CDF

User's Guide

Version 3.1, January 18, 2006

Space Physics Data Facility
NASA / Goddard Space Flight Center

Copyright 00 2006 NASA/GSFC
Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdf support@listserv.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and permission
notice are preserved on all copies.

mailto:cdfsupport@listserv.gsfc.nasa.gov

Contents

= = (o NP USRRPRPPR 9
L P I ittt ettt e e e s e e e e e st e e et eereesraeas 11
1.1 TOOAUCHION. ettt e 11
1.2 WY USE CDF 2. ittt ettt ettt 11
1.3 Conceptual OrganizZation.c..eeeeeeeeeieeeeeieeieeeeeeeee ettt ettt et e et e e et e e eeee e 12
1.4 Features of the CDF LibTary....c..oeieiiiiiiiiiiiiiiiiii it 13
1.4.1 File FOrmat OPtiOnS.ceuueeuiitiiitiiiieiti ettt ettt ettt ettt ettt e et et e eeeeeee e 13
1.4.2 Data ENCOAiNG OPtIONS. ..uueeuiiitiiiiiitiiiie ittt ettt ettt et esee e e e 18
1.4.3 COMIPIESSION. 1 uttiiutiettt ittt ettt ettt ettt e ettt e ettt e et et et e et e e e et e et et eteeeaee e 18
1.4 4 SIS CIESS. Lottt ettt ettt e et et et et e e e e 18
1.4.5 Variable Data AcCeSS OPtIONS. c..uiiiuiiiiiiiiiitie ittt ettt ettt ee e 18
1.5 Organizing Your Data in @ CDFcoiiiiiiiiiiiiiiiiiiii ittt 19
1.5.0 VariableS. .o.oveiiiuiiiiiiiiiiiii i 19
1.6 AIIDULCS. .o ouieiiiiiiiieee ettt 22
1.7 CDF TOOIKIt. .tetiiitiiii ittt ettt ettt ettt ettt et ettt et ettt ettt ettt e e e e e 23
1.8 Library Interface ROULINES. . ccuuieuiiiiiiiiiiiiit ittt ettt ee s 24
1.8.1 Standard INterTaACE. . .oouiiiuiiiiiiiiiiiiiiiiii et 24
1.8.2 Internal INterface. . .couuiiuiiiuiiiiiiiiiiii ittt 24
1.9 CDF JaVa INtET ACE. .eeuueiiitiiiiiie ettt ettt 25
1.10 HOW t0 €1€ate @ CIDF . .iuuiiiiiiiiiiiiiiiie ittt ettt 25
1.10.1 Sample C, Fortran, or Java PrO@IamS.eieueeiiiiiiiiiiiiiiiiiiiie i, 25
1.10.2 Creating a CDF with SkeletonTable......o.uuiieeieiiiiiiiiiiiiiiiiiiiieiiiiieee e 25

2 CONCEILS. ettt ettt ettt ettt ettt ettt et e e e ittt e et et e e e e e st e e e saaeeeaaans 28
2.1 CDF LDTAIY ittt ettt ettt ettt ettt ettt ettt et et et 28
2.1 1 INEOITACES. teeutiieiiiiiieie ettt 28
2.1.2 CDF MOAES. . ittt ettt eereeans 29
213 TUIMES cuoiitiiiiiie ittt ettt et et eae e 31
2.1.4 SCratCh FAleS. . ccuiiiuiiiiiiiiiii ittt et 31
2.1.5 Caching SCHEMIC. ..ecuuiiiuiiiiiiiii ittt 31
2.2 D S ittt ettt et ettt ettt et e e 33
2.2 1 A CCESSIMG, teeuiiii ittt ettt e et et et et et ae e 33
2.2.2 Cr@AMMEG . ueiiiutit ettt ettt eee e 33
2.2.3 OPCIING . ettt et et et et et et et 33
2.2 4 CLOSIIG. oottt et 33
22,5 DICLE NG, ettt ettt ee ettt et 34
2.2.6 NAMING, .o cuveiiiiiiieeie ettt e et e ettt et et et e ettt et ettt e et e et e e ettt e et e eeeeeetieeenns 34
2.2, 7 FOTIMAL. ettt ittt ettt e e e et et e e e e e e 34
2.2.8 ENCOAINEG . teeutiiiiiitiiii ittt ettt et e e et 36
2.2.9 DECOAING . ettt ettt eae e 38
2.2.10 COMIPICSSION. e tieittee ittt ettt ettt ettt ettt ettt ettt 40
2.2 11 TAMMIES ettt ettt ettt et et et e e 40
2.3 VarIaADIES. .. eeiiiiii ittt 40
2.3] Ty DS ettt ettt ettt e 41
2.3.2 A CCESSIMG, teeuiiiiiis ettt ettt ettt et et et e et et e s e 41
2.3.3 OPCIUNG. ettt ettt ettt et e et ee e st e e e 41
2.3.4 ClOSIME. ettt et et e et et e e e 41
23,5 NAMNG, 1o ceiiiitiiiieie oottt e ettt ettt ettt e et et e ettt ettt e ettt e ettt e et eeeteeeenns 42
2.3.6 NUMDCIING. .o euviiiiiiieiiii ittt ettt eeeeeens 42
2.3, 7 DCIO NG, e ittt ettt 42

2.3.8 DIMENSIONAIIEY . ceuueiiiiiiiiiiiiiiiiiiiie ittt eeeeeeeeenns 42

2.3.9 Data SPeCIfiCAtION. c.uviiieiiiieiii ettt e e e 43

2.3.10 ReCOTd VATTANCE. .ecuuiiuiiiiiiiuii ittt ettt ee e, 43
2.3.11 DIimenSioN VArTANCE . c.uueiueieueiitiiiti ittt ettt e ettt 44
2.3 12 RECOTAS. ottt ettt 45
2.3.13 SPAISE ATTAYS . .eiuuiiiitiii ittt 51
2.3. 14 COMIPICSSION. 1 tieiitee ittt ettt ettt ettt ettt ettt ee e 51
2.3 15 MO OTIEY ettt ettt et et et et e et e e et ens 52
2.3.16 SiNGIe ValUE ACCESS..uuiiiitiiiieeieieee ettt eeee e 53
2.3 17 HYPOT ACCESS. tutiiiutiiiiiit ittt e et ea e e 54
2.3.18 SeQUENTIAL ACCESS. .eiiuuiiuiiitiiitiiit ettt ettt ettt e e 56
2.3.19 Multiple Variable ACCESS.uieuiiiiiiiiiiiiiiiiiee ettt 56
2.3.20 Variable Pad VAlUES.....cc.eeiiiiiuiiiiiiiiiiiiiiiiiiieiiee et 58
2.4 ATIDULES . .eeitiie ittt 59
2.4 1 NAMUNG . ettt ettt eeeeens 59
2.4.2 NUMDCIING. .o teeeiiiiieeeeeeeeee ettt ettt ettt e et ettt e e et e e e et eeieeeenns 59
2.4.3 AITDULE SCOPES..uiiiuiiiiitiiiii ettt 60
24,4 DCICUINE. e uietiiiiiiii ettt et et et et 60
2.4.5 ATITDULE ENTIT@S. ceuiiiutiiitieitiiitiei ettt ettt ettt ettt 60
2.5 DAt TP ettt ettt ettt ettt e e 61
2.5.1 INte@Er DAta TYP@S. .ueeeuuiiiitiiiiite ittt 62
2.5.2 Floating Point Data TYPeS...uueeiiueiiiiiiiiii ittt 62
2.5.3 Character Data TYP@S....eeeeuieieiii ittt 62
2.5.4 EPOCH DAta TYPES.cuueiiueiieiiiuiiitieeeeeitieeeee et eeeetie ettt ettt e et e et e et eeteeeteeeteeeteeeteeenteeeteeenseeereeieeaeeaas 62
2.5.5 Equivalent Data TYP@S....cieeueiiieiiiiiiiiiiiii ettt 63
2.6 CompresSion AlGOTTtNIMS. ..eeuuiiiiiitiiiii ittt ettt 63
2.6.1 Run-Length ENCOAING. ...couiiiiiiiiiiiiiiiiiiiiiiiiii ittt 64
2.60.2 HUFTIMAN. ..ottt 64
2.6.3 Adaptive HUFfMAN. .eceiiiiiiiiiiiiiiiiiiiiii e 64
208 GZIP oottt ettt ettt e enes 64

ST OOIKIt REFEI ENCE. . ittt ettt eeee e s e e ese e e e e et e 64
3.1 I trOAUCHION. ettt ettt ettt et et et e e 65
3.1.1 VMS and UNIX (including Mac OS X)...oooouiiiuiiiiiiiiiiiiii et 65
3.1.2 How to Invoke the GUI Toolkit for Macintosh OS X......coouiieiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeieeeeee e, 66
3.1.3 How to Invoke the GUI Toolkit for Windows NT/95/98/2000/XP....ccueiiieueiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeenn, 66
3.1.4 How to Invoke the GUI ToOIKit fO1r UNiX....ooeeieeuiiiiiiiiiiiiiiiiiiiiiiieiiiie it 67
3.1.5 Special AtIIDULES. .oieueeeieiiieeeiie ettt 67
3.1.6 Special QUAlITICT. ...oeiiueiiiieieiiii e 68
3.2 CDF @It iitiiitiiiiie ettt ettt e e 68
3.2, 1 INtrOAUCHION. .teeetietiiitt ettt ettt e et 68
3.2.2 Special AtrIDULE USAGE....eiiuuiiisiiieiiitiiiii ittt 68
3.2.3 Executing the CDFedit PrO@ram.......cc.ueieuiiiiiiiiiiiiiiiiiiiieiieiiiee e, 68
3.2.4 Interaction With CDFEAIt....ecuuiiiiiiiiiiiiiiiiiiiiiiiieieeeeii ettt 71
3.3 O XN ettt ettt e aenaene 71
3.3, 1 INtrOAUCHION . cueeeieiieieteieeeiieeee ettt e e e 72
3.3.2 Special Atribute USAZE. . ..ueeiiriiiieiiiiiiiiiiii e 72
3.3.3 Executing the CDFeXport PrO@Iram. ccuiieuiiiiiieiiiiiiiitiiiii ettt 72
3.3.4 Interaction With CDFeXPOT .. .uiiitiiitiitiiiiiiii ittt ettt ettt ettt et et ee e i 77
3.4 CDF CONVOI . ettt ettt ettt ettt ettt ettt e e 77
3.4, 1 INtrOAUCTION. teeittiitii ittt ettt e et et et 77
3.4.2 Executing the CDFcONVert PrO@raml.ooueeieuiiiiiiiiiiiiiiiiiiieiie oot 78
3.4.3 Output from the CDFCONVErt PrO@ram. . ..o.uieeeeiiiiiiiiiiiiiiiiiiiiiiiiiiii e, 82
3.5 CDF COMPALR. ettt ettt ettt ettt ettt et ettt e ettt ettt eeeeitr e et eeiaeeeeeeans 82
3.5 1 INtrOAUCHION . ueeeiiiiiieiiiei ettt 82
3.5.2 Executing the CDFcompare Pro@ram..........ceueiuiieiiiiiiiiiiiiiiiiiiiiiiiiieieee e 82

3.5.3 Output from the CDFcompPare PrO@ram.oouueiieueeiieeiiiieeiiieeiiieeeiieeieeeeeeeieeeeee e 86

3.0 CDESTALS. teeiiiiietiiiiieiiee ettt ettt ettt ettt e e ettt eeeeeteeeeenn 86

3.6.1 INtrOAUCTION ..eeutietii ittt ettt e et 86
3.6.2 Special AUrIDULE USAZE..e.uuiiieuiiiiiiiiiiiiieiiii ettt 86
3.6.3 Executing the CDFStats PrO@Iaml.. e uieiieiiiisiiiiiiiiiiii ittt eee e 87
3.6.4 Output from the CDFStats Pro@ram.......oo.eeieueiiiiiiiiiiiiiiiiiiiiiiieiie e 90

3.7 SKEltONTADIC .eeuiiiitiiiiiiie ettt 91
3.7 1 INtrOAUCHION . cteeeeiieieiieeeie ettt e e e e 91
3.7.2 Special AtriDULE USAZC. .uveiiueieiieeiiieeiieieeeeeee ettt 92
3.7.3 Executing the SkeletonTable PrO@ram.c.eeeuiiiiieiiiiiiiiiiieiiiiiiieiiiiieeei et 92
3.7.4 Output from the SkeletonTable Pro@ram.........ocoeeeeeeuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiees e, 95

3.8 SKEICtONCIDIF .. i iuiiiiiiiiiiiiii ettt 95
3.8 1 INtrOAUCTION. .eeitiitiiiiii ettt 95
3.8.2 Executing the SkeletoNCDF Pro@ram. ... i ueeieeiiiieiiiiiiiiiii et 96
3.8.3 Creating the Skeleton Table.....oo.ueeieiiiiiiiiiiiii ittt 97

3.9 CDFINMQUITC. cuttiiieeieietiie ettt ettt ettt et e et et e et e ettt et e e et e et e i e e ieeeetreeenns 98
3.9.1 INtrOAUCHION. Leeiteiiiiiiiiiii et 98
3.9.2 Executing the CDFINQUITe PrO@Iraml.icueiisiiiiiiitiiiiiiiiiieiiei et 98
3.9.3 Output from the CDFIiNQUire Pro@ram...........cceuieiieieiiiiiiiiiiiiiiiiiiiiiiieiieeieeiees e, 99
310 CDF T ittt ettt ee et 99
3101 INtrOAUCHION. teutiitiiieii ettt ettt 99
3.10.2 Executing the CDFAIr ProO@rami........ccouiiiiiiiiiiiiiiiii i 99
3.10.3 Output from the CDFdir PrO@ram. .. .cooueiiiiiiiiiiiiiiiiiiiiiiiiiieeiiie it 100
Appendix A SKeleton Table FOrMaL........cccoiiiiiieiieieee e 101
AT TIEOAUCTION. ...ttt ettt et ettt et e et e et e e aeeeteeeateeeteeetaeeeteeeaseeteesaseeeseeeeteeaseeeaseeateesassesesenseenseesnres 101
A2 HEAAET SECHION.cviietiiiiieetie ettt eete e et ee e e ete e et e ete e eteeeaeeeteeeaeeeteeeaseeeaseeaseeeteeeaseeaseeeaseeeseeseseenseesareenseeenseenns 101
A3 GAIIDULES SECLIOM.eeutiitietieiieiteee ettt ettt et a e te e et e bt e et e bt esee bt es e et e eseeeseemeeeseenseeetentesseensesneenseeneensesnnans 103
A4 VAIIDULES SECIOM.cetiiiiiiiii ettt e et e et e e et e e eetae e e eaaee e eteeeeeaaeeeeateeeesseeeeseeeeeaeseeesreseenseeeennees 105
ALS TVATIADIE SECTION.iiiiiiiiiicieectie ettt eetee ettt e e ae e it e e beeeteeebeesaseeaseessseesseassseeabaesssesasaessseasseessseenseesseenseenssennns 106
AV Vo .10 (o <To1 5 (o) 1 SRR 109
AT ENA SECHIOMN.....ectiiieiiiiieeie ettt ettt ettt et e et e e te e e be e teeeaveeeteeeaaeeetseeabeeteeeabeeasseeaseessseeaseessseenseensseenseesaseenreeaens 112
A8 EXample SKEICTON TaDIC.......ccueiuieiieiieiieieie ettt sttt ettt eta e te et e s st esaesseessessaensessaensesssensanssensennsenseenes 112
WY oToLc aTo [Drq = T D TS U o] o o OSSR 117
B.1 CDF/IDL Interface and Legacy APPIICAtIONS.c.eiueerierieriieiieieeieieeieeeeeesee e seeeeesseeaesseensesseensesseensesseensenns 117
B.2 CDF Version 3.X and IDL.............oooiiiiiiiiioe ettt e e e e et e e e e e et e e eneeeeenneeeenneeeenneas 117
B.3 Backward File Compatibility With CDF 2.7........ccooiiiiiiiieiiiieiiciere ettt e s sseessessaesaeennas 118
APPENAIX C SEALUS COUES......ouiiiieiieieeieie ettt sb et beebesaeesreesbeeneesnee e 119
Gl INEEOAUCTION. ...ttt e et e et e ettt e e e et e e e eae e e eeaaee e ateeeeaseeeesaeeeesseeeeaseseensseeeessseeesseeeeseeesseneans 119
C.2 Status Codes and MESSAZES.ecueeiiriieriieierieeierteete st ete st etesteeteaseestesstesseeneesseaneesseensesseensesseensesssenseessenseensensennes 119
APPENIX D REEASENOLES.........ocieieieiieeie et e st e s e reesreesreesreessaenseeans 128
D1 SUPPOTEEA SYSLEIMIS. ..ecuviivietierieitieiesteete et etesteetesteesbeetsebeesseseessesseessesseessesssessesssessesssessesssenseassaseessenseessesseessesses 128
D.2 Compatibility with CDF 2.7.2 and Earlier VerSIONS.ccceitererieieeieitieiesitee sttt 128
DD.3 CRANEES. ... ettt ettt ettt h e e e h et h et a et e e a e e e bt e a et ehe et e e bt e bt eh e e bt e e e bt en e e bt e s teebeenteeae e et eae 129
APPENAIX E - GIOSSAIY ..ottt bbb b b et e e b e enas 130

List of Figures

Figurel.l
Figurel1.2
Figure 1.3
Figurel4
Figure 1.5
Figure2.1
Figure2.2

Conceptual View of a CDF, O-Dimensional rVariable...........ccccooeveenieiiieieniieninne 14
Conceptual View of a CDF, 2-Dimensional rVariables...........cccccccoeeiviieiiine e, 15
Conceptual View of a CDF, ZVariables..........ccoveoveiieiieiiece e 16
MUILI-FITE FOrMAL.......eiciecee et e e 17
SINGIE-FIE FOrMAL.....c..iitiiiiiee ettt 17
Physical vs. Virtual DIMEeNSIONS..........cooiiiiiiiiiicee et 44
Physical vs. Virtual Records, Standard Variable.........ccccoooeveevienienieseseeseecene, 47

igure3.1 Window Sections, CDFedit........ccocciiiiie ittt 71

List of Tables

Table1l.1
Table1.2
Table1.3
Tablel1l.4
Table1.5
Table2.3
Table2.4
Table2.5
Table2.6
Table2.7

Table2.8
Table2.9
Table3.1

Example Data Set - " Flat" Representation (0-Dimensional)ccccovvveevenennenne. 20
Example CDF - 2-Dimensional Representation (Conceptual)cccceevvveviiieeinnnns 20
Example CDF - Specification for 2-Dimensional Representation............ccccocvveeueen. 21
Example CDF - 2-Dimensional Representation (Physical)c.cccoveeiieeiiiieeccineens 21
VAttributerEntriesfor the TemperaturerVariable........cccooeiiiininniniiinenens 23
Cache Size Operations, Internal Interface.........ccccocceeiieeiiieccie e 33
EqUivalent BYTE Or N INGS........ooeiiririeiiiieee st 37
Equivalent Single-Precision Floating-Point ENCOiNgS........ccccovvviiieiiiiciieccie e, 38
Equivalent Double-Precision Floating-Point ENCOAINGS.........ccccovirvinienienenneneee 38
Previous-missing Spar se Recor ds Example, Conceptual View vs. Physical Storage
.. 49
Default Pad ValUES........cc.ooiiiiiiieiee e st e e nae e 59
EQUIVAIENT DAA TYPES......eiiiiiiiiiiieeieesiee ettt ettt st nee s 63

ExamplerVariables, CDFstats Monotonicity Checking..........ccocovevceeiiieeiiiieeiiinens 86

Preface

About This Document

This document is intended to serve as both a user's guide and reference manual for the Common Data Format (CDF).
As such, it provides a primer for introducing the novice reader to the concepts of CDF as well as areference manual for
the advanced user®. However, it does not serve as a cookbook for the proper methods of designing a CDF.

