGet, 28
CDFattrInquire, 29
CDFattrNum, 31
CDFattrPut, 32
CDFattrRename, 33
CDFclose, 34

CDFcloseCDF, 65
CDFclosezVar, 94
CDFconfirmAttrExistence, 161
CDFconfirmgEntryExistence, 161
CDFconfirmrEntryExistence, 162
CDFconfirmzEntryExistence, 163
CDFconfirmzVarExistence, 95

CDFconfirmzVarPadValueExistence, 96

CDFcreate, 35

CDFcreateAttr, 164
CDFcreateCDF, 65
CDFcreatezVar, 97

CDFdelete, 36

CDFdeleteAttr, 165
CDFdeleteAttrgEntry, 166
CDFdeleteAttrrEntry, 167
CDFdeleteAttrzEntry, 168
CDFdeleteCDF, 67
CDFdeletezVar, 99
CDFdeletezVarRecords, 100
CDFdoc, 37

CDFerror, 38
CDFgetAttrgEntry, 168
CDFgetAttrgEntryDataType, 170
CDFgetAttrMaxrEntry, 174
CDFgetAttrMaxzEntry, 175
CDFgetAttrName, 176
CDFgetAttrNum, 177
CDFgetAttrrEntry, 172
CDFgetAttrrEntryDataType, 177
CDFgetAttrrEntryNumElements, 178
CDFgetAttrScope, 179
CDFgetAttrzEntry, 180
CDFgetAttrzEntryDataType, 182
CDFgetAttrzEntryNumElements, 183
CDFgetCacheSize, 67
CDFgetCkecksum, 68
CDFgetCompression, 69
CDFgetCompressionCacheSize, 70
CDFgetCompressionlnfo, 71
CDFgetCopyright, 72
CDFgetDataTypeSize, 61
CDFgetDecoding, 72
CDFgetEncoding, 73
CDFgetFileBackward, 74
CDFgetFormat, 74
CDFgetLibraryCopyright, 62
CDFgetLibraryVersion, 63
CDFgetMajority, 75
CDFgetMaxWrittenRecNums, 101
CDFgetName, 76
CDFgetNumAttrgEntries, 184
CDFgetNumAttributes, 185
CDFgetNumAttrrEntries, 185
CDFgetNumAttrzEntries, 186
CDFgetNumgAttributes, 187
CDFgetNumrVars, 101
CDFgetNumvAttributes, 188
CDFgetNumzVars, 102
CDFgetReadOnlyMode, 77
CDFgetrVarsRecordData, 39
CDFgetStageCacheSize, 78

335

CDFgetStatusText, 64

CDFgetValidae, 79
CDFgetVarAllRecordsByVarName, 103
CDFgetVarNum, 104
CDFgetVarRangeRecordsByVarName, 106
CDFgetVersion, 80

CDFgetzMode, 80
CDFgetzVarAllocRecords, 107
CDFgetzVarAllRecordsByVarID, 108
CDFgetzVarBlockingFactor, 109
CDFgetzVarCacheSize, 110
CDFgetzVarCompression, 111
CDFgetzVarData, 112
CDFgetzVarDataType, 113
CDFgetzVarDimSizes, 114
CDFgetzVarDimVariances, 115
CDFgetzVarMaxAllocRecNum, 116
CDFgetzVarMaxWrittenRecNum, 116
CDFgetzVarName, 117
CDFgetzVarNumDims, 118
CDFgetzVarNumElements, 119
CDFgetzVarNumRecsWritten, 120
CDFgetzVarPadValue, 120
CDFgetzVarRangeRecordsByVarlD, 121
CDFgetzVarRecordData, 123
CDFgetzVarRecVariance, 124
CDFgetzVarReservePercent, 125
CDFgetzVarSeqData, 125
CDFgetzVarSeqPos, 126
CDFgetzVarsMaxWrittenRecNum, 127
CDFgetzVarSparseRecords, 128
CDFgetzVarsRecordData, 41
CDFgetzVarsRecordDatabyNumbers, 129
CDFhyperGetzVarData, 131
CDFhyperPutzVarData, 132

CDFid, 11

CDFinquire, 42

CDFinquireAttr, 189
CDFinquireAttrgEntry, 190
CDFinquireAttrrEntry, 192
CDFinquireAttrzEntry, 193
CDFinquireCDF, 81

CDFinquirezVar, 134
CDFinsertrVarRecordsByVarID, 135
CDFinsertVarRecordsByVarName, 137
CDFinsertzVarRecordsByVarID, 138
CDFlib, 203

CDFopen, 44

CDFopenCDF, 83

CDFputAttrgEntry, 194
CDFputAttrrEntry, 195
CDFputAttrzEntry, 197
CDFputrVarsRecordData, 45
CDFputVarAllRecordsByVarName, 139
CDFputVarRangeRecordsByVarName, 140
CDFputzVarAllRecordsByVarlD, 141
CDFputzVarData, 142
CDFputzVarRangeRecordsByVarlD, 143
CDFputzVarRecordData, 144
CDFputzVarSeqData, 145
CDFputzVarsRecordData, 47
CDFputzVarsRecordDatabyNumbers, 146

CDFrenameAttr, 198
CDFrenamezVar, 148
CDFs
compression
inquiring, 69, 71
CDFs
-0.0 to 0.0 mode
inquiring, 77
resetting, 91
accessing, 211
browsing, 17
cache buffers
confirming, 211, 213, 214, 216, 217
selecting, 257, 259, 260, 262, 264
cache size
compression
inquiring, 70
inquiring, 67
resetting, 84
stage
inquiring, 78
resetting, 92
checksum
inquiring, 68, 226
resetting, 84
specifying, 245
closing, 65,210
compression
inquiring, 226, 232, 239
resetting, 85
specifying, 246
compression types/parameters, 16
copy right notice
max length, 19
reading, 37, 226
corrupted, 35, 66
creating, 65, 220
current, 205
confirming, 211
selecting, 257
decoding
inquiring, 72, 73
resetting, 87
deleting, 222
encoding
changing, 246
constants, 13
ALPHAOSF1_ENCODING, 13
ALPHAVMSd ENCODING, 13
ALPHAVMSg ENCODING, 13
ALPHAVMSi_ENCODING, 13
DECSTATION_ENCODING, 13
HOST_ENCODING, 13
HP_ENCODING, 14
IBMRS_ENCODING, 13
MAC_ENCODING, 14
NETWORK_ENCODING, 13
NeXT_ENCODING, 14
PC_ENCODING, 14
SGi_ENCODING, 13
SUN_ENCODING, 13
VAX_ENCODING, 13

336

default, 13
inquiring, 42, 226
resetting, 88
file backard
inquiring, 74
File Backward
resetting, 88
format
changing, 246
constants
MULTI _FILE, 12
SINGLE FILE, 12
default, 12
inquiring, 74
inquiring, 227
resetting, 89
global attributes
number of
inquiring, 187
inquiring, 81
majority
inquiring, 75
name
inquiring, 76
naming, 18, 35, 44, 66, 83
nulling, 245
opening, 245
overwriting, 35, 66
read-only mode
inquiring, 77
resetting, 91
record number

maximum written for zVariables and rVariables, 101

rVariables
number of
inquiring, 101
scratch directory
specifying, 258
validation
inquiring, 79
resetting, 93
variable attributes
number of
inquiring, 188
version
inquiring, 37, 80, 227, 229
zMode
inquiring, 80
resetting, 93
zVariables
number of
inquiring, 102
CDFsetAttrgEntryDataSpec, 198
CDFsetAttrrEntryDataSpec, 199
CDFsetAttrScope, 200
CDFsetAttrzEntryDataSpec, 201
CDFsetCacheSize, 84
CDFsetChecksum, 84
CDFsetCompression, 85
CDFsetCompressionCacheSize, 86
CDFsetDecoding, 87
CDFsetEncoding, 88