The very first questions usually asked by areader are: What is CDF? How is CDF used?, and How is CDF useful for
me? Although the reader will find the answers to these questions in this document, we provide here a brief description
of the conceptual basis of CDF in order to provide a proper perspective when reading the remainder of this document.

What is CDF?

CDF, in its most basic terms, is a conceptua data abstraction for storing, manipulating, and accessing multidimensional
data sets. We refer to CDF as a data abstraction because we never discuss the actual physical format in which data sets
are stored. Instead, we describe the form of the data sets and the means (interface) by which they may be manipulated.
This important difference from traditional physical file formats is reflected in the orientation of the document toward
defining form and function as opposed to a specification of the bits and bytes in an actual physical format. It is
important to state here that the use of a data abstraction in no way inhibits access to physical data or necessarily makes
such access inefficient. It merely provides away of generalizing the data model and makes possible the specification of
a uniform interface for manipulation of a data set. The data abstraction allows future extensibility and provides for
conceptual simplicity while isolating machine and device dependence.

The contents of a CDF fall into two categories. The first is a series of records comprising a collection of variables
consisting of scalars, vectors, and n-dimensional arrays. The second is a set of attribute entries (metadata) describing
the CDF in global terms or specificaly for a single variable. This dua function of CDF is what provides its "data set
independence." Both the metadata (attributes) and the data objects (variables) are combined into an integrated data set.
An important element of the CDF conceptual data abstraction isthe "virtual" dimensional layer that allows data objects
that share a subset of the overall CDF dimensionality to be projected into the full dimensional space. This capability is
made available through the use of logical dimensional variances that indicate the subset of CDF dimensions that are
applicable.

How is CDF Used?

The origins of CDF date back to the development of the NASA Climate Data System at the National Space Science
Data Center (NSSDC). As such, it has had three main requirements driving its devel opment.

1. Facilitate ingestion of data sets and data products into CDF.
2. Utilize standard common terminology (metadata) to describe the data sets.
3. Development of higher-level applications (e.g., NSSDC Graphics System [NGS]).

! Programming reference manuals for C and Fortran users are provided as separate documents.

The above requirements imply two classes of users for CDF. One user class performs primarily data acquisition and is
mainly involved in designing CDFs and the associated science metadata. The other user class builds high-level
applications interacting with CDF at the programming level. CDF has two levels of access: one is through the
programming interface layer and the other is through a high-level toolkit written using the programming interface layer.

The toolkit provides a suite of utilities for creating, browsing, and modifying CDF files as well as exporting or
importing CDF data to/from a regular text file or an eXtensible Markup Language (XML) file. These are very useful
for architecturing a CDF and describing the metadata without using the programming level interfaces. The browsing
tools alow aquick look at CDF data sets and aid in CDF validation.

The CDF library comes with C, Java and Fortran Application programming Interfaces (APIs), and the APIs provide the
essential framework on which graphical and data analysis packages can be created. Perl APIs are aso available as an
optional package for those who wish to develop CDF applicationsin Perl. The CDF library allows developers of CDF-
based systems to easily create applications that permit users to slice data across multidimensional subspaces, access
entire structures of data, perform subsampling of data, and access one data element independently regardliess of its
relationship to any other data element. CDF data sets are portable across any platform supported by CDF. These
currently consist of VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha
(OSF/1 or True4 & OpenVMYS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AlX), HP 9000
series (HP-UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000/XP, Linux, Cygwin & QNX), and
Macintosh (Mac OS X, or Linux) for the CDF library 2.7 or earlier releases. CDF 3.0 and 3.1 also support these
operating systems, but they are not tested on IBM AlX due to lack of user’s interest and hardware. If you need to run
the CDF library on an operating system that's not mentioned above, please contact the CDF support office at
cdfsupport@listserv.gsfc.nasa.gov.

CDF is supported by commercia and open source data analysis/visualization software such as IDL, MATLAB, and
IBM’s Data Explorer (XP). For those who are familiar with a language like IDL or MATLAB can easily create
sophisticated plots from CDF files instead of writing alengthy program in C, Fortran, or Java.

Compatibility with Previous CDF Releases

One of the CDF 3.0 requirements was an ability to create files bigger than 2G bytes. This requirement necessitated a
change in the internal file structure since the 32-hit file offset had to be changed to a 64-bit file offset. Asaresult, CDF
2.7.2 or earlier won't be able to read CDF files that are created with CDF 3.0 or alater version. However, CDF 3.1 can
read files that are created with any of the previous CDF releases. If one is concerned about using CDF 3.0 or a later
version due to the file compatibility problem with previous releases, one can create files in the CDF 2.7 format
(optional) with CDF 3.1 or later. The Backward File Compatibility with CDF 2.7 section of the CDF C Reference
Manual or Fortran Reference Manual describes how to cresate files that can be read by CDF 2.7.2 or earlier, or IDL 6.2
or earlier. IDL 6.3 can read files created by CDF 3.0 or alater version. If afileiscreated in the CDF 2.7 format using
the CDF 3.0 library or alater version, the maximum file sizeis 2G bytes.

How is CDF Useful to Me?

Hopefully, the answers to the first two questions have provided a basis for answering this question. If you still have
questions or would like to learn more about CDF, please refer to the CDF Frequently Asked Questions (FAQ) page
(http://cdf.gsfc.nasa.gov/html/FAQ.html) for more detailed information about CDF. It isimportant to
understand that CDF has been designed to solve a number of data management and storage problems and has shown
itself to be quite flexible in storing awide variety of data sets.

10

Chapter 1

1 Primer

1.1 Introduction

The CDF Primer is designed for scientists, researchers, programmers, and managers who want to learn about CDF
without reading through this entire document or the programming reference guides. The primer will address what CDF
isand how it can be used for storing and managing different types of data. A brief description of the tools and utilities
available with CDF, in addition to program and toolkit examples, will be given. More detailed descriptions of the
concepts presented herein are provided in the accompanying chapters of this document and the programming reference
guides.

1.2 Why use CDF?

When people first hear the term CDF they intuitively think of data formats in the traditional sense of the word (i.e.,
messy/convoluted storage of data on disk or tape). CDF is more than just aformat. CDF is a"self-describing" format
for managing data. In addition to the actual data being stored, CDF also stores user-supplied descriptions of the data,
known as metadata. This self-describing property alows CDF to be a generic, data-independent format that can store
data from awide variety of disciplines.

In addition to being a self-describing data format, CDF is also a software library. The library routines are callable from
C, Fortran, and Java and allow the user to randomly access and manage data and metadata without regard to their
physica storage. This completely relieves the user of low-level 1/O operations alowing more time for data analysis.
The actual format used to store the data and metadata is completely transparent to the user. If an application is written
in Java, it can be executed without any modifications on any of the Java supported platforms.

The term "CDF" is also used to refer to the physical files that the CDF library generates. A data set stored using the
CDF library is called a"CDF".

CDF files created on one operating system can be read without any modifications on any of the CDF supported
platforms: VAX (OpenVMS and POSIX shell), Sun (SunOS & Solaris), DECstation (ULTRIX), DEC Alpha (OSF/1 or
Tru64 & OpenVMS), Silicon Graphics Iris and Power Series (IRIX), IBM RS6000 series (AlX), HP 9000 series (HP-
UX), NeXT (Mach), PC (DOS, Windows 3.x, Windows NT/95/98/2000/XP, Linux, Cygwin & QNX), and Macintosh
(MacOS X, or Linux). The aforementioned operating systems are supported by CDF 2.7, 2.6, and 2.5. CDF 3.0 and
3.1 also support these operating systems except IBM AlX (due to lack of user's interest and hardware). If you need to
run the CDF library on IBM’s AIX operating system, please contact the CDF support office at
cdfsupport@listserv.gsfc.nasa.gov.

11

1.3 Conceptual Organization

An important feature of CDF isthat it can handle data sets that are inherently multidimensional in addition to data sets
that are scalar. To do this, CDF groups data by "variables® whose values are conceptually organized into arrays.
CDF's "variable" is a generic name or an object that represents data, and it does not have any scientific context
associated it. For example, a variable can be data representing an independent variable, a dependent variable, time and
date value, or whatever data might be (e.g. image, XML file, etc.). In other words, the variable doesn't contain any
hidden meanings other than the data itself. One may describe a variable or one variable's relationship with other
variable(s) through "attributes' (see the last paragraph of this section for more details). The dimensionality of a
variable depends upon how the data is specified by the user. For scalar data, as an example, the array of values would
be O-dimensiond (i.e., asingle value); whereas for image data the array would be 2-dimensional. Similarly, the array
for volume data would be 3-dimensional. CDF allows users to specify arrays of up to ten dimensions. The array for a
particular variable is called a "variable record.” A collection of arrays, one for each variable, is referred to asa"CDF
record.” A CDF can, and usualy does, contain multiple CDF records. This is useful for data with repeated
observations at different times.

Two types of variables may exist in a CDF: rVariablest and zVariables.? Every rVariable in a CDF must have the same
number of dimensions and dimension sizes. In the scalar data example the CDF's rV ariables would be O-dimensional,
whereas for the image data example the CDF's rVariables would be 2-dimensional. Figures 1.1 and 1.2 illustrate O-
dimensional and 2-dimensional rVariables, respectively. zVariables may have a different number of dimensions and/or
dimension sizes than that of the rVariablesin a CDF. Figure 1.3 illustrates several zVariables. Asyou can seg, since
all the rVariables must have the same dimensions and dimension sizes, there'll be alot of disk space wasted if afew
variables need big arrays and many variables need small arrays. Since zVariable is more efficient in terms of storage
and offers more functiondity than rVariable, use of zVariable is strongly recommended. Note that a CDF may contain
both rVariables and zVariables.® The term "variable" is used when describing a property that applies to both rvVariables
and zVariables.

So why would you want to use rVariables over zVariables? There's no reason to use rVariables at al (since zZVariables
are much more efficient) if you are creating a new CDF file. But if you are analyzing data files that were created with
early CDF releases or contain rVariables for some reason, you'll need to use rVariables. One may wonder why there
are rVariables and zVariables, not just zVariables. When CDF was first introduced in early 90's, only rVariables were
available. The inefficiencies with rVariables were quickly realized and addressed with the introduction of zVariables
in later CDF releases.

It is important to note that there is no single "correct" way to store datain a CDF. The user has complete control over
how the data values are stored in the CDF depending on how the user views the data. This is the advantage of CDF.
Data values can be organized in whatever way makes sense to the user.

While CDF's variable is a mechanism for storing/representing data, CDF's “attribute” is a mechanism for describing
the CDF file and the individual CDF variables in the file. There are two types of attributes in CDF: global attribute
and variable attribute. Global attribute is used for describing the CDF file and variable attribute is used for describing
individual variables. Examples of global attributes would include such things as file creation date, file author, source
of data, and data set documentation. Examples of variable attributes would include such things as a field name for the
variable, the valid minimum and maximum, the units in which the variable data values are stored, the format in which
the data values are to be displayed, and afill value for errant or missing data.

'The“r" standsfor “regular.” rVariables are the type of variables that CDF has always supported. Perhaps
“traditional” would have been a better term.

2The“z" doesn't stand for anything special. Wejust likethe letter “z.”

* Thisis generally not recommended. In those situations where z variables are necessary it is best to use all zVariables
than amixture of rVariables and zVariables.

12

1.4 Features of the CDF Library

The CDF library is a flexible and extensible software package that gives the user many options for creating and
accessing a CDF.

1.4.1 File Format Options

The CDF library gives the user the option to choose from one of two file formats in which to store the data and
metadata. The first option is the traditional CDF multi-file format. This file format is illustrated in Figure 1.4
(assuming a CDF containing four variables). The example.cdf file contains all of the control information and metadata
for the CDF. In addition to the .cdf file,* afile exists for each variable in the CDF and contains only the data associated
with that variable. Thisisillustrated by the files example.v0 through example.v3. The second option is the single-file
format, the default format when a CDF fileis created. Asillustrated in Figure 1.5, the whole CDF file consists of only
a single example.cdf file. This file contains the control information, metadata, and the data values for each of the
variablesin the CDF. Both formats allow direct access. The advantage of the single-file format is that it minimizes the
number of files one has to manage and makes it easier to transport CDFs across a hetwork. Use of single-file format
(the default format) is recommended over the multi-file format abeit it slightly increases the data access time. The
multi-file format, on the other hand, clearly delimits the data from the metadata and is organized in a consistent fashion
within the files. Updating, appending, and accessing data are also done with optimum efficiency. However, the multi-
file format has the following restrictions’:

Compression: Compression is not alowed for the CDF or any of its variables.
- Sparseness. Sparse records or arrays for variables are not allowed.

- Allocation: Pre-allocation of records or blocks of records is not alowed. For each variable, the maximum written
record isthe last alocated record.

- Deletion: Deletion of asingle variable from a CDF isnot allowed. Only deleting awhole CDF is possible.

* Thisfile referred to as the dotCDF file.
> These features are covered in the following sections.

13

Record rVariable rVariable . . . rVariable
Number 1 2

1 g g g
2 U U U
3 O O g
n O O g

Figurel.1 Conceptual View of a CDF, 0O-Dimensional rVariable

14

Record rVariable rVariable . . . rVariable
Number 1 2

1 UooO0 Oo00a oooan
LOOo00 OO0 gooan
UooO0 OO0 . . oooan
UooO0 Oo00a oooan
UooO0 0oood Uooao

2 00000 0ooood uooao
LOOo00 OO0 gooan
UooO0 OO0 . . oooan
UooO0 Oo00a oooan
UooO0 0oood Uooao

3 00000 0o0od oooan
UooO0 Oo00a oooan
UoOO0 OO0 . . uooan
LoOO0 OOo0ad uooan
00000 ooooad oooao

n 00000 0oood uooao
LoOO0 OO0 uooan
I . . oooan
UooO0 Oo0aa uooan
00000 Doood Uooao

Figure 1.2 Conceptual View of a CDF, 2-Dimensional rVariables

15

Record rVariable rVariable

rVariable

Number 1

1 RN an
00000 00000 .0
0o0od 00000 'O
000og 0
EEEEE 'O

2 0oooa O
00000 00000 .0
0o0od 00000 'O
000og 0
EEEEE 'O

3 0ooog O
OO0 0ootd .
0o0od D00OO0 . 'O
EEEEE O
00000 0

n ooooa O
00000 00000 .0
Uo0od 000OD 'O
00000 O
EEEEE 'O

Figure 1.3 Conceptual View of a CDF, zVariables

16

example.cdf example.vO example.vl example.v2 example.v3

>—2>0
>—2>0

>—2>0
>—2>0

>—H4>»0>»-1m<Z

Figure 1.4 Multi-File Format

exampl e.cdf

R >H>»0>»-AmM<Z

>—>0

Figurel5 Single-File Format

17

14.2 Data Encoding Options

When creating a CDF, a user has the option of using any of the supported encodings: VAX, Sun, SGi Personal Iris and
Power Series, DECstation, DEC Alpha/OSF1, DEC Alpha/OpenVMS (D FLOAT, G FLOAT or IEEE FLOAT double-
precision floating-point), IBM RS6000 series, HP 9000 series, NeXT, PC, Macintosh, or network (XDR - eXternal
Data Representation). The created CDF may then be copied to any of the supported computers and read by the CDF
library. When avalue is read from the CDF, the CDF library may be requested to decode the value into the encoding
of the computer being used or any of the other encodings (which may be desirable for various reasons). A CDF with
any of the supported encodings may be read from and written to on any supported computer.

1.4.3 Compression

Compression may be specified for a single-file CDF and the CDF library can be instructed to compress a CDF asiit is
written to disk. This compression occurs transparently to the user. When a compressed CDF is opened, it is
automatically decompressed by the CDF library. An application does not have to even know that a CDF is compressed.
Any type of access is alowed on a compressed CDF. When a compressed CDF is closed by an application, it is
automatically recompressed as it iswritten back to disk.

The individual variables of a CDF can also be compressed. . The CDF library handles the compression and
decompression of the variable values transparently. The application does not have to know that the variable is
compressed as it accesses the variable's values.

Several different compression algorithms are supported by the CDF library. When compression is specified for a CDF
or one of its variables, the compression algorithm to be used must be selected. There will be trade-offs between the
different compression algorithms regarding execution performance and disk space savings.

The nature of the datain a CDF (or variable) will affect the selection of the best compression agorithm to be used.

14.4 Sparseness

Two types of sparseness are allowed for CDF variables: sparse records and sparse arrays. Sparse records are available
now - sparse arrays won't be available until afuture CDF release. When avariable is specified as having sparse records,
only those records actually written to that variable will be stored in the CDF. This differs from variables without sparse
records in that for those variables every record preceding the maximum record written is stored in the CDF. For
example, if only the 1000th record were written to a variable without sparse records, the 999 preceding records would
also be written using a pad value. |f sparse records had been specified for the variable, only the 1000th record would
be stored in the CDF (saving a considerable amount of disk space). Sparse records are ideal for variables containing
gaps of missing data.

1.4.5 Variable Data Access Options
A program can access variable data one value at a time or it can access an entire multidimensional array structure or

substructure spanning contiguous or non-contiguous record boundaries. The latter feature allows the user to perform
aggregate access or uniform subsampling of the data at greatly increased rates over traditional value by value access.

18

1.5 Organizing Your Data in a CDF

1.5.1 Variables

The first component of a CDF is the actual data, organized into arrays for the individua variables. CDF can
accommodate any type of data that can be organized into arrays. Two types of variables are supported (rVariable and
zVariable) and they can coexist in the same CDF file. Use of zVariable over rVariable is strongly recommended since
it is much more efficient and offers more functionality than therVariable.