CDFsetFileBackward, 88
CDFsetFormat, 89
CDFsetMajority, 90
CDFsetReadOnlyMode, 91
CDFsetStageCacheSize, 92
CDFsetValidate, 93
CDFsetzMode, 93
CDFsetzVarAllocBlockRecords, 149
CDFsetzVarAllocRecords, 150
CDFsetzVarBlockingFactor, 150
CDFsetzVarCacheSize, 151
CDFsetzVarCompression, 152
CDFsetzVarDataSpec, 153
CDFsetzVarDimVariances, 154
CDFsetzVarlnitialRecs, 155
CDFsetzVarPadValue, 156
CDFsetzVarRecVariance, 156
CDFsetzVarReservePercent, 157
CDFsetzVarsCacheSize, 158
CDFsetzVarSeqPos, 159
CDFsetzVarSparseRecords, 160
CDFstatus, 11
CDFvarClose, 48
CDFvarCreate, 49
CDFvarGet, 51
CDFvarHyperGet, 52
CDFvarHyperPut, 53
CDFvarlnquire, 54
CDFvarNum, 56
CDFvarPut, 57
CDFvarRename, 58
checksum
CDF
specifying, 245
Ckecksum, 68, 84
closing
zVar in a multi-file CDF, 94
COLUMN_MAIJOR, 15
Compiling, 1
compression
CDF
inquiring, 226, 227
specifying, 246
types/parameters, 16
variables
inquiring, 232, 239
reserve percentage
confirming, 215, 219
selecting, 260, 264
specifying, 249, 253
computeEPOCH, 275
computeEPOCH16, 280
computeTT2000, 287
Data type
size
inquiring, 61
data types
constants, 12
CDF BYTE, 12
CDF_CHAR, 12
CDF _DOUBLE, 12
CDF_EPOCH, 12

337

CDF_EPOCHI16, 12
CDF_FLOAT, 12
CDF _INTI, 12
CDF _INT2, 12
CDF _INTH4, 12
CDF _INTS, 12
CDF _REALA4, 12
CDF _REALS, 12
CDF_TIME TT2000, 13
CDF_UCHAR, 12
CDF _UINTI, 12
CDF _UINT2, 12
CDF _UINTH4, 12
inquiring size, 229
DECSTATION DECODING, 14
DECSTATION_ ENCODING, 13
definitions file, 1
DEFINITIONS.COM, 1, 5
dimensions
limit, 18
encodeEPOCH, 276
encodeEPOCHI1, 277
encodeEPOCH16, 281
encodeEPOCHI16 1, 281
encodeEPOCHI16_2, 281
encodeEPOCH16_3, 282
encodeEPOCH16_4, 282
encodeEPOCH16_x, 282
encodeEPOCH2, 277
encodeEPOCH3, 277
encodeEPOCH4, 277
encodeEPOCHXx, 278
encodeTT2000, 289
EPOCH
computing, 275, 280
decomposing, 276, 280
encoding, 276, 277, 278, 281, 282
ISO 8601, 277, 280, 282, 284
parsing, 279, 280, 283, 284
utility routines, 275
computeEPOCH, 275
computeEPOCH16, 280
encodeEPOCH, 276
encodeEPOCHI, 277
encodeEPOCHI16, 281
encodeEPOCH16_1, 281
encodeEPOCH16_2, 281
encodeEPOCH16_3, 282
encodeEPOCH16_4, 282
encodeEPOCH16_x, 282
encodeEPOCH2, 277
encodeEPOCH3, 277
encodeEPOCH4, 277
encodeEPOCHXx, 278
EPOCH16breakdown, 280
EPOCHbreakdown, 276
parseEPOCH, 279
parseEPOCH1, 279
parseEPOCH16, 283
parseEPOCH16 1, 284
parseEPOCH16 2, 284
parseEPOCH16 3, 284

parseEPOCH16_4, 284

parseEPOCH2, 279
parseEPOCH3, 279
parseEPOCH4, 280

EPOCH16breakdown, 280

EPOCHbreakdown, 276
examples
CDF
-0.0 to 0.0 mode
set, 91
attribute
name
get, 176
scope
get, 180
checksum
set, 85
compression
get, 69

compression cache size

set, 86
Copyright
get, 72
decoding
get, 73
encoding
set, 88
file backward
set, 89
global attribute
entry
data type
get, 170
get, 169
entry

number of elements

get, 171
number of entries
get, 184
inquiring, 82
number of attributes
get, 185
read-only mode
set, 92
rVariable attribute
entry
get, 172
entry
data type
get, 178
stage cache size
set, 92
validate
set, 93
validation
get, 79
version
get, 80
zMode
get, 81
set, 94
CDF

338

-0.0 to 0.0 mode
get, 77
attribute
delete, 165
attribute
create, 165
data scope
set, 201
existence
confirm, 161
information
get, 189
number
get, 177
rename, 198
cache buffer size
get, 78
cache size
get, 68
set, 84
checksum
get, 68
close, 65
compression
set, 86
compression cache size
get, 70
compression information
get, 71
create, 66
decoding
set, 87
delete, 67
file backward
get, 74
format
get, 75
set, 89
gentry
existence
confirm, 162
global attribute
entry
delete, 166
global attribute
entry
information
get, 191
entry
specification
set, 199
write, 195
last Entry number
get, 174
majority
get, 76
set, 90
max record numbers

zVariables and rVariables

get, 101
name
get, 76

number of global attributes

get, 187
number of rVariables
get, 102

number of variable attributes

get, 188
number of zVariables
get, 102
open, 83
read-only mode
get, 78
rEntry
existence
confirm, 163
rVariable attribute
entry
delete, 167
rVariable attribute
entry
information
get, 192
entry
number of elements
get, 179
specification
set, 200
write, 196
last Entry number
get, 174
number of entries
get, 186
Variable
all records
get, 103
put, 139
range records
get, 106
put, 140
Variable number
get, 105
zEntry
existence
confirm, 164
zVar
close, 95
zVariable
data records
delete, 100
existence
confirm, 96
pad value existence
confirm, 96
zVariable
all records
get, 108
put, 141, 143
blocking factor
get, 110
set, 151
cache size
get, 111
set, 152, 158

339

compression
get, 112
set, 153
compression reserve percentage
get, 125
set, 158
create, 98
data records
block
allocate, 149
sequential
allocate, 150
data type
get, 114
set, 153
data value
write, 142
data value
sequential write, 145
data value
get, 126
data values
write, 133
delete, 99
dimension sizes
get, 115
dimension variances
get, 115
set, 154
dimensionality
get, 118
inquire, 135
maximum number of records allocated
get, 116
maximum record number
get, 117
multiple values or records
get, 132
name
get, 118
number of elements
get, 119
number of initial records
set, 155
number of records allocated
get, 107
number of records written
get, 120
pad value
get, 121
set, 156
range records
get, 122
read position
get, 127
record data
get, 123
write, 144
record variance
get, 124
set, 157
rename, 148

sequential location
set, 159
sparse record flag
set, 160
sparse record type
get, 128
variable data
get, 113
zVariable attribute
entry
delete, 168
zVariable attribute
entry
get, 181
entry
data type
get, 182
information
get, 193
number of elements
get, 183
specification
set, 202
write, 197
last entry number
get, 175
number of entries
get, 187
zVariables
maximum record number
get, 128
record data
write, 147
record data
get, 129
closing
CDF, 34
rVariable, 49
creating
attribute, 26
CDF, 36, 203
rVariable, 50, 265
zVariable, 265
deleting
CDF, 37
get
CDF
Copyright, 62
library version, 63
data type size, 62
rVariable
data, 51
inquiring
attribute, 30
entry, 27
attribute number, 31
CDF, 38, 43
format, 271
error code explanation text, 38, 64
rVariable, 55
variable number, 56
Internal Interface, 203, 265