So why would you want to use rVariables over zVariables? There's no reason to use rVariables at al if you are
creating a new CDF file. But if you are analyzing data files that were created with early CDF releases or contain
rVariables for some reason, you'll need to use rVariables. One may wonder why there are rVariables and zVariables,
not just zVariables. When CDF was first introduced in early 90's, only rVariables were available. The inefficiencies
with rVariables were quickly realized and addressed with the introduction of zVariablesin later CDF rel eases.

rVariables®

rVariables all have the same dimensionality (number of dimensions and dimension sizes). An example of the type of
data set that may be stored in a CDF's rVariables is shown in Table 1.1. Each record holds one value for each of the
four variables: Time, Longitude, Latitude, and Temperature. CDF can store scalar data in a "at" (O-dimensional)
representation such as this, but storage in this manner may hide fundamental relationships among the data values.
Consistent repetitions found in the data for this example suggest another way to organize the data set. Note that every
fourth record is an observation at the same point on Earth at different times. That fact is not immediately clear from
this representation of the data. Looking more closely, we note that only two differing values are recorded for Longitude
and, similarly, only two differing values are recorded for Latitude. This repetition suggests a 2-dimensional array
structure whose dimensions are defined by Longitude and Latitude. For each of the two Longitude values there are two
Latitude vaues. Time repeats for each Longitude/Latitude pair - the observations were taken simultaneously at the
longitude/latitude locations. Because of Time's repetition for Longitude/Latitude pairs, the number of Time vaues
specifies the number of records needed in the CDF. Each record conceptually contains a 2-dimensional array per
rVariable (Table 1.2). The array structure defines the dimensionality of the rVariablesin the CDF. Although there are
four rVariables, the array dimensions and the sizes of those dimensions are determined only by Longitude and Latitude.
Temperature varies across the entire array while Time tells us how many records to expect. Therefore, the example,
when reduced as described, defines a CDF with 2-dimensional rVariables. The number of discrete values for each
rVariable that defines a dimension generates the size of that dimension. For example, Longitude has two unique
values so the dimension defined by L ongitude has a size of two.

Record rvVariables

Number Time Longitude Latitude Temperature
1 0000 -165 +40 20.0
2 0000 -165 +30 21.7
3 0000 -150 +40 19.2
4 0000 -150 +30 20.7
5 0100 -165 +40 18.2
6 0100 -165 +30 19.3
7 0100 -150 +40 220
8 0100 -150 +30 19.2
9 0200 -165 +40 199
10 0200 -165 +30 19.3
11 0200 -150 +40 19.6
12 0200 -150 +30 19.0

¢ Although rVariables are described here first, the trend among CDF users is toward CDFs containing only zV ariables
(since zVariables can do everything rVariables can do and more). zVariables are described in the next section.

19

93 2300 -165 +40 21.0

94 2300 -165 +30 19.5
95 2300 -150 +40 18.4
96 2300 -150 +30 22.0

Table1.1 Example Data Set - " Flat" Representation (0O-Dimensional)

Adding another independent rVariable, for instance Pressure, poses no difficulty for the example. Temperature would
then be dependent on a specific Longitude, Latitude, and Pressure - a 3-dimensiona array structure. In this 3-
dimensional example Longitude, Latitude, and Pressure define the number of dimensions for the rVariablesin the CDF,
where the size of each dimension is determined by the number of discrete values contained in each of those rVariables.
Additional dependent rVariables would be stored in the same way as Temperature.

Although conceptualy thereis a 2-dimensional array structure for each rVariable in each record of the CDF, this would
not be an efficient way to store the data. For instance, the time for each record need only be stored once as opposed to
being stored four times as shown in each 2-dimensional array (Table 1.2). This problem is circumvented by specifying
"variances." For each rVariable there are variances associated with the array dimensions as well as the records.
"Record variance" indicates whether or not an rVariable has unique values from record to record in the CDF. Time
changes for each record so the record variance for Time is [TRUE]. One could aso say that Time is record-variant.
Latitude and L ongitude repeat their values from record to record so the record variance for each is[false]. Latitude and
Longitude are non-record-variant (NRV). The Temperature vaues change from record to record so they are record-
variant. The record variances for this example are shown in Table 1.3.

Record rvariables
Number Time Longitude Latitude Temperature
0000 — 0000 -165—-150 +40 —+40 20.0-19.2
1 I | | I | I I
0000 — 0000 -165 —-150 +30-+30 21.7-20.7
0100 — 0000 -165 —-150 +40 —+40 18.2-22.0
2 I I I I I I I I
0000 — 0000 -165 —-150 +30-+30 19.3-19.2
0200 — 0000 -165 —-150 +40 — +40 19.9-19.6
3 I I I I | I I I
0000 — 0000 -165—-150 +30-+30 19.3-19.0
2300 - 0000 -165 —-150 +40 — +40 21.0-184
6 I I I I | I I
0000 — 0000 -165—-150 +30-+30 195-22.0

Table1.2 Example CDF - 2-Dimensional Representation (Conceptual)

Similarly, the term "dimension variance" indicates whether or not an rVariable changes with respect to the CDF
dimensions. In the example above with 2-dimensional rVariables, the Longitude rVariable defines the first dimension

20

of the CDF with its values repeating aong the second dimension so its dimension variances would be [TRUE,falsg].
The Latitude rVariable defines the second dimension of the CDF with its values repeating along the first dimension so
its dimension variances would be [false, TRUE]. Because the Temperature values change for each latitude/longitude
location, its dimension variances are [TRUE, TRUE]. Time does not change from one latitude/longitude location to
another, so its values are the same along both

dimensions. The dimension variances for Time would be [false,falsg]. The dimension variances for the above example
are shown in Table 1.3.

rVariables
Time Longitude L atitude Temperature
Record Variance TRUE false false TRUE
First Dimension Variance false TRUE false TRUE
Second Dimension Variance false false TRUE TRUE

Table 1.3 Example CDF - Specification for 2-Dimensional Representation

When the record and dimension variances have been defined correctly, the amount of physical storage needed for the
CDF isdrastically reduced. Inthe above example, 2-dimensional arrays are not physically stored

for each rVariablein a CDF record. Instead, the physical storage for each rVariable consists of just one

value for Time in each CDF record, asingle 1-dimensional array of values for the Longitude and Latitude rVariables
(in only the first CDF record), and afull 2-dimensional array of values for Temperature in each

CDF record. The actual physical storage (physical view) is shown in Table 1.4. The conceptual view of

the CDF, however, is still that of one 2-dimensional array per rVariable in each CDF record as shown in

Table 1.2 (the physically stored values are shown in boldface type).

Record rVariables
Number Time Longitude Latitude Temperature
+40 20.0-19.2
1 0000 -165--150 | | |
+30 21.7-20.7
18.2-22.0
2 0100 | |
19.3-19.2
19.9-19.6
3 0200 | |
19.3-19.0
21.0-184
6 2300 | |
19.5-22.0

Table1.4 Example CDF - 2-Dimensional Representation (Physical)

21

zVariables

ZVariables are similar to rVariables in all respects except that each zVariable can have a different dimensionality. This
alows any set of variables to be stored in the same CDF without wasting space or creating confusion in how the
variables are logically viewed.

Consider a data set that consists of some number of images, each containing 1024 by 1024 pixels. The data set also
contains a palette that is used to map pixel values to the actual color/shade to be displayed. Palettes are also referred to
as lookup tables or color lookup tables. For this example assume that each image pixel is stored in an 8-bit byte and the
palette is a 1-dimensiona array of 256 colors/shades. Indexing into the palette array with a pixel value gives the
appropriate color/shade to use.

Attempting to store the images and the palette using only rVariables would result in one of two undesirable situations.
If the CDF's rVariables had a dimensionality of 2:[1024,1024]" (to store the images), the palette would have to be
stored in a 1024 by 1024 array that does not make sense logically and would waste disk space regardless of how the
dimension variances are set. If the CDF's rVariables had a dimensionality of 3:[1024,1024,256], the images could be
stored in an rVariable having dimension variances T/TTF® and the palette could be stored in an rVariable having
dimension variances F/FFT. This would not waste any disk space but is not the intuitive way to store the data - nothing
in the data set is 3-dimensional.

Using zVariables to store the images and palette would solve both problems. The images would be stored in a
zVariable with dimensionality 2:[1024,1024] (and variances of T/TT) and the palette would be stored in a zZVariable
with adimensionality of 1:[256] (and variances of F/T). Thiswould waste no disk space and logically makes sense.

The use of zVariables is recommended because of this added flexibility. Note that zVariables can aways be used
instead of rVariables. In the rVariable example where temperature values were being stored, zZVariables could aso have
been used. Each zVariable would have the same dimensionality and their dimension variances would be used in the
same way as they were used for the rVariables.

An even better example of how zVariables are preferred over rVariables in certain situations involves the storage of 1-
dimensional arrays (vectors). Assume that five 1-dimensional arrays are being stored with dimension sizesof 2, 3, 5, 7,
and 25. Using rVariables with a dimensionality of 1:[25] would waste considerable space while using rVariables with
adimensionality of 5:[2,3,5,7,25] and dimension variances of T/TFFFF, T/FTFFF, T/FFTFF, T/FFFTF, and T/FFFFT
would be quite confusing to deal with zVariables with dimensionalities of 1:[2], 1:[3], 1:[5], 1:[7], and 1:[25] would be
straight forward and efficient.

1.6 Attributes

The second component of a CDF is the metadata. Metadata values consist of user-supplied descriptive information
about the CDF and the variables in the CDF by way of attributes and attribute entries. Attributes can be divided into
two categories: attributes of global scope (gAttributes) and attributes of variable scope (VAttributes). gAttributes
describe the CDF as a whole while vAttributes describe some property of each variable (rVariables and zVariables) in
the CDF. Any number of attributes may be stored in a single CDF. The term "attribute” is used when describing a
property that applies to both gAttributes and vAttributes.

" The notation for dimensionality used here is <num-dims>:[<dim-sizes>] where <num-dims> is the number of
dimensions and <dim-sizes> is zero or more dimension sizes separated by commas.

¥ The notation for variances used here is <rec-vary>/<dim-varys> where <rec-vary> is the record variance, T (TRUE)
or F (false), and <dim-varys> is zero or more dimension variances.

22

gAttributes can include any information regarding the CDF and al of its variables collectively. Such descriptions could
include a title for the CDF, data set documentation, or a CDF modification history. A gAttribute may contain multiple
entries (called gEntries). An example of this would be a modification history kept in the optional gAttribute, MODS.
This attribute could be specified at CDF creation time and a gEntry made regarding creation date. Any subsequent
changes made to the CDF, including additional variables, changes in min/max values, or modifications to variable
values could be documented by writing additional gEntriesto MODS.

vAttributes further describe the individual variables and their values. Examples of vAttributes would include such
things as afield name for the variable, the valid minimum and maximum, the units in which the variable data values are
stored, the format in which the data values are to be displayed, afill value for errant or missing data, and a description
of the expected order of datavalues: increasing or decreasing (monotonicity). The entries of a vAttribute correspond to
the variables in the CDF. Each rEntry corresponds to an rVariable and each zEntry corresponds to a zVariable. Sample
vAttribute rEntries for the Temperature rVariable from the example above are shown in Table 1.5.

The term "entry" is used when describing a property that applies to gEntries, rEntries, and zEntries.

VAttribute rEntry value
FIELDNAM “Recorded temperature’
VALIDMIN -40.0

VALIDMAX 50.0

SCALEMIN 17.0

SCALEMAX 24.0

UNITS “deg C"

FORMATS “F4.17

MONOTON “Increasing”

FILLVAL -999.9

Table1.5 vAttributerEntriesfor the TemperaturerVariable

1.7 CDF Toolkit

A set of utility programs are provided with the CDF distribution which allow a user to perform a variety of operations
on CDFs without having to write an application program. Each toolkit program is described in detail in Chapter 3.

The available toolkit programs are as follows:

CDFedit® Allows the display, creation, and modification of attribute and variable
datain a CDF.
CDFexport?° Allows the contents of a CDF to be exported to the terminal screen, atext

file, or another CDF. The CDF may be filtered in order to export a subset
of its contents.

CDFconvert Allows the format, encoding, mgjority, compression, and sparseness of a
CDF to be changed. It aso can reorganize a fragmented CDF file to
make the file access more efficiently. In al cases anew CDF is created.
The original CDF is not modified.

? CDFedit has replaced CDFbrowse. The alias/symbol CDFbrowse till existsin the "definitions” file on UNIX/VMS
systems but now executes CDFedit in a browse-only mode.
1 CDFexport has replaced CDFlist and CDFwalk.

23

SkeletonCDF* Reads a specially formatted text file (called a skeleton table) and creates
a skeleton CDF. A skeleton CDF is complete except for record-variant
data

SkeletonTable Reads a CDF and produces a specialy formatted text file called a
skeleton table. The skeleton table may be modified and then input to
SkeletonCDF to create a skeleton CDF.

CDFinquire Displays the version of your CDF distribution, many of the configurable
parameters, and the default CDF toolkit qualifiers.

CDFstats Produces a report containing various statistics about the variables in a
CDF.

CDFcompare Reports the differences between two CDFs.

CDFdir Produces a directory listing of a CDF's files. For a multi-file CDF the

variable files are listed in ascending numerical order.

1.8 Library Interface Routines

The core CDF library supports two programming interfaces, the Standard Interface and the Internal Interface. Standard
Interface is easier-to-use and requires a much shorter learning curve than the Internal Interface, but it’s not as efficient
as Internal Interface. Standard Interface is recommended if you are not familiar with Internal Interface. The Standard
and Internal interfaces are callable from both C and Fortran.

The C and the Fortran interfaces (APIs) are described in the CDF C Reference manual and the CDF Fortran reference
manual, respectively. The CDF Java APIs are described in the CDF Java Reference Manual. The Perl interfaces are
described in the Perl to CDF Interfaces document that is included in the CDF Perl distribution package. The C,
Fortran, and Java APIs are part of the standard CDF distribution package, but the Perl APIs are available as an optional
package. The Java APIs for the Unix*? and Linux platforms are also available as an optional package. As of this
writing, the Java APIs are not available for the VMS operating system.

1.8.1 Standard Interface

There are two types of Standard Interfaces: Original and New. The Original Standard Interface was introduced in early
90's and they only provide a very limited functionality within the CDF library. For example, it can only handle
rVariables and can not handle zVariables and has no access to attribute's entry corresponding to the zVariables
(zEntries). Up until CDF 2.7.2, if you wanted to create or access zVariables and zEntries, you had to use the Internal
Interface that is harder to use. The limitations of the Original Standard Interface were addressed with the introduction
of the New Standard Interface in CDF 3.1. The New Standard Interface allows many new operations that were only
previously available through the Internal Interface.

1.8.2 Internal Interface

The Internal Interface consists of one routine: CDFlib when called from C and CDF lib when called from Fortran. The
Internal Interface is used to perform all CDF operations. In reality the Standard Interface is implemented via the
Internal Interface.

! SkeletonCDF was previously named CDFskeleton
12 PC running CYGWIN or Mac OS X can be considered a UNIX box while running the CDF tool programs.

24

1.9 CDF Java Interface

The CDF Java Application Programming Interfaces (APIs) are based on the core CDF library's Interna Interface., and
they support a near complete set of the Internal Interface functions. The Java APIs only support zVariables and treats
rVariables as zVariables. This is not a problem since zVariable is a superset of rVariable. In another words, with
zVariables, you can do everything with rVariables and more, but not vice versa

1.10 How to create a CDF

A CDF file can be created either by using the programming interface (Standard Interface or Internal Interface) or the
SkeletonTable toolkit program included in the standard CDF distribution package.

1.10.1 Sample C, Fortran, or Java Programs

Sample C and Java programs are included as part of the CDF standard distribution package. Below describes where the
sample programs can be found.

Unix (including Mac OS X) Windows
C <cdf_dir>/samples <cdf_dir>\samples
Fortran <cdf_dir>/samples <cdf_dir>\samples
Java <cdf_dir>/cdfjava/lexamples <cdf_dir>\samples
Perl <perl_dir> <perl _dir>\

1.10.2 Creating a CDF with SkeletonTable

The CDF toolkit program SkeletonCDF is one of the utility programs included in the CDF standard distribution
package, and it allows users to create a CDF file without programming. SkeletonCDF reads a specially formatted text
file called a skeleton table and generates a skeleton CDF. Everything about a CDF can be specified in a skeleton table
except data values for variables that vary from record to record (record-variant). The toolkit program SkeletonTable is
also provided in the CDF standard distribution package, and it reads an existing CDF file and produces a skeleton table.
Below is a sample skeleton tablefile.

! Skeleton table for the "example" CDF.
! Generated: Wed 5 Jan 1994 10:53:58
fheader
CDF NAME: examplel
DATA ENCODING: NETWORK
MAJORITY: ROW
FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

#GLOBALattributes

25

!
!

! Attribute Entry
! Name Number
| e e
"TITLE" 1:
#VARIABLEattributes
"VALIDMIN"
"VALIDMAX"
#variables
! Variable Data
! Name Type
S —_——
"Time" CDF INT4
! Attribute Data
! Name Type
. —_——
"VALIDMIN" CDF _INT4
"VALIDMAX" CDF_INT4
! Variable Data
! Name Type
S — —_——
"Longitude" CDF_REAL4
! Attribute Data
! Name Type
| e —_ —_——
"VALIDMIN" CDF_REAL4
"VALIDMAX" CDF_REAL4

! NRV values follow...

[1, 1 1 = -165.0

[2, 11 =-150.0
Variable Data
Name Type
"Latitude" CDF_REAL4
! Attribute Data

Data
Type Value
CDF_CHAR {
Number Record
Elements Variance
1 T

Value

{ 0}

{ 2359 }

Number Record
Elements Variance
1 F

Value
{ -180.0 }
{ 180.0 }
Number Record
Elements Variance
1 F

26

"An example CDF (1).

Dimension
Variances

Dimension
Variances

Dimension
Variances

"VALIDMIN"
"VALIDMAX"

Type

CDF_REAL4
CDF_REAL4

! NRV values follow...

[1,

! Variable
! Name
"Temperature"
! Attribute
! Name
"VALIDMIN"

"VALIDMAX"

#end

1] = 40.
[1, 2] = 30.

Data
Type

CDF_REAL4

Data
Type

CDF_REAL4
CDF_REAL4

Number Record
Elements Variance

27

Dimension
Variances

Chapter 2

2 Concepts

2.1 CDF Library

The CDF library isthe only way to access a CDF. Various properties of the CDF library are described in the following
sections.

2.1.1 Interfaces

Two types of interfaces to the CDF core library exist for C and Fortran programs. the Standard Interface and the
Internal Interface. The Standard Interface is easier-to-use and requires a much shorter learning curve than the Internal
Interface, but it’s not as efficient as the Internal Interface. The Standard Interface is recommended if you are not
familiar with the Internal Interface. These interfaces are described in the following sections. The CDF Java Interface
is described in the CDF Java Reference Manual.

Standard Interface

There are two types of the Standard Interfaces: Original and New. The Original Standard Interface was introduced in
early 90's and they only provide a very limited functionality within the CDF library. For example, it can only handle
rVariables and can not handle zVariables and has no access to attribute’s entry corresponding to the zVariables
(zEntries). Up until CDF 2.7.2, if you wanted to create or access zVariables and zEntries, you had to use the Internal
Interface that is harder to use. The limitations of the Origina Standard Interface were addressed with the introduction
of the New Standard Interface in CDF 3.1. The New Standard Interface allows many new operations that were only
previously available through the Internal Interface. Both the Original Standard Interface and New Standard Interface
are callable from both C and Fortran applications and the functiong/subroutines available in these interfaces are
described in the CDF C Reference Manual and the CDF Fortran Reference Manual, respectively.

Internal Interface

The Internal Interface may be used to perform al supported CDF operations. The Interna Interface is much more
efficient than the Standard Interface, but it's a bit more difficult to learn. It should be used to perform those operations
not available with the Original Standard Interface and the New Standard Interface. The New Standard Interface offers
amost everything average and sophisticated CDF users need. The Internal Interface is callable from both C and
Fortran applications and its available operations are described in the CDF C Reference Manual and the CDF Fortran
Reference Manual, respectively.