340

interpreting
status codes, 273
opening
CDF, 44
read
multiple zVariables’ data, 41
reading
attribute entry, 29
rVariable values
hyper, 52, 266
rVariables full record, 40
zVariable values
sequential, 267
renaming
attribute, 34
attributes, 267
rVariable, 58
rVariables
inserting records, 136, 138
status handler, 273
Variables
inserting records, 137
writing
attribute
gEntry, 32
rEntry, 32, 268
rVariable
multiple records/values, 54
rVariable, 57
rVariables, 45
rVariables full record, 45
zVariable full record, 47
zVariable values
multiple variable, 269
Extended Standard Interface, 61
function prototypes, 25, 61
getAttrgEntryNumElements, 171
getAttrMaxgEntry, 173
GLOBAL_SCOPE, 17
HOST _DECODING, 14
HOST_ENCODING, 13
HP_DECODING, 15
HP_ENCODING, 14
IBMRS _DECODING, 14
IBMRS_ENCODING, 13
include files, 1
inquiring
CDF information, 37
Interfaces
Extended Standard, 61
Internal, 203
Original Standard, 25
Internal Interface, 203
common mistakes, 270
currnt objects/states, 205
attribute, 206
attribute entries, 206
CDF, 205

records/dimensions, 206, 207, 208

sequential value, 207, 208
status code, 208
variables, 206

examples, 203, 265 CDFstatus, 11

Indentation/Style, 209 reading
Operations, 210 multiple rVariables’ data, 39
status codes, returned, 209 multiple zVariables’ data, 41
syntax, 209 READONLYooff, 17
argument list, 210 READONLYon, 17
limitations, 210 ROW_MAIJOR, 15
libcdf.a, 5 rVariables
libcdf.lib, 6 close, 48
LIBCDF.OLB, 5 creating, 49
Library full record
error text reading, 39
inquiring, 64 writing, 45
Library hyper values
Copyright accessing, 52
inquiring, 62 writing, 53
version inseting records, 135
inquiring, 63 renaming, 58
limits single value
attribute name, 19 accessing, 51
Copyright text, 19 writing, 57
dimensions, 18 scratch directory
explanation/status text, 19 specifying, 258

file name, 18
parameters, 18
variable name, 19

SGi_DECODING, 14
SGi_ENCODING, 13
SINGLE FILE, 12

Limits of names, 18 sparse arrays
linking, 5 inquiring, 236, 243
shareable CDF library, 7 specifying, 251, 256
MAC_DECODING, 15 types, 17
MAC_ENCODING, 14 sparse records
MULTI_FILE, 12 inquiring, 236, 244
NEGtoPOSfpOoff, 18 specifying, 251, 256
NEGtoPOS{pOon, 18 types, 17
NETWORK DECODING, 14 status codes
NETWORK_ENCODING, 13 constants, 11,273
NeXT_DECODING, 15 CDF_OK, 11
NeXT_ENCODING, 14 CDF_WARN, 12
NO_COMPRESSION, 16 current, 208
NO_SPARSEARRAYS, 17 confirming, 212
NO_SPARSERECORDS, 17 selecting, 258
NOVARY, 15 error, 293
Original Standard Interface, 25 explanation text
PAD_SPARSERECORDS, 17 inquiring, 38, 238
parseEPOCH, 279 max length, 19
parseEPOCH]1, 279 informational, 293
parseEPOCH16, 283 interpreting, 273
parseEPOCH16_1, 284 status handler, example, 269

parseEPOCH16_2, 284 warning, 293
parseEPOCH16_3, 284 SUN_DECODING, 14
parseEPOCH16 4, 284 SUN_ENCODING, 13

parseEPOCH2, 279 TT2000
parseEPOCH3, 279 computing, 287
parseEPOCH4, 280 conversion, 290, 291
parseTT2000, 290 decomposing, 288
PC_DECODING, 15 encoding, 289
PC_ENCODING, 14 parsing, 290

PREV_SPARSERECORDS, 17
programming interface

utility routines, 287
CDF_TT2000_from UTC_EPOCH, 290

customizing, 270 CDF_TT2000_from UTC_EPOCH16, 291
typedef’s, 11 CDF_TT2000_from UTC_parts, 287
CDFid, 11 CDF_TT2000_from UTC_string, 290

341

CDF_TT2000_to_UTC_EPOCH, 291

CDF_TT2000_to_UTC_EPOCH16, 291

CDF_TT2000 to UTC parts, 288
CDF _TT2000 to UTC_string, 289
TT2000breakdown, 288
VARIABLE SCOPE, 17
variables
closing, 211
compression
confirming, 215, 219
inquiring, 226, 232, 239
selecting, 260, 264
specifying, 249, 253
types/parameters, 16
creating, 220, 221
current, 206
confirming, 214, 217
selecting
by name, 260, 263
by number, 259, 262
data specification
changing, 249, 254
data type
inquiring, 54, 233, 240
number of elements
inquiring, 54, 235, 242
deleting, 223
dimension counts
current, 207, 208
confirming, 215, 217
selecting, 261, 263
dimension indices, starting
current, 207, 208
confirming, 216, 218
selecting, 261, 263
dimension intervals
current, 207, 208
confirming, 216, 218
selecting, 261, 263
dimensionality
inquiring, 42, 237, 242
existence, determining, 215, 218
inseting records, 137
majority
changing, 246
considering, 15
constants, 15
COLUMN_MAIJOR, 15
ROW_MAIJOR, 15
default, 220
inquiring, 228
naming, 50, 97
inquiring, 54, 234, 241
max length, 19
renaming, 250, 255
number
inquiring, 56, 104
number of
inquiring, 42
number of, inquiring, 228
numbering
inquiring, 235, 242

342

pad value
confirming, 215, 218
inquiring, 235, 243
specifying, 250, 255
read range records, 106
reading, 232, 233, 239, 240
record count
current, 207
confirming, 216, 218
selecting, 261, 263
record interval
current, 207, 208
confirming, 216, 218
selecting, 261, 263
record number, starting
current, 206, 207
confirming, 216, 219
selecting, 261, 264
records
allocated
inquiring, 231, 232, 234, 238, 239, 242
specifying, 248, 253
blocking factor
inquiring, 232, 239
specifying, 248, 253
deleting, 223, 224
indexing
inquiring, 234, 241
initial
writing, 250, 254
maximum
inquiring, 42, 233, 237, 241, 244
number of
inquiring, 235, 243
sparse, 17
inquiring, 236, 244
specifying, 251, 256
sparse arrays
inquiring, 236, 243, 251, 256
types, 17
variances
constants, 15
NOVARY, 15
VARY, 15
dimensional
inquiring, 233, 240
specifying, 249, 254
record
changing, 251, 255
inquiring, 235, 243
write range records, 140
writing, 250, 255

VARY, 15
VAX DECODING, 14
VAX ENCODING, 13
Vriables

read all records, 103

zMODEoff, 18
zMODEonl, 18
zMODEon2, 18
zVariables

data records

deleting, 100 read all records, 108

zVariables read range records, 121
blocking factor reading data, 112
inquiring, 109 reading multiple values or records, 131
resetting, 150 reading one record, 123
cache size reading record
inquiring, 110 multiple zVariables, 129
resetting, 151, 158 record numbers
check existence, 95 allocated records
compression inquiring, 107
inquiring, 111 maximum
reserve percentage inquiring, 116
inquiring, 125 written records
resetting, 157 maximum
resetting, 152 inquiring, 116
creating, 97 rVariables and zVariables, 127
data specification number of
resetting, 153 inquiring, 120
data type record variance
inquiring, 113 inquiring, 124
deleting, 99 resetting, 156
dimension sizes records
inquiring, 114 allocation, 149, 150
dimension variances writing initially, 155
inquiring, 115 renaming, 148
resetting, 154 sequential data
dimensionality reading one value, 125
inquiring, 118 sequential position
full record inquiring, 126
reading, 41 resetting, 159
writing, 47 sparse records type
inquiring, 134 inquiring, 128
inseting records, 138 resetting, 160
name write all records, 139, 141
inquiring, 117 write range records, 143
number of elements writing
inquiring, 119 multiple values or records, 132
pad value writing data, 142
checking existence, 96 writing record
pad value multiple variables, 146
inquiring, 120 writing record data, 144
resetting, 156 writing sequential data, 145

343