28

CDF'sIDL Interface

IDL has a built-in support for CDF and CDF files can be created and manipulated in IDL. By default, CDF files
created in IDL 6.3 or later can't be read by IDL 6.2 or earlier, or CDF 2.7.2 or earlier. However, IDL 6.3 or later can
read files that were generated with IDL 6.2 or earlier, or CDF 2.7.2 or earlier. If you createfilesin IDL 6.3 or later and
want to share files with colleagues who access CDF files using IDL 6.2 or earlier, or CDF 2.7.2 or earlier, you can do
so by calling the CDF_SET _CDF27 BACKWARD_COMPATIBLE routine prior to creating CDF files (i.e.
CDF_CREATE). Note that if this option is used, the maximum file sizeis 2G bytes.

2.1.2 CDF Modes

Once a CDF has been opened (or created and not yet closed), the CDF library may be configured to act on that CDF in
one or more modes. These modes are specified independently for each open CDF.

Read-Only Mode

A CDF may be placed in read-only mode via the Interna Interfface using the
<SELECT_,CDF_READONLY_MODE_> operation*. Only read access will be allowed on the CDF - &l attempts to
modify the CDF will fail. A CDF may be toggled in and out of read-only mode any number of times (Note that
attempts to modify a CDF may also fail if insufficient access privileges exist for the CDF - the file system enforces this
access.)

zMode

A CDF may be placed into zMode? via the Interna Interface using the <SELECT _,CDF_zMODE_> operation. When
in zMode a CDF's rVariables essentially disappear and are replaced by corresponding zVariables.® Likewise, the
rEntries for a vAttribute become zEntries (because they are now associated with zVariables). While in zMode most
operations involving rVariables/rEntries will fail. (Some inquiry operations will be allowed. For example, inquiring the
number of rVariablesis allowed [but will aways be zero].) When zMode is used, the number of variables remains the
same - rVariables smply change into zVariables. Note that the existing contents of the CDF are not changed - the CDF
simply appears different.

Each new zVariable has the same exact properties as the corresponding (hidden) rVariable except for dimensionality
and variances. The data specification (data type and number of elements), pad value, etc. stay the same. The
dimensionality/variances of each zVariable are dependent on which zMode is currently being used: zMode/l or
zMode/2. In zMode/l the dimensionality/variances stay exactly the same. In zMode/2, however, those dimensions
with a false variance (NOVARY) are eliminated. Consider a CDF with an rVariable dimensionality of 2:[180,360]*
containing the following rVariables.

"' This notation is used to specify afunction to be performed on an item. The syntax is <function_,item_>.

2 There are actually two types of zMode — read on.

3 In afuture release of CDF, support for rVariables will be eliminated. zMode is provided to ease the transition from
rVariablesto the more extensible zVariables. rVariables are essentially a subset of zVariables.

“* This notation is used throughout this document. In this case there are two dimensions whose sizes are 180 and 360.
A dimensionality of zero isrepresented as O:[].

29

rVariable Name Variances

EPOCH T/IFF
LATITUDE TITF
LONGITUDE T/IFT
HUMIDITY TTT

If this CDF were to be placed into zMode/1, the following zVariables would replace the existing rVariables.

rVariable Name Dimensionality Variances
EPOCH 2:]180,360] T/IFF
LATITUDE 2:[180,360] T/ITF
LONGITUDE 2:[180,360] T/IFT
HUMIDITY 2:[180,360] TTT

Note that the dimensionality of each zVariable is the same as it was for the rVariables in the CDF. However, if
ZMode/2 were used, the following zVariables would replace the existing rValues.

rVariable Name Dimensionality Variances
EPOCH 0:[] T/
LATITUDE 1:[180] T/T
LONGITUDE 1:[360] TIT
HUMIDITY 2:]180,360] TTT

In this case the false dimensional variances were removed (which decreased the dimensionality in several of the
variables).

A CDF can be placed into or taken out of zMode any number of times while it is open. Each time the zMode is
changed for a CDF, it would be best to think of the CDF as being closed and reopened in that zMode. The numbering
of variable/entries may or may not be as you would expect (and the scheme used could change in a future release of
CDF). Most applications will simply select a zMode immediately after opening a CDF. (zMode being off is the default
if azModeis not selected.)

NOTE: Using zMode does not change the contents of a CDF. A CDF containing rVariables will appear to contain
only zVariableswhen in zMode. If the same CDF is then opened without using zMade, the rVariables will still exist.

-0.0t0 0.0 Mode

The floating-point value -0.0 is legal on those computers which use the |IEEE 754 floating-point representation (e.g.,
UNIX-based computers, the Macintosh, and the PC) but is illegal on VAXes and DEC Alphas running OpenVMS.
Attempting to use -0.0 results in areserved operand fault on aVAX and a high performance arithmetic fault on a DEC
Alpharunning OpenVMS. Because of this the CDF library can be told to convert -0.0 to 0.0 when read from or written
to a CDF. When reading from a CDF the values physically stored in the CDF are not modified - only the values
returned to an application are converted. When writing to a CDF the values physically stored are modified - -0.0 is
converted to 0.0 before being written to the CDF. This mode is available on all supported computers but is only really
necessary on VAXes and DEC Alphas running OpenVMS. The CDF library istold to convert -0.0 to 0.0 for a CDF via
the Internal Interface using the <SELECT ,CDF_NEGtoPOSfp0_MODE_> operation. When this mode is disabled, a
warning (NEGATIVE FP ZERO) is returned when -0.0 is read from a CDF (and the decoding is that of a VAX or
DEC Alpha running OpenVMYS) or written to a CDF (and the encoding is that of a VAX or DEC Alpha running
OpenvVMYS).

> This notation is also used throughout this document. The record variance is before the slash and the dimension
variances.

30

2.1.3 Limits
Open CDFs

The only limit on the number of CDFs that may be open simultaneously is the operating system's limit

on the number of open files that an application may have. Each open CDF will always have at least one associated
open file (the dotCDF file). The CDF library will open and close the variable files of a multi-file CDF as needed (see
Sections 2.3.3 and 2.3.4).

2.14 Scratch Files

The CDF library will make use of scratch files when necessary. These scratch files are associated with an open CDF.
Scratch files are used instead of core memory in an effort to prevent memory limitation problems (especially on the
Macintosh and PC). The following types of scratch files are used.

Staging The staging scratch file is used when a CDF contains compressed variables. As each
variable is accessed, a portion of the staging scratch file is alocated to hold a specific
number of uncompressed records for that variable. The number of records allocated
depends on the variable's blocking factor (see Section 2.3.12). The staging scratch file is
also used (when necessary) with variables having sparse records. If the records being
written are not first alocated, the staging scratch file will be used to minimize the
indexing overhead (see Section 2.2.7) by trying to keep consecutive records contiguous in
the dotCDF file.

Compression The compression scratch file is used when writing to a compressed variable in a CDF.
Because the CDF library does not know how well a block of variable records will
compress, the compression a gorithm first writes the compressed block to the compression
scratch file. The compressed block is then copied to the dotCDF file. Note that when
reading a compressed variable, a compressed block of records is decompressed directly to
the staging scratch file because the CDF library knows the size of the uncompressed block
of records.

Uncompressed dotCDF When overall compression is specified for a CDF, the CDF library maintains an
uncompressed version of the dotCDF file as a scratch file.

By default, these scratch files are created in the current directory. On VMS systems the logical name CDF$TMP can be
defined with an alternate directory in which to create scratch files. On UNIX and MS-DOS systems the environment
variable CDF TMP would be used. An application can also select a directory to be used for scratch files with the
<SELECT_,SCRATCHDIR_> operation of the Internal Interface (which will override a scratch directory specified
with CDF$TMP/CDF TMP).

The caching scheme used by the CDF library (see Section 2.1.5) affects how these scratch files can impact
performance. On machines with large amounts of core memory available, the cache size of a scratch files can be set
high enough to result in no blocks actually being written (paged out) to that file. In that case, the scratch file is more
like an allocated block of core memory.

2.1.5 Caching Scheme

The CDF library reads and writes to open files in 512-byte blocks. The CDF library for each open file maintains a
cache of 512-byte memory buffers. The CDF library attempts to keep in the cache the set of file blocks currently being
accessed. Thisresultsin fewer actual 1/O operations to the file if repeated accesses to these blocks would occur. When

31

the cache is completely full and a new block of the file is accessed, one of the cache buffers is written back to the file
(if it was modified) and the new block is read into that cache buffer (unless the file is being extended in which case the
cache buffer is simply cleared). This process is known as paging. By optimizing the number of cache buffersfor afile,
improved performance can be achieved. There is a tradeoff between having too few cache buffers and having too
many. Having too few cache buffers will cause excessive paging while having too many cache buffers may slow
performance because of the overhead involved in maintaining the cache (although thisis very rare). Having too many
cache buffers may also cause problems on machines having limited memory such as the PC and Macintosh.

The CDF library attempts to choose optima default cache sizes based on a CDF's format and the operating system
being used. This is difficult because the CDF library does not know how an application will access a CDF. For that
reason an application may specify, via the Internal Interface, the number of cache buffers to be used for a file. The
number of cache buffers may be changed as many times as necessary while afile is open (the first time will override
the default used by the CDF library). Default cache sizes may be configured for your CDF distribution when it is built
and installed. Consult your system manager for the values of these defaults (or use the CDFinquire toolkit program).

The situations in which it will be necessary to specify a cache size will depend on how a CDF is accessed. For
example, consider a variable in a multi-file, row-major CDF having a dimensionality of 2:[10,64], a data specification
of CDF REALS8/1, and variances of T/TT. This variable definition results in each record of the variable being spread
across 10 file blocks with the second dimension varying the fastest (since the CDF's variable mgjority is row-major). If
single value reads were used to access this variable (see Section 2.3.16), only one cache buffer would be necessary for
the variable file if the second dimension were incremented the fastest (i.e., [1,1], [1,2], ..., [10,63], [10,64]). Thisis
because the values of a record would be accessed sequentially from the first block to the last block. If, however, the
first dimension were incremented the fastest (i.e, [1,1], [2,1], ..., [9,64], [10,64]), 10 cache buffers would improve
performance. The values of arecord are not being accessed sequentially but rather each read would be from a different
block. Since the reads would be spread access 10 blocks, having (at least) 10 cache buffers would be optimal .

A similar situation arises when accessing standard variables in a single-file CDF. If values are accessed for each
variable at a particular record number, then performance will be improved by setting the number of cache buffers for
the dotCDF file to be equal to (or greater than) the number of variables. This is because the variable values will most
likely be located in that many different file blocks for a particular record number.

The Internal Interface is used to select and confirm the cache sizes being used for various files by the CDF library.
Confirming a cache size (if it has not been explicitly selected) will determine the default being used. The operations
used for each type of file are shownin Table 2.3.

NOTE: Thedefault cache sizes used by the CDF library are fairly conservativein order to minimize the

problems that can arise due to memory limitations (especially on computers having limited memory such as the PC and
Macintosh). If the performance of your application is critical, it is very important to experiment with using larger
cache sizes. Significant gains in performance can be achieved with the proper cache sizes. It is also important to
allocate records for uncompressed variables. This will reduce the fragmentation that can occur in the dotCDF file
(which degrades performance because of the increased indexing that occurs). Allocating variable records is described in
Section 2.3.12.

32

File type Selecting Confirming

dotCDF files <SELECT_,CDF_CACHESIZE > <CONFIRM_,CDF_CACHESIZE >
rVariablefile <SELECT ,rVAR CACHESIZE > <CONFIRM_,rVAR_CACHESIZE >
All rVariablefiles <SELECT ,rVARs CACHESIZE > <CONFIRM_,rVARs_CACHESIZE >
ZVariablefile <SELECT_,zVAR_CACHESIZE > <CONFIRM_,zZVAR_CACHESIZE >
All zVariable files <SELECT_,zVARs CACHESIZE > <CONFIRM_,zZVARs CACHESIZE_>
Staging scratch file <SELECT ,STAGE_CACHESIZE > <CONFIRM_,STAGE_CACHESIZE >

Compression scratch file <SELECT ,COMPRESS CACHESIZE > <CONFIRM_,COMPRESS CACHESIZE >

Table2.3 Cache Size Operations, Internal Interface

2.2 CDFs

The following sections describe various aspects of a CDF.

2.2.1 Accessing

All supported CDF operations are available using the Internal Interface. The New Standard Interface is capable is
doing amost all the CDF operations that are available with the Internal Interface. The Original Standard I nterface was
developed in early 90's and provides a very limited functionality, and its use is not recommended for users who are
creating new CDF files. If you have a CDF file that contains only rVariables (very old), you can either use the Original
Standard Interface or Internal Interface.

2.2.2 Creating

A CDF must be created by the CDF library. In a C application CDFs are created using either the CDFcreateCDF
function (New Standard Interface) or the <CREATE_, CDF_> operation of the CDFlib function (Interna Interface).
In a Fortran application CDFs are created using either the CDF _create cdf subroutine (New Standard Interface) or the
<CREATE_, CDF_> operation of the CDF _lib function (Internal Interface).

223 Opening

An application must open an existing CDF before access to that CDF is allowed by the CDF library. In aC application
CDFs are opened using either the CDFopenCDF function (New Standard Interface) or the <OPEN_,CDF_> operation
of the CDFlib function (Internal Interface). In a Fortran application CDFs are opened using either the CDF_open_cdf
subroutine (New Standard Interface) or the <OPEN_, CDF_> operation of the CDF_lib function (Internal Interface).

2.2.4 Closing

It is absolutely essential that a CDF that has been created or modified by an application be closed before the program
exits. If the CDF is not closed it will in most cases be corrupted and unreadable. This is because the cache buffers
maintained by the CDF library will not have been written to the CDF file(s). An existing CDF that has been opened
and only read from should also be closed. In a C application CDFs are closed using either the CDFcloseCDF function
(New Standard Interface) or the <CLOSE _,CDF_> operation of the CDFlib function (Internal Interface). In a Fortran
application CDFs are closed using either the CDF close cdf subroutine (New Standard Interface) or the
<CLOSE_,CDF_> operation of the CDF _lib function (Internal Interface).

¢ This also applies to the uncompressed CDF that is maintained as a scratch file.

33

2.2.5 Deleting

An open CDF may be deleted at any time. The dotCDF file is deleted along with any variable filesif a multi- file CDF.
Note that if the CDF is corrupted and cannot be opened by the CDF library you will have to delete the CDF filg(s)
manually using the capabilities of the operating system being used. In a C application CDFs are deleted using either
the CDFdeleteCDF function (New Standard Interface) or the <DELETE ,CDF > operation of the CDFlib function
(Internal Interface). In a Fortran application CDFs are deleted using either the CDF_delete cdf subroutine (New
Standard Interface) or the <DELETE_,CDF > operation of the CDF lib function (Internal Interface).

2.2.6 Naming

The file name specified when opening or creating a CDF can be any legal file name for the operating system being
used. Thisincludeslogica symbols on VMS systems and environment variables on UNIX systems. Trailing blanks
are also allowed but will be ignored. This is so Fortran applications do not have to be concerned with the trailing
blanks of a Fortran CHARACTER variable. (C character strings use terminating NUL characters.)

In dmost al cases when a CDF file name is specified, the .cdf extension should not be appended.” (It will be appended
automatically by the CDF library.) The exception to this is when a user has renamed an existing CDF with a different
extension or with no extension (for whatever reason). When a CDF is opened, the CDF library first appends the .cdf
extension to the file name specified and then checks to seeiif that file exists.® If not, the CDF library will also check to
seeif afile exists whose file name is exactly as specified (without .cdf appended). If thisisthe case, the CDF must be
single-file. If the CDF is multi-file, an error occurs since the CDF library would have no idea as to how the variable
files had been renamed. Note aso that the CDF library always appends .cdf to the file name specified when creating a
CDF.

NOTE: The CDF toolkit programs will in some cases not recognize a CDF if it does not have an extension
of .cdf.°

2.2.7 Format

There are two CDF formats: multi-file and single-file. The choice of which format to use will depend on how the CDF
is to be accessed. Note that the CDFconvert toolkit program can be used to change the format of an existing CDF
(creating a new CDF with the desired format).

The default format for a created CDF is single-file, and it can be changed if needed. In a user application, the Internal
Interface must be used to change the format of a CDF by using the <PUT_,CDF_FORMAT _> operation of the Internal
Interface. The format of an existing CDF can be changed only if no variables have been created in the CDF. If the
SkeletonCDF toolkit program is used to create a CDF, the format is specified in the skeleton table (see Appendix A).

Single-File CDFs
A single-file CDF (SINGLE FILE) consists of only one file (with extension .cdf). This file is referred to as the

dotCDF file. The dotCDF file contains the control information for the entire CDF, the attribute entry data, and all of
the variable data. Anindexing scheme is used to provide efficient access to variable records.

7 6Thefile of a CDF having an extension of .cdf isreferred to as the dotCDF file.

¢ Actually, the CDF library will check several possible extensions: .cdf, .cdf;1, .CDF, and .CDF;1. These extensions
are checked because some CD-ROM drivers (primarily on UNIX machines) do peculiar things when making the files
(e.g., CDFs) on aCD-ROM visible.

? Or .cdf;1 or .CDF or .CDF;1.

34

Indexing Scheme. In single-file CDFs an indexing scheme is used to keep track of where a variable's records are
located within the dotCDF file. The order that variable (and attribute entry) values are written to a single-file CDF by
an application may result in a variabl€e's records being noncontiguous. There will be blocks of contiguous records, but
these blocks will not be contiguous in the dotCDF file.

For each variable in a single-file CDF one or more index records will exist. Each of these index records will contain
one or more index entries. Because the indexing scheme is now hierarchical,** each index entry will point to either
another index record (at a lower level in the hierarchy) or to a block of contiguous variable records (at the lowest level
of the hierarchy). An index entry consists of the following fields:

FirstRecord The number of the first record in a block of contiguous variable records or the first record
indexed in alower-level index record.

LastRecord The number of the last record in a block of contiguous variable records or the last record
indexed in alower-level index record.

ByteOffset The byte offset within the dotCDF file of the block of contiguous variable records or the
byte offset of alower-level index record.

To find a particular variable record the CDF library must search through the index entries for that variable. Improved
performance will result if there are fewer index entries to search. This can be achieved by having a larger number of
records in each block of contiguous variable records (resulting in fewer overall index entries). Techniques used to
achieve fewer index entries are outlined in the Allocated Records and Blocking Factor descriptionsin Section 2.3.12.

It is possible to inquire the indexing statistics for a variable. Using the Internal Interface, an application may inquire
the number of indexing levels in the hierarchy, the number of index records, and total number of entries for a variable
using the <GET_,1/ZVAR_NINDEXLEVELS >4 <GET_,r/zZVAR_nINDEXRECORDS_>, and
<GET_,r/zZVAR_nINDEXENTRIES > operations.

Multi-File CDFs

A multi-file CDF (MULTI FILE) consists of one file (with extension .cdf referred to as the dotCDF file) containing
control information and attribute entry data and a separate file for each variable defined in the CDF (with extensions
VvO0,.vl, ... for rVariables and .z0,.z1, ... for zVariables). Each variable file contains the data values for the
corresponding variable. (The control information for each variable is stored in the dotCDF file.)

Performance

The most efficient access to CDF variables will usually occur when the CDF has the multi-file format. The extra
overhead involved with the indexing scheme used in single-file CDFsis small, so the difference may not be significant
(especially if hyper reads/writes are used). The drawback to using the multi-file format is that more than one file is
associated with a CDF (which may or may not be a problem for your system management).

There is a case in which the single-file format may be more efficient. If a CDF has alarge number of variables (larger
than the number of files that may be open at once by an application) and the variables values are accessed variable-by-
variable (rather than accessing an entire variable before going to the next variable), the multi-file format may be much
dower than the single-file format. This is because the CDF library will have to close one variable file and then open
another as each variable value is accessed by the application (since the operating system's open file limit will be

' Asof CDF 2.6.
11 This notation is used when an operation exists for both rVariables and zVariables. In this case, the actual operations
are <GET_,zZVAR_nINDEXLEVELS > and <GET_,r'VAR_nINDEXLEVELS >.

35

reached). If the application was to access every value for a variable before going on to the next variable, this would not
occur (but it might create complications for the application).

Note that the format of a CDF can also be converted using the CDFconvert toolkit program (which creates a new CDF
with the specified format). Section 3.4 describes CDFconvert.

2.2.8 Encoding

The encoding of a CDF determines how attribute entry data and variable data values are stored on disk in the CDF
file(s). An application program never has to concern itself with the encoding of the CDF being accessed. The CDF
library automatically performsall of the encoding and decoding of data values for the application.

A CDF's encoding is specified when the CDF is created when using the Original Standard Interface but is set to the
default encoding for your CDF distribution when created using the Internal Interface or the New Standard Interface.
The encoding of an existing CDF may be changed with the Internal Interface or the New Standard Interface if no
variable values or attribute entries have been written (variables and attributes may exist, however). If the SkeletonCDF
toolkit program is used to create a CDF the encoding is specified in the skeleton table.

The encoding specified when creating/modifying a CDF may be any of the native encodings for the computers
supported by CDF in addition to network (XDR) encoding.*> A CDF with any supported encoding is also readable on
any computer supported by CDF.

Host Encodings
Host encoding (HOST_ENCODING) is the default, and it specifies that variable and attribute entry data values be

written to the CDF in the native encoding of the computer being used. In addition, the following explicit host
encodings are supported:

VAX_ENCODING VAX and microVAX computers. Double-precision floating-point values are
encoded in Digital's D FLOAT representation.

ALPHAVMSd ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSg ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in Digital's G FLOAT representation.

ALPHAVMSi_ENCODING DEC Alpha computers running OpenVMS. Double-precision floating-point
values are encoded in | EEE representation.

ALPHAOSF1_ENCODING DEC Alpha computers running OSF/1.

SUN_ENCODING Sun computers.

SGi_ENCODING Silicon Graphics Iris and Power Series computers.

DECSTATION_ENCODING DECstation computers.

IBMRS_ENCODING IBM RS6000 series computers.

HP_ENCODING HP 9000 series computers.

"2 This is a change from previous releases of CDF.

36

PC_ENCODING PC personal computers.
NeXT_ENCODING NeXT computers.
MAC_ENCODING Macintosh computers.

When HOST_ENCODING is specified, it is translated to the actual host encoding from the above list. All host
encodings are readable and writeable on any machine supported by CDF.

Network Encoding

Network encoding (NETWORK_ENCODING) specifies that variable and attribute entry data values be written to the
CDF in the XDR (External Data Representation) format. As values are written to the CDF, the CDF library encodes
them into the network encoding. Network encoded CDFs are readable and writeable on any machine supported by
CDF (as are all of the other encodings).

Equivalent Encodings

While an encoding exists for each supported computer, not every encoding is different. The following sections describe
which computers use the same encoding for the various data types.

Character/1-Byte Integer Data Types Since each supported computer uses the ASCII character set and orders the
bits in a byte the same way, the character and 1-byte integer data types (CDF CHAR, CDF UCHAR, CDF BYTE, CDF
INT1, and CDF UINT1) are encoded in the same way on each.

Multiple-Byte Integer Data Types The multiple-byte integer data types (CDF INT2, CDF UINT2, CDF INT4, and
CDF UINT4) are encoded in one of two ways:. big-Endian or little-Endian. Big-Endian has the least significant byte
(LSB) in the highest memory location while little-Endian has the LSB in the lowest memory location. The supported
computers use big-Endian or little-Endian as shown in Table 2.4. Network (XDR) encoding uses big-Endian encoding
for multiple-byte integer data types.

Big-Endian Little-Endian

Sun VAX

SGi Iris DECstation

IBM RS6000 PC

HP 9000 DEC Alpha (OSF/1)
NeXT DEC Alpha (OpenVMS)
Macintosh

(Network - XDR)

Table2.4 Equivalent Byte Orderings

Single-Precision Floating-Point Data Types The single-precision floating-point encodings on the supported
computers are either |IEEE 754 floating-point or Digital's F FLOAT floating-point. There are also two different byte
orderings for the computers that use IEEE 754 (big-Endian and little-Endian). The single-precision floating-point
encodings for each supported computer are shown in Table 2.5. Network (XDR) encoding uses | EEE 754 (big-Endian)
encoding for single-precision floating-point data types.

37

|EEE 754 (Big Endian) IEEE 754 (Little Endian) Digital'sF FLOAT

Sun DECstation VAX

SGi lris DEC Alpha (OSF/1) DEC Alpha/ OpenVMS/D
IBM RS6000 DEC Alpha (OpenVMS/I1) DEC Alpha/ OpenVMS/G
HP 9000

NexXT

Macintosh

(Network - XDR)

Table2.5 Equivalent Single-Precision Floating-Point Encodings

Double-Precision Floating-Point Data Types The double-precision floating-point encodings on the supported
computers are either IEEE 754 floating-point, Digital's D FLOAT floating-point, or Digital's G FLOAT floating-point.
There are also two different byte orderings for the computers that use |IEEE 754 (big-Endian and little-Endian). The
double-precision floating-point encodings for each supported computer are shown in Table 2.6. Network (XDR)
encoding uses |IEEE 754 (big-Endian) encoding for double-precision floating-point data types.

IEEE 754 (Big Endian) |IEEE 754 (Little Endian)
Sun DECstation

SGi Iris PC

IBM RS6000 DEC Alpha/OSF/1

HP 9000 DEC Alpha/OpenVM S/
NeXT

Macintosh

(Network - XDR)

Digital'sD FLOAT Digital's G FLOAT

VAX DEC Alpha/OpenVMS/G

DEC Alpha/OpenVMS/D

Table2.6 Equivalent Double-Precision Floating-Point Encodings

Performance

The best performance when accessing (reading or writing) a CDF will occur when that CDF is in the host encoding of
the computer being used (and host decoding isin effect). Thisis because no encoding or decoding has to be performed
by the CDF library. A CDF that must be portable between two or more different types of computers should normally
be network encoded. There may be cases, however, where it would be desirable to create a CDF with host encoding
(e.g., on a slow machine) and then transfer it to a faster machine for processing or conversion to another encoding.
Obvioudly, there are trade-offs as to which encoding should be used in any one particular case. Keep in mind that a
CDF can always be converted to the host encoding of the machine being used (with the CDFconvert utility included in
the CDF standard distribution package) before being accessed.

2.2.9 Decoding

The decoding of a CDF determines how attribute entry and variable data values are passed to a calling application
program from the CDF library. The default decoding when a CDF is initially opened is host decoding (the native
encoding of the computer being used). When host decoding is in effect, all data values read by an application are
immediately ready for manipulation and display. Almost al of your applications will simply use the default of host

38

decoding and not be concerned with selecting a decoding. There are some situations, however, where selecting a
different decoding will be advantageous. Some possibilities are as follows:

1. A client/server model where a number of CDFs are maintained on a server computer (in any of the supported
encodings). Clients on different type computers could request data from a CDF on the server computer. The
server computer would then select a decoding for the CDF based on the client's computer type and then read the
data value(s). The value(s) could then be sent directly to the client computer by the server computer without a
conversion being necessary by either the client or the server. The CDF library would perform the necessary
conversions.

2. If data values were being read from a CDF and written in binary form to a file for use on a different type
computer. The proper decoding could be selected for the CDF before any of the data values are read. No
conversions would be necessary by the application program.

A CDF's decoding may be selected and reselected at any time after the CDF has been opened and as many times as
necessary. A CDF's decoding is selected via the Internal Interface with the <SELECT_,CDF _DECODING >
operation. Also, a CDF's decoding does not affect the values that already exist in a CDF or any values subsequently
written. A CDF's encoding determines how the values are written to the CDF file(s). Section 2.2.8 describes a CDF's
encoding.

The supported decodings correspond to the supported encodings. They are as follows:

HOST_DECODING The data representation of the host computer. Thisis the default.

NETWORK_DECODING The External Data Representation (XDR).

VAX_DECODING VAX and microVAX data representation. Double-precision floating-point
valueswill bein Digital's D FLOAT representation.

ALPHAVMSd DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in Digital's D FLOAT representation.

ALPHAVMSg DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will bein Digital's G FLOAT representation.

ALPHAVMSi_DECODING DEC Alpha running OpenVMS data representation. Double-precision
floating- point values will be in |EEE representation.

ALPHAOSF1_DECODING DEC Alpharunning OSF/1 data representation.

SUN_DECODING Sun data representation.

SGi_ DECODING Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING DECstation data representation.

IBMRS_DECODING IBM RS6000 series data representation.

HP_DECODING HP 9000 series data representation.

PC_DECODING PC data representation.

NeXT_DECODING NeXT data representation.

MAC_DECODING Macintosh data representation

39

Performance

The best performance when reading a CDF will occur when the CDF's decoding is the same as the CDF's encoding
since no conversion will have to be performed by the CDF library. Since host decoding is the only directly usable
decoding by an application, CDFs with the host's encoding will provide the best performance. Care should be taken
when selecting the encoding for a CDF.

2.2.10 Compression

A compression may be specified for individual variables and/or a single-file CDF that is performed when the CDF is
closed and written to disk.** When compression is specified for a CDF, the CDF library maintains an uncompressed
version of the dotCDF filein a scratch file. When the CDF is closed, the uncompressed dotCDF file is compressed and
written to the file with the name specified when the CDF was opened/created. If the application program closing the
CDF were to abnormally terminate before the dotCDF file was successfully compressed and written, the uncompressed
dotCDF scratch file would remain in the scratch directory. The scratch directory used by the CDF library is described
in Section 2.1.4.

Overall compression for a CDF is specified with the <PUT_,CDF_COMPRESSION_> operation of the Interna
Interface. It may be respecified as often as desired. A CDF's overall compression may be inquired using
the <GET_,CDF_COMPRESSION_> operation for an open CDF and the <GET_,CDF_INFO_> operation for aCDF

that has not been opened (which saves the overhead of actually decompressing the CDF). The available compression
algorithms are described in Section 2.6.

2.2.11 Limits

Limits within a CDF are defined in the appropriate include files: cdf.h for C applications and cdf.inc for Fortran
applications. The following limits exist:!4

CDF_MAX_DIMS The maximum number of dimensions that rVariables/zV ariables may have.

CDF_VAR_NAME_LEN256 The maximum number of characters in a variable name. This limit was
extended in CDF 3.0 to allow to create alonger variable name.

CDF_ATTR_NAME_LEN256 The maximum number of characters in an attribute name. This limit was
extended in CDF 3.0 to allow to create alonger attribute name.

CDF_PATHNAME_LEN The maximum number of charactersin the name of afile used to specify a CDF.

Most of these limits can be raised. Contact CDF User Support if that becomes necessary.

23 Variables

CDF's"variable" is ageneric name or an object that represents data where data can be O-dimensional (scalar data) or
multi-dimensiona (up to 10-dimension), and it does not have any scientific context associated it. For example, a

13 Compression is not alowed with multi-file CDFs.
4 Previous releases of CDF limited the number of variables a CDF could contain. That limit has been eliminated
except for multi-file CDFs on an PC because of the 8.3 naming convention.

40

variable can be data representing an independent variable, a dependent variable, time and date value, or whatever data
might be (e.g. image, XML file, etc.). In other words, the variable doesn't contain any hidden meanings other than the
dataitself. One may describe one variable's relationship with other variable(s) through "attributes'.

There are two types of variables (rVariable and zZVariable) in CDF, and they can happily coexist in aCDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVVariablesin a CDF must have the same dimensions and dimension sizes, therell be
alot of disk space wasted if afew variables need big arrays and many variables need small arrays. Since zVariableis
more efficient in terms of storage and offers more functionality than rVariable, use of zVariableis strongly
recommended. Asamatter of fact, there’' s no reason to use rVariables at al if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zZVariables. When CDF wasfirst introduced, only
rVariables were available. Theinefficiencieswith rVariables were quickly realized and addressed with the introduction
of zVariablesin later CDF releases.

2.3.1 Types

With the introduction of compression and sparseness for variables, there now exist several different types of variables
(in addition to the distinction between rVariables and zVariables). The various types of variables are asfollows. . .

"standard variable" A variable in asingle-file CDF that is not compressed nor has sparse records
or arrays.
"compressed variable" A variable in asingle-file CDF that is compressed and may or may not have

gparse records (but cannot have sparse arrays).

"variable with sparse records’ A variable in a singleffile CDF that has sparse records and may be
compressed, have sparse arrays, or have neither.

"variable with sparse arrays' A variable in a single-file CDF that has sparse arrays and may or may not
have sparse records (but cannot be compressed).

"multi-file variable" A variable in a multi-file CDF. It cannot be compressed, have sparse
records, or have sparse arrays.

Theterm "variable" is used when a discussing a property that appliesto all of the various variable types.

23.2 Accessing

The Original Standard Interface deals exclusively with rVariables while the New Standard Interface deals zVariables.
The Internal Interface may be used to access either rVariables or zVariables.

233 Opening

The CDF library automatically opens the variable files in a multi-file CDF as the variables are accessed. An
application never has to concern itself with opening variables. The opening of variables does not apply to single-file
CDFssinceindividual files do not exist for each variable.

2.34 Closing.

41

The CDF library automatically closes the variable files in a multi-file CDF when the CDF itself is closed by an
application.*® Variable files are also closed automatically by the CDF library as other variables are accessed if
insufficient file pointers exist to keep all of the variables open at once This would be due to an open file quota
enforced by the operating system being used.

A case aso exists where it may be beneficial for an application to close avariable in amulti-file CDF. Since each open
variable file uses some number of cache buffers, alarge amount of system memory could be in use (see Section 2.1.5).
This may not be a problem on VAX or UNIX machines but could result in a program crashing on an MS-DOS
machine. If memory is limited, an application may want to close variables after they have been accessed in order to
minimize the total number of cache buffers being used. In a C application rVariables are closed using either the
CDFvarClose function (Standard Interface) or the <CLOSE_,rVAR_> operation of the CDFlib function (Interna
Interface). zVariables are closed using the <CLOSE ,zZVAR_> operation of the CDFlib function (Internal Interface).
In a Fortran application rVariables are closed using either the CDF _var_close subroutine (Standard Interface) or the
<CLOSE ,rVAR > operation of the CDF lib function (Internal Interface). zVariables are closed using the
<CLOSE_,zVAR_> operation of the CDF lib function (Internal Interface).

The closing of variables does not apply to single-file CDFs since individual files do not exist for each variable.

235 Naming

Each variable in a CDF has a unique name. This applies to rVariables and zVariables together (i.e., an rVariable
cannot have the same name as azVariable). Variable names are case sensitive regardless of the operating system being
used and may consist of up to CDF_ VAR NAME LEN or CDF_VAR_NAME_LEN256 printable characters
(including blanks). Trailing blanks, however, are ignored when the CDF library compares variable names. "LAT"
and "LAT " are considered to be the same name, so they cannot both exist in the same CDF. This was done because
Version 1 of CDF padded variable names on the right with blanks out to eight characters. When aVersion 1 CDF was
converted to a Version 2 CDF these trailing blanks remained in the variable names. To alow CDF Version 2
applications to read such a CDF without having to be concerned with the trailing blanks, the trailing blanks are ignored
by the CDF library when comparing variable names. The trailing blanks are returned as part of the name, however,
when avariableis inquired by an application program.

2.3.6 Numbering

TherVariablesin a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. Likewise, the zVariables in a CDF are numbered consecutively starting at one (1) for Fortran
applications and starting at zero (0) for C applications. The CDF library assigns variable numbers as the variables are
created.

2.3.7 Deleting

A variable may be deleted from a single-file CDF.*¢ Deleting a variable also causes the deletion of the corresponding
attribute entries for the variable. The disk space used by the variable definition, the variable's data records, and the
corresponding attribute entries becomes available for use as needed by the CDF library. Also, the variables which
numerically follow the variable being deleted are renumbered immediately. (Each is decremented by one.)

2.3.8 Dimensionality

It isrequired that an application close a CDF before exiting.
' Variables may not currently be deleted from a multi-file CDF.

4

Variable values are stored in arrays. A variable's dimensionality refers to the number of dimensions and the dimension
sizes of these arrays.

Each rVariable in a CDF has the same dimensionality. An array of values exists for each rVariable at each record in a
CDF. The values may not be physically stored but may be virtual.

A zVariable may have a dimensionality which is different from that of the rVariables and the other zVariables. An
array of values exists for each zVariable at each record in a CDF. Aswith rVariables the values may not be physically
stored but may be virtual. zVariables are intended for use in those situations where using an rVariable would waste disk
space or not logically make sense.

A variable array having two or more dimensions also contains subarrays. For instance, in a 3-dimensional array with
dimension sizes [10,20,30], each array consists of ten 2-dimensiona subarrays of size [20,30], and each of those 2-
dimensional subarrays consists of twenty 1-dimensional subarrays of size [30]. Subarrays will be referred to when
discussing other properties of CDF variables.

239 Data Specification

Each variable in a CDF has a defined data specification. A variable's data specification consists of a data type and a
number of elements of that datatype. A variable's data specification is specified when the variable

is created. The data specification of an existing variable may aso be changed if either of the following conditions is
true.

1. Values have not yet been written to the variable (including an explicitly written pad value - see Section
2.3.20).

2. The old data type and new data type are considered equivalent, and the number of elements for the variable are
the same. Equivalent data types are described in Section 2.5.5.

Data Type
The supported data types are described in Section 2.5. Variables having any combination of data types may exist in the
same CDF.
Number of Elements
In addition to a data type, each variable also has a number of elements. This refers to the number of elements of the
data type at each variable value. For character data types (CDF CHAR and CDF UCHAR) this is the number of
charactersin each string. (A variable value consists of the entire character string.) The character string can be thought

of as an array of characters. For non-character data types, this must always be one (1). An array of elements per
variable value is not allowed for non-character data types.

2.3.10 Record Variance

A variable's record variance specifies whether or not the variable's values change from record to record. The effect of a
variable's record variance is defined as follows.

VARY The values do change from record to record. Each variable record is physically written with

no gaps between records (i.e., if a record more than one beyond the maximum record is
written, the intervening records are also physically written and contain pad values). If a

43

record is read beyond the maximum record written to a variable, the pad vaue for the
variableisreturned. Variables of thistype are referred to as record-variant (RV).

NOVARY The values do not change from record to record. Only one record is physically written to
the variable. Each record contains the same values (including virtua records beyond the
first record). Variables of thistype are referred to as non-record-variant (NRV).

Section 2.3.12 describes variable records in more detail.

A variable's record variance is specified when the variable is created. The record variance of an existing variable may
be changed only if values have not yet been written to that variable. (An explicit pad value may have been specified
however.)

2.3.11 Dimension Variance

A variable's dimension variances specify whether or not the values change along the corresponding dimension. The
effects of adimension variance are defined as follows:

VARY The values do change along the dimension. All of the values for the dimension (or al of
the subarrays) are physically stored.

NOVARY The values do not change along the dimension. Only one value (or subarray) is physicaly
written for that dimension. Each value (or subarray) along that dimension is the same
(including virtual values/subarrays beyond the first value/subarray).

Figure 2.1 illustrates the effect of dimension variances on a variable with 2-dimensional arrays (for a particular record).
For variable 1 each value in the array is physically stored and therefore unique. Because variable does not vary aong
the second dimension, each value along that dimension is the same so only one value for that dimension is physically
stored (the other values are virtual). The same is true for variable 3 which does not vary aong the first dimension.
Variable 4 does not vary along either dimension. Only one value is physically stored for the array - al of the other
values are the same (they are virtual).

A variable's dimension variances are specified when the variable is created. The dimension variances of an existing
variable may be changed only if values have not yet been written to that variable. (An explicit pad value may have
been specified, however.)

rVariable 1 rVariable 2 rVariable 3 rVariable 4
(VARY, VARY) (VARY, NOVARY) (NOVARY, VARY) (NOVARY, NOVARY)
allallal||a _a_|) c_?[e | alllallallalla
b||b b b a b . b l d e a a a a a
i R N [N a bllc|[d]]e a a||a alla
physical value - virtual value

Figure2.1 Physical vs. Virtual Dimensions

44

2.3.12 Records.

A CDF record is a set of variable arrays, one per rVariable and one per zVariable in the CDF. The variable arraysin a
particular record are generally related to each other in some way (often time). This does not have to be the case and is
not enforced by the CDF library in any way. A variable record is simply the corresponding variable array within a
CDF record.

Physical variable records are actually stored in the CDF file(s). Virtual variable records are not actually stored but do
exist in the conceptual view of the variable provided by CDF. Virtua records can occur in a CDF because of the
following reasons:

1. If avariable's values do not vary from record to record (record variance of NOVARY), al of that variable's
records beyond the first one are virtual and have the same values as the first record (only the first record is
physically stored). If arecord has not yet been written to that variable, then al of its records are virtual and
contain the pad value for that variable.

2. If avariable's values do vary from record to record (record variance of VARY), then the records beyond the
last record actually written are virtual and contain the pad value for that variable.

3. If avariable has sparse records, then any unwritten records for that variable are virtual and contain either the
pad value for that variable or the previous existing record's values (depending on the type of sparse records).
Sparse records are described on page 48.

Record variance is described in Section 2.3.10. Variable pad values are described in Section 2.3.20.

The maximum record written is maintained by the CDF library for each variable in the CDF. The "maximum CDF
record" is smply the maximum rVariable record written (of al the rVariables). This quantity is available through the
Standard Interface when inquiring about a CDF. Because the Standard Interface does not allow access to zVariables,
ZVariables are not considered when determining the "maximum CDF record.” The "maximum CDF record" would be
used by applications dealing only with rVariables. The maximum record written for each rVariable and zVariable is
available viathe Internal Interface.

Figure 2.2 illustrates the rel ationships between physical and virtual records for a standard variable. Variable 1 hasfive
records that were physically written. Only two records were physically written to variable 2 so the following records
are virtua (containing the pad value for that variable). Only one record can be physically written to variable 3 because
its record variance is NOVARY . The other records are virtual and contain the same values as the first record. Because
a record has not been physically written to variable 4, all of its records are virtual containing the pad value for that
variable. Likewise, since no records have been written to variable 5, al of its records are also virtual and contain the
pad vaue for that variable.

45

46

rVariable 1 rVariable 2 rVariable 3 rVariable 4 rVariable 5
(VARY) (VARY) (NOVARY) (NOVARY) (VARY)

) [

|

Iiglipiligiigl

[1|| physical record virtual record

Figure2.2 Physical vs. Virtual Records, Standard Variable

Note that a variable's records do not have to be written sequentially starting at the first record. The records may be
written in any order. For a variable not having sparse records with a VARY record variance, if a new record more than
one record beyond the current maximum record for the variable is written, the intervening records will be physically
written and contain the pad value for that variable. For avariable having sparse records, only those records written by
an application are physically stored. Unwritten records are virtual as described in Spar se Records on 48.

47

Also, when one or more values are written to a new physical record, the entire record is physically written with the pad
value for the variable being used for the unspecified values (if any). The remaining values in the record may or may
not be subsequently written. Variable pad values are described in Section 2.3.20.

Numbering

The record numbers in a CDF are numbered starting at one (1) for Fortran applications and starting at zero (0) for C
applications.

Spar se Records

A variable in a single-file CDF can be specified as having sparse records.'” If so, then only those records that are
explicitly written to the variable will be physically stored. If avariable is not specified as having sparse records, then
all of the records up to the maximum written will be physically stored. Sparse records are only allowed in single-file
CDFs (where the indexing scheme used for variable records makes this possible). Considerable disk space can be saved
in the dotCDF file for avariable that has gaps of missing dataif that variable is specified as having sparse records.

For an uncompressed variable having sparse records, it is also beneficial if the blocks of records that are going to be
written can first be allocated. This will allow the CDF library to optimize the indexing for the variable. Otherwise, the
CDF library will use the staging scratch file to minimize the indexing needed. Note that records cannot be allocated for
compressed variables (whether or not they have sparse records).

Two types of sparse records can be specified for avariable. They differ only in how unwritten records are presented in
the conceptual view of the variable. These missing records are considered virtual records just like the records beyond
the last record written. Pad-missing sparse records specifies that when a virtual record is read the variable's pad value
should be returned. Previous-missing sparse records specifies that when a virtual record is read the previous existing
record's values should be returned. If aprevious record does not exist, the variable's pad value will be returned.

Note that previous-missing sparse records can also be used to save disk space for avariable if that variable's values do
not change from record to record except occasionally. If the only records written were those that changed from the
previous record, then the virtual records following each record actually written (physically stored) would all have the
same value(s). This could save considerable disk space if the values do not change often. For example, consider a O-
dimensional variable having previous-missing sparse records that is being used to store temperature data. Each record
corresponds to a temperature reading at a given time. Table 2.7 shows how the variable might appear conceptually
along with which records are physically stored. Note that only three records are physically stored but that nine records
appear in the conceptual view of the variable.

Sparse records are specified for a variable using the <PUT_,r/zZVAR_SPARSERECORDS > operation of the Internal
Interface. One of the following types of sparse records must be specified:

NO_SPARSERECORDS The variable does not have sparse records.

PAD_SPARSERECORDS The variable has pad-missing sparse records. The notation sRecords.PAD is
used by the CDF toolkit for pad-missing sparse records.

PREV_SPARSERECORDS The variable has previous-missing sparse records. The notation
sRecords.PREV is used by the CDF toolkit for previous-missing sparse
records.

'7 Sparse records are not allowed for avariable in amulti-file CDF.

48

Record Temperature
1 1014 (Physical)
2 101.4 (Virtual)
3 101.5 (Physical)
4 1015 (Virtual)
5 1015 (Virtual)
6 101.5 (Virtua)
7 1015 (Virtual)
8 101.6 (Physical)
9 101.6 (Virtua)

Table2.7 Previous-missing Spar se Records Example, Conceptual View vs. Physical Storage

The<GET _,r/zZVAR_SPARSERECORDS > operation can be used to inquire the type of sparse records.

Allocated Records.

The Internal Interface may be used to allocate records for an uncompressed variable in asingle-file CDF*® Normally the
number of records allocated would be the number that are to be written (assuming this can be determined). This can
greatly improve performance when writing (and reading) values for the variable because of reduced overhead when
searching the index entries (as described in Section 2.2.7). The application is normally expected to write to all of the
allocated records. For NRV variables, only one record may be allocated (because only one record will ever physically
exist). If the variable has sparse records, only those blocks of records that are going to be written would be allocated.
Records cannot be allocated by an application for compressed variables because they are alocated automatically by the
CDF library when their compressed size is known.

Performance is improved when using this method because the alocated records will be as contiguous as possible
requiring the fewest number of index entries. This will greatly improve the time needed to locate a particular record
when the variable is accessed. In addition, the CDF will be slightly smaller because of the reduced number of index
records.

Note that records do not have to be allocated by an application before they are written to avariable. The CDF library
will automatically allocate any needed records based on the variable's blocking factor. Also, records may be alocated
at any time (not only before records have been written as in previous CDF releases).

Records are alocated using the <PUT_,r/zZVAR_ALLOCATERECS > and <PUT_,r/zZVAR_ALLOCATEBLOCK_>
operations of the Interna Interface. The number of records alocated for a variable can be inquired using the
<GET_,r/lzZVAR_NUMallocRECS > operation. The maximum record allocated for a variable can be inquired using the
<GET_,r/lzZVAR_MAXallocREC > operation. The exact records allocated for a variable can be determined using a
combination of the <GET_,1/zZVAR_ALLOCATEDTO_> and <GET_,r/zVAR_ALLOCATEDFROM_> operations.

Initial Records

The Internal Interface may be used to specify an initial number of records to be written for avariable.*® The pad value
for the variable is written at each record asif the application had done so itself. The Internal Interface allows this to be
done more conveniently with only one function call. Note that the default pad value for the variable's data type will be
used unless a pad value is explicitly specified for the variable. |f a specific pad value is desired for a variable, then it
must be specified before the number of initial records is specified. Also, any compression or sparseness for the

'® There is no reason to allocate records for avariable in amulti-file CDF.
' The use of alocated records would in most cases be more efficient than specifying initial records.

49

variable must be specified before writing the initial records because those properties cannot be changed after records
have been written.

Specifying a number of initial records for a variable would usually be done only for a CDF with the single-file format.
Because the records would be allocated as contiguously as possible within the CDF file, the indexing scheme (see
Section 2.2.7) would require fewer entries making the access to that variable more efficient. Note that this method is
not as efficient as allocating records in those cases where all of the records are going to be written by the application.
This is because the records would be written twice - once with the pad value and then again by the application.

The number of initial records specified would in most cases be the number of records planned for a variable. Note that
additional records may be added to avariable at any time. For NRV variables the number of

initial records must always be specified as one (1). This is because only one physical record will ever actually be
written. Initial records for a variable may be specified only once.

Initial records are written to variables using the <PUT_,r/zZVAR_INITIALRECS > operation of the Interna Interface.
Explicit pad values are specified using the <PUT_,r/zZVAR_PADVALUE_> operation.

Blocking Factor.

A variable's blocking factor® affects how records are alocated in the CDF file(s). For NRV variables the blocking
factor is not applicable because only one physical record will ever exist. For variablesin amulti-file CDF the blocking
factor is not used because only those records written by an application will existin the variable files. But for the other
types of variables in a single-file CDF the blocking factor can have a significant impact. The following sections will
describe how a variable's blocking factor is used in each case.

Standard Variables Space in the dotCDF file for records written to a standard variable is either allocated explicitly by
an application or automatically by the CDF library. If the records are alocated by the application the exact number
needed can be specified. This can be used to optimize the indexing for the variable resulting in fewer (or even just one)
index entries that must be searched when accessing the variable. If the records are not allocated by the application,
however, they must be automatically allocated by the CDF library. Because the CDF library wants to optimize the
indexing for a variable, it may allocate additional records beyond those needed at the time in an attempt to minimize
the number of index entries. The variable's blocking factor specifies the minimum number of records to alocate when
an application writes to an unallocated record. This is based on the assumption that the addition records allocated will
eventually be written. If that is not the case, the allocated but unwritten records will simply waste space in the dotCDF
file. The best way to prevent that situation is for an application to explicitly allocate the records that are going to be
written. An application can specify a blocking factor for avariable or let the CDF library use a default blocking factor.
Note that setting the blocking factor too low (and not alocating the records being written) may result in excessive
indexing for a variable. Even using the default blocking factor for a variable may result in excessive indexing unless
the records to be written are first allocated. The indexing scheme used by the CDF library is described in Section 2.2.7.

Compressed Variables The blocking factor for compressed variables specifies the number of records that will be
compressed together. The CDF library stages the records of a compressed variable in a scratch file. The number of
records in the staging areais also based on the variable's blocking factor. When necessary, the CDF library compresses
the records in the staging area and writes the compressed block of records to the dotCDF file. Each block of
compressed records has an associated index entry (see Section 2.2.7). Setting the blocking factor high will minimize the
indexing for a variable but will increase the time needed to access an individua record because the entire block in
which it is compressed will have to be decompressed. If the blocking factor is too low, the decompression of an
individual record will not take as long but excessive indexing may result (which will increase the access overhead).
Also, most compression algorithms work better as the number of records (bytes) being compressed is increased. Note
that if the compressed variable also has sparse records, the blocking factor becomes the maximum number of records
per compressed block. Depending on which records are written some of the compressed blocks may contain fewer

2 A variable' s blocking factor was previously called its“ extend records.”

50

records. The blocking factor for a compressed variable may be explicitly specified by an application or a default may
be used as determined by the CDF library. Once arecord has been written to the variable, however, the blocking factor
cannot be changed.

Uncompressed Variables With Sparse Records The CDF library uses a staging area scratch file for uncompressed
variables with sparse records. This is done in an attempt to minimize the indexing for the variable (as described in
Section 2.2.7) when the records being written are not first allocated by an application. The blocking factor specifies the
number of records to be maintained in the staging area for the variable (which will be the maximum number of
unallocated consecutive records that would be stored contiguously in a block when written by an application). An
explicit blocking factor can be specified or a default determined by the CDF library may be used.

Blocking factors are explicitly specified for variables using the <PUT _,r/zZVAR_BLOCKINGFACTOR_> operation of
the Interna Interface. The blocking factor may be inquired using the <GET ,r/zVAR_BLOCKINGFACTOR >
operation. If an explicit blocking factor has not been specified, the default blocking factor for the variable will be
returned.

Note the distinction between records alocated and records actually written. The CDF library may alocate more
records than are actually written by an application for the reasons stated above. Both the number of records written to a
variable and the number of records allocated for that variable may be inquired using the Internal Interface.

Deleting

The records of avariable in a single-file CDF may be deleted.? If the variable has sparse records, the deleted records
simply cease to exist. A gap of one or more missing records will be formed. But if the variable does not have sparse
records, the records following the block of deleted records are immediately renumbered to fill in the gap created. The
record numbers remain consecutive without a gap.

Variable records are deleted using the <DELETE ,r/zZVAR_RECORDS > operation of the Internal Interface.

2.3.13 Sparse Arrays

Sparse arrays are planned for a future release of CDF. The idea being that only those values actually written to a
variable array (record) will be physicaly stored. Currently, unwritten values in each variable array are physically
stored using the variable's pad value. Note that specifying a compression for a variable will in many cases result in a
disk space savings similar to that of sparse arrays. The exact differences in disk space savings and execution overhead
between sparse arrays and variable compression will not be known until sparse arrays have been implemented.

2.3.14 Compression

A compression may be specified for a variable in a single-file CDF which gets performed automatically as values are
written.? The values are transparently decompressed as they are read from the variable. The values of a variable are
compressed in blocks of one or more variable records. The blocking factor for a compressed variable (described
beginning on page 50) specifies the number of records in each block (or the maximum number in the case of a
compressed variable with sparse records). Properly setting the blocking factor involves a trade-off between the
compression percentage achieved and execution speed when accessing values in individual variable records. The CDF
library also uses a staging area scratch file to minimize access overhead for a compressed variable. Note that if a block
of variable records actually increases in size when compressed, the block of records will be stored uncompressed in the

I Variable records may be deleted from a multi-file CDF.
2 Note that variable compression is not allowed in amulti-file CDF.

51

CDF. This could happen if the blocking factor is set too low or simply because of the nature of the data and the
compression algorithm being used.

The compression for a variable is specified with the <PUT_,r/zVAR_COMPRESSION_> operation of the internal
interface. A variable's compression may be inquired with the <GET _,r/lzZVAR_COMPRESSION_> operation. Section
2.6 describes the available compression algorithms.

Reserve Per centage.

If avalue in a compressed block of records is changed, the amount of compression achieved for that block may also
change. If it increases, the block of compressed records may have to be moved in the dotCDF file. Thiswill most likely
result in the dotCDF file increasing in size if the block of compressed records is placed at the end (leaving a block of
unused bytes where the compressed block of records previously existed). Thisis not a desirable situation considering
that the variable compression is supposed to make the CDF smaller. To aleviate this potential problem a reserve
percentage may be selected for a compressed variable. When a compressed block of variable recordsisinitialy written
to the dotCDF file some additional space will be allocated. Thiswill alow that block of compressed records to expand
in sizeif necessary. Thereserve percentage isinterpreted as follows:

0 No reserve spaceis adlocated. Thisisthe default.

1..100 Allocates that percentage of the uncompressed size of the block of variable records (as a
minimum). For example, if a 1000-byte block of records compressed down to 600 bytes and
the reserve percentage is 70%, then 700 bytes would actually be alocated for the block in
the dotCDF file. If the reserve percentage is 50%, then 600 bytes would of course till have
to be allocated.

101... Allocates that percentage of the size of the compressed block of variable records but not
exceeding the uncompressed size. For example, if a 1000- byte block of records compressed
down to 800 bytes and the reserve percentage is 110%, then 880 bytes would be allocated
for the block.

Even specifying a reserve percentage for a compressed variable does not guarantee that the problem with moving
blocks of compressed records as the variable's values are changed will be avoided. If a CDF does become fragmented
in this way remember that the CDFconvert utility can aways be used to create a new CDF with each variable's
compression being optimized (e.g., no fragmentation).

The reserve percentage for a compressed variable is selected with the <SELECT ,1/zZVAR_RESERVEPERCENT >

operation. A variable's reserve percentage may be confirmed with the <CONFIRM _,r/zZVAR_RESERVEPERCENT >
operation.

2.3.15 Majority
The variable mgjority of a CDF describes how variable values within each variable array (record) are stored. Each
variable in a CDF has the same magjority. The majority can be either row-major or column-major. The default variable
majority is row-major.

ROW_MAJOR Row majority. The first dimension changes the slowest.
COLUMN_MAJOR Column magjority. The first dimension changes the fastest.

For example, an array for an rVariable with [VARY ,VARY] dimension variances in a 2-dimensional CDF with
dimension sizes[2,4] and row majority would be stored as follows:

52

v(1,1), v(1,2), v(1,3), v(1,4), v(2,1), v(2,2), v(2,3), v(2,4)

where v(i,j) isthevalue at indices (i,j). If the CDF had column mgjority, the array would be stored as follows:
v(1,1), v(2,1), v(1,2), v(2,2), v(1,3), v(2,3), v(1,4), v(2,4)

In each case v(1,1) is stored at the low address.

An application needs to be concerned with the majority of a CDF in the following cases:

1. When performing a variable hyper read, the values placed in the buffer by the CDF library will be in the
variable mgjority of the CDF. The application must process the values according to that majority.

When performing a variable hyper write, the CDF library expects the values in the buffer to be in the variable
majority of the CDF. The application must place the values into the buffer in that majority.

2. When sequential accessis used, the values are read/written in the order imposed by the variable magjority of the
CDF.

3. When single value reads/writes are performed, the majority could have an effect. The CDF library uses a
caching scheme to optimize® the random access to variable values. If all of the values of arecord are to be
read/written, there may be an increase in performance if the values are accessed with (rather than against) the
majority. For example, if the majority isrow-major, increment the last index the fastest.

4. When performing a multiple variable read/write, the full-physical records in the buffer will/must be in the
variable majority of the CDF.

A CDF's variable mgjority is specified when the CDF is created when using the Standard Interface but is set to the
default variable majority for your CDF distribution when created using the Internal Interface. The magjority of an
existing CDF may be changed using the Internal Interface only if variable values have not yet been written. (Variables
may exist and explicit pad values may have been specified, however.)

2.3.16 Single Value Access

Single value access allows only one value to be read from or written to a variable with a single call to the CDF library.
Two parameters are specified when performing a single value read/write:

RecordNumber The record number at which to perform the access.
Dimensionindices Theindices within the record at which to perform the access.
For O-dimensional variables, the dimension indices are not applicable.

Single value access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a
record variance of NOVARY (with one record written) and a value is read from the fourth record, the CDF library will
actually read the value from the first record (the record that is physically stored). If avalue were written to the fourth
record, the CDF library would actually write the value to the first record (the only record that actually physically
exists). If the record variance is VARY, the values are written to the actual records. (The physical records are the
same as the virtual records.) The same applies to any dimension variances that are NOVARY. When a set of indicesis
specified for a single value read/write, the index for a dimension whose variance is NOVARY is forced to the first
index regardless of the actual index specified for that dimension (see Section 2.3.11).

2 Since an application knows how it will be accessing a variable, it knows best how to optimize the caching scheme
used. See Section 2.1.5 for details on how an application can control the CDF library caching scheme.

53

In a C application single value access for rVariables is performed using either the CDFvarGet and CDFvarPut functions
(Standard Interface) or the <GET_,rVAR_DATA > and <PUT_,rVAR DATA_ > operations of the CDFlib function
(Interna Interface). Single value access for zVariables must be performed using the <GET _,ZVAR DATA > and
<PUT_,zZVAR DATA_> operations of CDFlib. In a Fortran application single value access for rVariables is
perfformed using either the CDF var get and CDF var put subroutines (Standard Interface) or the
<GET_,rVAR_DATA_> and <PUT_,r'VAR_DATA_> operations of the CDF lib function (Internal Interface). Single
value access for zVariables must be performed using the <GET_,zVAR DATA_> and <PUT_,zZVAR_DATA >
operations of CDF lib.

2.3.17 Hyper Access

Hyper access allows more than one value to be read from or written to a variable with asingle call to the CDF library.
In fact, the entire variable may be accessed at once (if alarge enough memory buffer is available to your application).
Hyper reads cause the CDF library to read from the variable record(s) in the CDF and place the values into a memory
buffer provided by the application. Hyper writes cause the CDF library to take values from a memory buffer provided
by the application and write them to the variable records in the CDF. Six parameters are specified when performing a
hyper read/write:

RecordNumber The record number at which to start the access.
RecordCount The number of records to access.
RecordInterval Theinterval between records being accessed. Aninterva of two (2) would indicate

that every other record is to be accessed.

Dimensionindices Theindices within each record at which the access should begin.
DimensionCounts The number of values along each dimension that should be accessed.
Dimensionintervals For each dimension, the interval between values being accessed. An interval of

three (3) would indicate that every third value is to be accessed.
For O-dimensional variables, the dimension indices, counts, and intervals are not applicable.

A hyper access may or may not read/write a contiguous set of values stored for a variable in the CDF. However, the
values in the memory buffer received/provided by the application are contiguous.

Hyper access is sensitive to the record and dimension variances of a variable. For instance, if a variable has a record
variance of NOVARY (with one record written) and a hyper read of the first five records for that variable is requested,
the CDF library will read the single record that is physicaly stored and place it five times (contiguously) into the
memory buffer provided by the application. The same applies to any dimension variances that are NOVARY. For
example, if the count for a dimension is three and the dimension variance is NOVARY, the one value (or subarray)
physicaly stored will be read by the CDF library and placed into the application's memory buffer three times
(contiguously).

Example (Fortran application)

Assume a 2-dimensional variable array with sizes[2,4], row majority, arecord variance of VARY, dimension variances
of [VARY ,VARY], and hyper read parameters as follows:

record number 5

54

record count 2
record interval 1

dimension indices 11
dimension counts 2,4
dimension intervals 11

The values placed in the application's buffer would be as follows (with the first value being in low memory):

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
6(1,1) 6(1,2) 6(1,3) 6(1,4) 6(2,1) 6(2,2) 6(2,3) 6(2,4)

where r(i,j) is a physically stored value with r being the record number, i being the first dimension index, and j being
the second dimension index. (r, i, and j are physical record numbers and dimension indices.)

If the dimension variances had been [VARY ,NOVARY], the values placed in the buffer would have been

5(1,1) 5(1,1) 5(1,1) 5(1,1) 5(2,1) 5(2,1) 5(2,1) 5(2,1)
6(1,1),6(1,1) 6(1,1) 6(1,1) 6(2,1) 6(2,1) 6(2,1) 6(2,1)

If the record count had been 3 and the record interval 2, the values placed in the buffer would have been

5(1,1) 5(1,2) 5(1,3) 5(1,4) 5(2,1) 5(2,2) 5(2,3) 5(2,4)
7(1,1) 7(1,2) 7(1,3) 7(1,4) 7(2,1) 7(2,2) 7(2,3) 7(2,4)
9(1,1) 9(1,2) 9(1,3) 9(1,4) 9(2,1) 9(2,2) 9(2,3) 9(2,4)

If the dimension counts had been [2,2] and the dimension intervals [1,2], the values placed in the buffer would have
been

5(1,1) 5(1,3) 5(2,1) 5(2,3)
6(1,1) 6(1,3) 6(2,1) 6(2,3)

If the CDF majority had been column major, the values placed in the buffer would have been.

5(1,1) 5(2,1) 5(1,2) 5(2,2) 5(1,3) 5(2,3) 5(1,4) 5(2,4)
6(1,1) 6(2,1) 6(1,2) 6(2,2) 6(1,3) 6(2,3) 6(1,4) 6(2,4)

Had these examples been for hyper writes, the CDF library would have expected to find the values in the application's
buffer exactly as they were placed there during the corresponding hyper read. In the case where the record interval was
2, the records being skipped would be written using the variable's pad value if they did not aready exist. If they did
already exist, they would not be affected.

In a C application, hyper writes for rVariables are performed using the CDFvarHyperPut function (Standard Interface)
or the <PUT_,rVAR_HYPERDATA_> operation of the CDFlib function (Interna Interface). Hyper writes for
ZVariables must be performed using the <PUT_,zZVAR_HYPERDATA_> operation of CDFlib. Hyper reads for
rVariables are performed using the CDFvarHyperGet function (Standard Interface) or the
<GET_,rVAR_HYPERDATA > operation of CDFlib. Hyper reads for zZVariables must be performed using the
<GET_,zZVAR_HYPERDATA_> operation of CDFlib.

In a Fortran application, hyper writes for rVariables are performed using the CDF_var_hyper_put subroutine (Standard
Interface) or the <PUT _,r'VAR_HYPERDATA_> operation of the CDF lib function (Internal Interface). Hyper writes
for zVariables must be performed using the <PUT_,zZVAR_HYPERDATA_> operation of CDF lib. Hyper reads for
rVariables are performed using the CDF var hyper get subroutine (Standard Interface) or the
<GET_,rVAR_HYPERDATA > operation of CDF lib. Hyper reads for zZVariables must be performed using the
<GET_,zVAR _HYPERDATA > operation of CDF lib.

55

2.3.18 Sequential Access

Sequential access provides a way to sequentialy read/write the values physically stored for a variable. To use
sequential access, a starting value must first be selected by specifying a record number and dimension indices. This
selects the "current sequential value." A sequentia read will return the value at the current sequential value and then
automatically increment the current sequential value to the next value. Likewise, a sequential write will store avalue at
the current sequential value and then increment the current sequential value to the next value. Sequential reads are
allowed until the end of the physical records has been reached (not the end of the virtual records [they never end]).
Sequentia reading will increment to the beginning of the next physical record if necessary. Sequential writing can be
used to extend the physical records for avariable (as well as to overwrite existing values).

If the variable has sparse records, the virtual records in a gap of missing records are not skipped. The type of sparse
records (see Section 2.3.12) will determine the values returned. When a virtual record in a gap of missing records is
read, the informational status code VIRTUAL RECORD DATA is returned (rather than END OF VARIABLE).
Sequential writes will create any necessary record in agap of missing records (i.e., sequential writes do not skip virtual
records in agap of missing records).

Example (Fortran application)

Assume a 2-dimensional array with sizes [2,3], column majority, a record variance of VARY, dimension variances of
[VARY ,VARY], nine (9) physical records written, and that the current sequential value has been set to record number
7 and indices [2,2]. Consecutive sequential reads would cause the following values to be read and returned to the
application:

7(2,2) 7(1,3) 7(2,3)
8(1,1) 8(2,1) 8(1,2) 8(2,2) 8(1,3) 8(2,3)
9(1,1) 9(2,1) 9(1,2) 9(2,2) 9(1,3) 9(2,3)
END_OF VAR

... wherer(i,)) isaphysically stored value with r being the record number, i the first dimension index, and j the second
dimension index. (r, i, and j are physical record numbers and dimension indices.) The next sequential read after the last
physical value would cause a status code indicating the end of the variable to be returned (END OF VAR).

Had the dimension variances been [NOVARY ,VARY], the values read would have been
7(1,2) 7(1,3)
8(1,1) 8(1,2) 8(1,3)
9(1,1) 9(1,2) 9(1,3)
END_OF VAR

Note that specifying the virtual value 7(2,2) as the current sequential value caused physical value 7(1,2) to actually be
selected (because the first dimension variance is NOVARY).

Sequential access for variablesis performed using the <GET _,r/zZVAR_SEQDATA > and
<PUT _,r/zZVAR_SEQDATA > operations of the Internal Interface.

2.3.19 Multiple Variable Access

Multiple variable access allows an application to read from or write to multiple variables in a single operation. Multiple
variable access works on either the rVariables or the zVariables of a CDF - not a mixture of the two. Up to al of the
rVariables/zVariables may be accessed with asingle call to the CDF library. For each variable specified in a multiple

56

variable access, a full-physical record for that variable will be read/written. A full-physical record consists of al of the
values exactly as they are physically stored in each variable record (the physical values). Virtual values do not apply
when performing a multiple variable access (see Section 2.3.11). Three parameters are specified when performing a
multiple variable read/write.

VariableCount The number of rVariables/zVariables that are being accessed.
VariableList TherVariables/zVariables being accessed (specified by number).
RecordNumbers The record numbers at which the reads/writes will take place. For rVariables the record

numbers must all be the same. For zVariables the record numbers can vary (but for most
applications will al be the same).

Multiple variable access is sensitive to the record variances of the variables being accessed. (Dimension variances do
not apply since full-physical records are being read/written.) If a variable has a record variance of NOVARY, then a
read/write to that variable will always occur at the first record regardless of the actual record number specified (since at
most only one physical record will ever exist). If the record variance were VARY,, the reads/writes would take place at
the actual record numbers specified.

For a multiple variable write operation an application must place into a memory buffer each of the full- physica
records to be written. The order of the full-physical records must correspond to the order of the list of variables
specified, and the memory buffer must be contiguous - there can be no gaps between the full-physical records. This
memory buffer is then passed to the CDF library which scans through the buffer writing the full-physical records to the
corresponding variables.

Likewise, for a multiple variable read operation the CDF library places into a memory buffer provided by the
application the full-physical recordsread. The order of the full-physical records will correspond to the order of the list
of variables specified and the full-physical records will be contiguous. The application must then process the buffer as
needed.

Care must be used when generating and processing the memory buffer containing the full-physical records. If C struct
objects or Fortran STRUCTURE variables are being used, it may be necessary to order the variables being read/written
such that there are no gaps between elements of the structures (assuming you are defining structures containing one
element per full-physical record where an element is a scalar variable or an array depending on the corresponding
variable definition). On some computers the C and Fortran compilers will place gaps between the elements of these
structures so that memory alignment errors are not generated when the elements are accessed. In genera, defining the
structures so that "larger" data types are before "smaller" data types should result in no gaps (e.g., the Fortran REAL*8
data type is "larger" than a INTEGER*2, which is "larger" than a BYTE). The list of variables would be adjusted
accordingly.

The variable mgjority must also be considered when performing a multiple variable read/write since full-physical
records are being accessed. The magjority of the values in the full-physical records retrieved from/placed into the
memory buffer must be the same as the variable majority of the CDF.

For example, consider a column-major CDF containing the following three zVariables (as well as others):

ZVariable Name Data Specification Dimensionality Variances
ZVarl CDF INT2/14* 0:[] T/

Va2 CDF_CHAR/7 1:[5] TIT
ZVar3 CDF REALS8/1 2:[2,4] TTT

If a Fortran application were to perform amultiple variable read on these three zV ariables, it could define a
STRUCTURE to receive the physical records as follows:

24 This notation is used throughout this document. The data type is before the dash and the number of elementsis after
the slash. In this case the data type is (CDF INT2) and the number of elementsis one (1).

57

STRUCTURE /inputStruct/
REAL*8 zZVar3values(2,4)
INTEGER*2 zZVarlvaue
CHARACTER*7 zVar2values(5)
END STRUCTURE

Note that because a full-physical record for the zVariable zVar2 is an odd number of bytes it would most likely cause a
gap in the STRUCTURE if not placed at the end (on some computers). An approach that would work on all computers
would be to use EQUIVALENCE statements as follows:

INTEGER*2 zZVarlvalue
CHARACTER*7 zVar2vaues(5)
REAL*8 zZVar3vaues(2,4)
BYTE buffer(101)
EQUIVALENCE (zVar3vaues,buffer(1))
EQUIVALENCE (zVarlvaluebuffer(65))
EQUIVALENCE (zVar2vaues,buffer(67))

The EQUIVALENCE statements ensure that the full-physical records will be contiguous. In each of the above
examples, the order of the zVariableswould be zVar3, zVarl, zVar2.

C applications must also be concerned with the ordering of full-physical records in the memory buffer. Even if avoid
memory buffer is used with type casting to access individual values, the alignment of the values in the memory buffer
isimportant (on some computers).

Multiple variable writes are performed using the <PUT_,r/zVARs RECDATA_> operation of the Internal Interface.
Multiple variable reads are performed using the <GET_,r/zVARs_ RECDATA_> operation. The selection of record
numbersis performed using the <SELECT _,r/zZVARs RECNUMBER_> operation.

2.3.20 Variable Pad Values.
Variable pad® values are used in several situations. .

1. When the first value is written to a new record (for records containing multiple values), the other values in that
record will contain the pad value. This also applies to hyper writesif less than the entire record is written. The
unwritten values will contain the pad value.

2. For avariable not having sparse records, when a new record is written that is more than one record beyond the
last record aready written, the intervening records will also be written and will contain pad values. This does
not apply to NRV variables because only one physical record actually exists.

3. For avariable having the pad-missing style of sparse records, if arecord is read from a gap of missing records,
pad values will be returned. The previous-missing style of sparse records would cause the previous existing
record's values to be returned (unless there is no previous record in which case pad values would be returned).

4. When reading a record beyond the last record written for a variable, pad values will be returned except if the
variable has the previous-missing style of sparse records. In that case, the last written record's values are
returned (unless there are no written records in which case pad values are returned).

The pad value for a variable may be specified with the Internal Interface. It should be specified before any values are
read from or written to the variable - otherwise the default pad value will be used. The pad value may be changed at

»These were previously known asfill values but were renamed to avoid confusion with the FILLVAL attribute.

58

any time (and any number of times) and will be in effect for all subsequent operations. The default pad value for each

datatype are shownin Table 2.8.%

Data Type Default Pad Value

CDF BYTE 0

CDF_INT1 0

CDF_UINT1 0

CDF_INT2 0

CDF_UINT2 0

CDF_INT4 0

CDF_UINT4 0

CDF_REAL4 0.0

CDF_FLOAT 0.0

CDF_REALS8 0.0

CDF_DOUBLE 0.0

CDF_EPOCH 01-Jan-0000 00:00:00.000
CDF_EPOCH16 01-Jan-0000 00:00:00.000.000.000.000
CDF_CHAR " " (space character)
CDF UCHAR " " (space character)

Table2.8 Default Pad Values.

Variable pad values are specified using the <PUT _,r/lzZVAR_PADVALUE_> operation of the Internal Interface. The
pad value being used for a variable can be inquired with the <GET_,r/zZVAR_PADVALUE_> operation. If a pad value
has not been explicitly specified for avariable, the default pad value (based on the variable's data type) will be returned
along with the NO_PADVALUE_SPECIFIED informational status code. The existence of an explicitly specified pad
value can be confirmed for a variable (without actually inquiring the vaue) using the
<CONFIRM_,r/zZVAR_PADVALUE_> operation.

2.4 Attributes

CDF attributes are the mechanism for storing metadata. A new attribute may be created in a CDF at any time.

24.1 Naming

Each attribute in a CDF has a unique name. Attribute names are case sensitive regardless of the operating system being
used and may consist of up to CDF ATTR_NAME _LEN or CDF ATTR_NAME _LEN256 printable characters
(including blanks). Trailing blanks, however, are ignored when the CDF library compares attribute names. "UNITS'
and "UNITS" are considered to be the same name, so they cannot both exist in the same CDF. This was done because
Version 1 of CDF padded attribute names on the right with blanks out to eight characters. When aVersion 1 CDF was
converted to a Version 2 CDF these trailing blanks remained in the attributes names. To allow CDF Version 2
applications to read such a CDF without having to be concerned with the trailing blanks, the trailing blanks are ignored
by the CDF when comparing attributes names. The trailing blanks are returned as part of the name, however, when an
attribute isinquired by an application program.

24.2 Numbering

% These default pad values can be changed by your system manager when the CDF distribution is built.

59

The attributes in a CDF are numbered consecutively starting at one (1) for Fortran applications and starting at zero (0)
for C applications. The CDF library assigns attribute numbers as the attributes are created. Note that there are not
separate lists of global and variable scoped attributes. Only one list of attributes exists in a CDF (containing both
global and variable scoped attributes).

243 Attribute Scopes

Attribute scopes declare the intended purpose of an attribute. Globa scope attributes (gAttributes) describe some
aspect of the entire CDF. Variable scope attributes (VAttributes) describe some property of each variable.

An attribute's scope exists to assist in the interpretation of its entries by CDF toolkit programs and user applications
(e.g., entries of a vAttribute should correspond to variables). The CDF library also places some restrictions on the
operations that may be performed on an attribute of a particular scope.?” These restrictions consist of the following:

1. A gEntry operation may not be performed on a vAttribute.
2. A zEntry or rEntry operation may not be performed on a gAttribute.
3. Whilein zMode, only zEntry operations may be performed on vAttributes (see Section 2.1.2).

All other operations involving attributes and their entries remain available.

Assumed Scopes

CDF Version 1 did not allow the scope of an attribute to be explicitly declared. This led to ambiguities in the
interpretation of attribute entries in the toolkit programs and user applications. CDF Version 2 does allow the scope of
an attribute to be declared when the attribute is created. To ease the transition from Version 1 to Version 2, CDF
distributions prior to CDF V2.5 contained the notion of assumed attribute scopes. Assumed attribute scopes arose
when the CDF library had to guess the scope of an attribute in a Version 1 CDF (e.g., when the CDFconvert program
converted a Version 1 CDF to a Version 2 CDF). Beginning with CDF V2.5, al assumed attribute scopes are
converted to the corresponding definite scope. When a CDF is read this conversion occurs only in the CDF library -
the CDF is not physically atered. When an existing CDF is written to, each assumed attribute scope detected will be
physically converted to the corresponding definite scope. Note that if this automatic conversion is incorrect, the scope
of an attribute can be corrected using the Internal Interface in an application program or by editing the CDF with the
CDFedit program.

24.4 Deleting

An attribute may be deleted from a CDF. Deleting an attribute also deletes the corresponding entries. The disk space
used by the attribute definition and the corresponding entries becomes available for use as needed by the CDF library.
Also, the attributes which numerically follow the attribute being deleted are renumbered immediately. (Each is
decremented by one.) Attributes are deleted using the <DELETE_,ATTR_> operation of the Internal Interface.

2.4.5 Attribute Entries

Attribute entries are used to actually store metadata. Each attribute in a CDF may have zero or more associated entries.
For vAttributes two types of entries are supported: rEntries and zEntries. rEntries describe some property of the
corresponding rVariable, and zEntries describe some property of the corresponding zVariable. Note that an entry does

7 This was not necessarily the case in previous releases of CDF. These new restrictions should not, however, cause any
conflicts with existing applications.

60

not have to exist for each variable in the CDF. For gAttributes only one type of entry is supported and is referred to asa
gEntry. The gEntries are independent of anything else in the CDF and have meaning only to the application. Note that
gEntries are sometimes referred to simply as "entries.”

Accessing

The Standard Interface deals exclusively with rEntries (for vAttributes) and gEntries (for gAttributes). No access to
ZEntriesis provided. The Internal Interface may be used to access any type of attribute entry.

Numbering

The rEntries and zEntries for a vAttribute and the gEntries for a gAttribute are numbered starting at one (1) for Fortran
applications and starting at zero (0) for C applications. For vAttributes the entry numbers are in fact the variable
numbers of the variables being described. rEntries correspond to rVariables and zEntries correspond to zVariables.
For gAttributes the gEntry numbers have meaning only to the application.

The entry numbers used need not be contiguous (as are variable and attribute numbers). An application may choose to
write any combination of entries for a particular attribute (keeping in mind that the entry numbers used for a vAttribute
correspond to the existing variables).

Data Specification

Each entry for an attribute has a data specification and an associated value. A data specification consists of a data type
and a number of elements of that data type. The supported data types are described in Section 2.5. The entries for an
attribute may have any combination of data specifications.

For character data types the number of elements is the number of characters in the string. For example, if a gEntry
value for a gAttribute named TITLE were "Example CDF Title." (not including the double quotes), the data type would
be CDF_CHAR, and the number of elements would be 18 (a character string of size 18).

For non-character data types the number of elements is the size of an array of the datatype. For example, if a zEntry
value of a vAttribute named RANGE were [100.0,900.0], the data type would be CDF_REALA4, and the humber of
elements would be two (an array of two values).

Deleting

An entry may be deleted from an attribute. The disk space used by the entry becomes available for use as needed by
the CDF library. Thereis no renumbering of entries (as with deleting a variable or attribute). Entries are deleted using
the <DELETE_,gENTRY_>, <DELETE ,rENTRY_>, and <DELETE_ ,2ENTRY_> operations of the Internal
Interface.

2.5 Data Types

CDF supports a variety of data types consistent with the types available with C and Fortran compilers on most
computers. All data types are based on an 8-bit byte. The size of an element of a data type is the same regardless of
the computer/operating system being used. The <GET_,DATATYPE_SIZE > operation of the Internal Interface may
be used to inquire the size in bytes of a particular data type.

61

2.5.1 Integer Data Types

CDF_BYTE 1-byte, signed integer.
CDF_INT1 1-byte, signed integer.
CDF_UINT1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.
CDF_UINT4 4-byte, unsigned integer.

NOTE: When using C on a 64-bit operating system (e.g. DEC Alpha running OSF/1), keep in mind that a long is 8
bytes and that an int is 4 bytes. Use an int with the datatypes CDF_INT4 and CDF_UINTA4 rather than along.

2.5.2 Floating Point Data Types

CDF_REAL4 & CDF_FLOAT 4-byte, single-precision floating-point.
CDF_REAL8 & CDF_DOUBLE 8-byte, double-precision floating-point.

A special case exists with respect to the value -0.0 (negative floating-point zero). This vaue is legal on those
computers that use the |IEEE 754 floating-point representation (e.g., most UNIX-based computers and the PC) but is
illegal on VAXes and DEC Alphas running OpenVMS. Attempting to use -0.0 will result in areserved operand fault on
aVAX and a high performance arithmetic fault on a DEC Alpha running OpenVMS. A warning is returned whenever
-0.0 isread by an application on a VAX or DEC Alpha running OpenVMS. The CDF library can be put into a mode
where -0.0 will be converted to 0.0 when detected (see Section 2.1.2). If -0.0 is not being converted to 0.0, the CDF
toolkit programs are designed to display -0.0 in all cases. This includes those computers that normally suppress the
negative sign.

2.5.3 Character Data Types

CDF_CHAR 1-byte, character.
CDF_UCHAR 1-byte, unsigned character.

Character data types are unique for variables in that they are the only data types for which more than one element per

value is allowed. Each variable value consists of a character string with the number of elements being the number of
characters. More than one element is allowed for any of the data types when dealing with attribute entries.

2.54 EPOCH Data Types

CDF_EPOCH 8-byte, double precision floating point.
CDF_EPOCH16 two 8-byte, double precision floating point.

The CDF_EPOCH and CDF_EPOCH16 data types are used to store date and time values referenced from a particular
epoch. For CDF that epoch is 01-Jan-0000 00:00:00.000 and 01-Jan-0000 00:00:00.000.000.000.000, respectively..?

% | know what you're thinking. The year 0 AD never existed. If it makes you feel better, think of the epoch year as 1
BC (or smply year 0) rather than 0 AD. Also, year 0 is considered to be aleap year.

62

CDF_EPOCH vaues are the number of milliseconds since the epoch. The standard format used to display a
CDF_EPOCH vaueis

dd-mmm-yyyy hh:mm:ss.ccc

where dd is the day of the month (01-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, or Dec), yyyy isthe year (0000-9999) hh is the hour (00-23), mm is the minute (00-59), ssisthe
second (00-59), and ccc is the millisecond (000-999).

CDF_EPOCH16 vaues are the number of picoseconds since the epoch. The standard format used to display a
CDF_EPOCH16 vaueis

dd-mmm-yyyy hh:mm:ss.ccc.mmm.nnn.ppp

where dd is the day of the month (01-31), mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,

Oct, Nov, or Dec), yyyy isthe year (0000-9999) hh is the hour (00-23), mm is the minute (00-59), ssisthe

second (00-59), ccc is the millisecond (000-999)., mmm is the microsecond (000-999)., nnn is the nanosecond (000-
999)., and ppp is the picosecond (000-999).

Functions exist that parse, encode, compute, and decompose CDF EPOCH and CDF _EPOCH16 values. These

functions are described in the CDF C Reference Manual for C applications and in the CDF Fortran Reference Manual
for Fortran applications.

2.5.5 Equivalent Data Types

Certain data types are considered equivalent with respect to their representation in memory and in a CDF. Table 2.9
shows the groups of equivalent data types.

CDF_CHAR CDF_INT2 CDF_INT4 CDF_REALA4 CDF_REALS
CDF_UCHAR CDF_UINT2 CDF_UINT4 CDF_FLOAT CDF_DOUBLE
CDF_INT1 CDF_EPOCH
CDF_UINT1

CDF_BYTE

Table2.9 Equivalent Data Types

Note that while the signed and unsigned forms of a data type are considered equivalent by the CDF library, they must
be correctly interpreted by an application to produce the desired resullts.

2.6 Compression Algorithms

Several compression algorithms are supported by the CDF library. Selecting the proper algorithm to use will depend on
the characteristics of the data being compressed. Experimentation with the available algorithms on the CDF or variable
being compressed will also be necessary. The following sections describe each compression algorithm, any associated
parameters, and the types of data for which they are appropriate.

63

2.6.1 Run-Length Encoding

The run-length encoding compression agorithm, RLE_ COMPRESSION, takes advantage of repeating bytes in the
data. Currently, only the run-length encoding of zeros (0's) is supported. RLE_COMPRESSION has one parameter
which must be set to RLE_OF _ZEROs. The notation RLE.O is used for this type of RLE compression.

2.6.2 Huffman

The Huffman compression algorithm, HUFF_COMPRESSION, takes advantage of the frequency at which certain byte
values occur in the data. A sequence of bytes that contain a high percentage of a limited number of byte values will
compress better than if each byte value occurs with equal probability. HUFF_COMPRESSION has one parameter
which must be set to OPTIMAL_ENCODING_TREES.?® The notation HUFF.O is used for this type of HUFF
compression.

2.6.3 Adaptive Huffman

The adaptive Huffman compression algorithm, AHUFF_COMPRESSION, aso takes advantage of the frequency at
which certain byte values occur in the data. AHUFF_COMPRESSION is very similar to HUFF_COMPRESSION and
generaly provides dightly better compression. AHUFF_COMPRESSION has one parameter which must be set to
OPTIMAL_ENCODING_TREES. The notation AHUFF.0 is used for this type of AHUFF compression.

2.6.4 GZIpP

The Gnu ZIP compression algorithm, GZIP_COMPRESSION, uses the Lempel-Ziv coding (LZ77) taking advantage of
common substrings within the data. Significant compression occurs over a wide variety of data sets.
GZIP_COMPRESSION has one parameter which may be set to a level value in the range from 1 (one) to 9 (nine). 1
provides the least amount of compression and executes the fastest. 9 provides the most compression but executes the
dowest. Levels between 1 and 9 alow for a trade-off between compression and execution speed. The notation
GZIP.<level> is used for GZIP compression where <level> is avalue from 1 to 9. For example, GZIP.7 specifies a
level of 7.

Chapter 3

3 Toolkit Reference

22 OPTIMAL ENCODING TREES causes each buffer of data to be scanned for the best possible compression. An
alternative method would be to scan the first buffer being compressed and then use the same byte value frequencies for
subsequent buffers.

64

3.1 Introduction

The CDF toolkit is a set of utility programs that allow the creation, analysis, and modification of CDFs. The following
sections describe how to use the CDF tools in the toolkit. Two versions of the toolkit (command-line version and GUI-
version) are included as part of the standard CDF distribution package, and the CDF tools described in this chapter are
the command-line version. The Graphical User Interface (GUI) version of the CDF tools are not described here since
they are self-explanatory.

The Graphical User Interface (GUI) version of the CDF toolkit (written in Java) is available starting with CDF 2.7, and
acomplete set of the toolkit is available for Unix and Macintosh OS X systems. The Windows operating system has its
own complete set of GUI-based toolkit in CDFfsi.exe and CDFso.exe programs. In addition, a Java version of CDFedit

and CDFexport programs are aso included in the Windows distribution package. The Java version of CDFedit and
CDFexport is recommended over the onesincluded in CDFfsi.exe since they are much more intuitive and easier to use.

3.1.1 VMS and UNIX (including Mac OS X)

Each program is executed at the command line (or may be executed from within your applications using the methods
provided by the operating system being used). The following rules apply to the command line syntax:

1. Parameters are required unless noted otherwise. Parameters are shown in angle brackets (<>'s) in the sections
which describe each toolkit program.

2. Qualifiersare optional unless noted otherwise.
3. Qualifiers can be truncated as long as no ambiguities result.
4. Optional parts of acommand are shown in brackets ([]'s) in the sections which describe each toolkit program.

5. A vertical line (]) is used to separate two or more options in those cases when only one of the options may be
specified.

6. Wildcard characters are allowed in CDF names to allow more than one CDF to be specified (where
appropriate). Wildcard characters may be used in the CDF name but not the directory path portion of a
specification. The wildcard characters supported are similar to those available on the operating system being
used.

UNIX: If a CDF specification isto contain awildcard character, the entire specification must be
enclosed in single quote marks (e.g., '/disk3/sst*").

7. On VM S/OpenVMS systems, qualifiers begin with adash (/). On UNIX, qualifiers begin with a hyphen (-).

NOTE: You can override the default notation by specifying a dash or hyphen as the first parameter/qualifier
immediately after the program name. When thisis done, you may have to adjust the syntax used as follows:

(@) When the dlash notation is used on UNIX systems, character string will be necessary in the file names (e.g.,
specify "//disk1//CDFs' rather than "/distl/CDFs'). Also, double quote marks are required around options
enclosed in parenthesis.

(b) When the slash notation is used on MS-DOS systems, double quote marks may be needed around entire
qualifier/option combinations.

65

8. On UNIX systems al parameters/qualifiers entered at the command line are case sensitive. On VMS,
OpenVMS, and MS-DOS systems parameters/qualifiers are not case sensitive. Note that variable names are
aways case sensitive regardless of the operating system being used.

9. If an option contains blanks, it will generally be necessary to enclose the entire option in double quote marks.

10. On some UNIX systems, it may be necessary to execute "stty tab3" before running CDFedit or CDFexport.

11. Some of the toolkit programs have a"paging” qualifier. Paging isnot allowed if the output of the program has
been directed to afile.

12. Most toolkit programs have an "about" qualifier that can be used to determine the CDF distribution from
which the program came. On the Macintosh, an "about" selection is available on the "apple" pull-down menu.

In the following sections the available qualifiers and options for each of the toolkit programs will be presented. The
default settings for these qualifiers and options will not be shown since they can be configured for a particular CDF
distribution. Use CDFinquire to determine these defaults.

On VM S/OpenVMSS systems you should have executed the command procedure named DEFINITIONS.COM before
running any of the CDF toolkit programs. This will define the necessary logical names and symbols. Your system
administrator knows the location of DEFINITIONS.COM.

On UNIX systems you should have source'd (or equivalent) the script file named definitions.<shell-type> file located in
the <cdf_install_dir>/bin directory where <shell-type> is the type of shell you are using: C for the C-shell (csh) and

tesh, K for the Korn (ksh), BASH, and POSIX shells, and B for the Bourne shell (sh). This will define the necessary
environment variables and aliases. Y our system administrator knows the location of definitions.<shell-type>.

3.1.2 How to Invoke the GUI Toolkit for Macintosh OS X

A complete set of the GUI toolkit is available in afile named CDFToolsDriver.jar. To invoke any of the CDF utilities
(e.g. CDFedit, CDFexport, etc.) in the toolkit, do one of the following:

Double-click the CDFToolsDriver.jar icon on the Desktop
OR

Go to the directory where the CDF library is installed and double-click the CDFToolsDriver.jar file located under
the <cdf_install_dir>/bin directory.

OR
Open a Terminal session and type "java CDFToolsDriver" at the operating system prompt.

Users will be presented with a main menu containing all the available CDF Javatools from which a desired tool can be
selected with asingle click.

3.1.3 How to Invoke the GUI Toolkit for Windows NT/95/98/2000/XP

Two executable programs (CDFfsi.exe & CDFso.exe) are included as part of the standard distribution package, and
each program contains the following CDF utilities/tools:

66

CDFfsi.exe CDFso.exe

CDFedit CDFcompare

CDFexport CDFconvert
CDFinquire
CDFdump
CDFstats
SkeletonCDF
SkeletonTable

A CDF utility/tool can be invoked by running CDFfsi.exe or CDFso.exe and selecting the tool listed under the File
menu. For example, the SkeletonCDF utility can be invoked by running the CDfso.exe program and then selecting the
SkeletonCDF option under the File menu.
A Java version of CDFedit and CDFexport is also available in CDFToolsDriver.jar, and it is recommended over the
ones in CDFfsi.exe since they are much more intuitive and easier to use. To invoke either program, do one of the
following:
Double-click the CDFToolsDriver.jar icon on the Desktop
OR
Go to the directory where the CDF library isinstalled and double-click the CDFToolsDriver.jar program.
OR

Open a Command Prompt session (i.e. C:\) and type "java CDFToolsDriver" at the command prompt.

Users will be presented with a main menu containing two programs (CDFedit and CDFexport) from which a desired
tool can be selected with asingle click.

3.14 How to Invoke the GUI Toolkit for Unix

Javaversion of the CDF toolkit is available starting with CDF 2.7. A desired CDF tool can be invoked by typing "java
CDFToolsDriver" at the system prompt and selecting the tool of interest from the main menu with a single click.

There are two environment variables that must be set prior to invoking the toolkit program (CDFToolsDriver.jar):
CLASSPATH and LD_LIBRARY_PATH. Follow the instructions in the README.install file located under the
<cdf_installed dir>/cdfjavadirectory.

3.1.5 Special Attributes

Thereisaset of vAttributes that have special meaning to some of the CDF toolkit programs.* Y our CDFs

do not have to use these special attributes. The CDF toolkit programs will function properly whether or not these
special attributes are present in a CDF. How the entries of each vAttribute are used for the corresponding variables is

asfollows:

FORMAT A Fortran or C format specification that is used when displaying a variable value.

! These specid attributes originated as part of the NSSDC standard for CDFs. The NSSDC standard is no longer used.

67

VALIDMIN The minimum valid value for avariable.

VALIDMAX The maximum valid value for avariable.
FILLVAL The value used for missing or invalid variable values.?
MONOTON The monotonicity of a variable: INCREASE (strictly increasing values), DECREASE

(strictly decreasing values), or FALSE (not monotonic). Monotonicity only applies to
NRV variables that vary along one dimension and RV variables that vary aong no

dimensions.
SCALEMIN The minimum value for scaling a variable when graphically displaying its values.
SCALEMAX The maximum value for scaling a variable when graphically displaying its values.In the

description of each CDF toolkit program, the specia attributes that may affect that
program's operation are defined. Note that most of the CDF toolkit programs can be
instructed to ignore these special attributes.

3.1.6 Special Qualifier

There is a speciad qudifier applied to all toolkit programs. This quadlifier, as "-about" on al platforms except
Macintosh, will show version, release and increment information of the distribution that the toolkit program is based
on. This specia qualifier, if present, supersedes al other qualifiers and parameters.

3.2 CDFedit

3.2.1 Introduction

The CDFedit program allows the display and/or modification of practically all of the contents of a CDF by way of a
text-mode-full-screen interface. It isalso possible to run CDFedit in a browse-only mode in order to prevent accidental
modifications.> CDFedit can also be used to create a new CDF file if a CDF does not exist with the provided file path.
The newly created CDF file can be of ether default version, V3.*, or a backward version, i.e, V2.7. If the
environment variable CDF_FILEBACKWARD on Unix or Windows or CDF$FILEBACKWARD on OpenVMS is set
to TRUE, the new file is then automatically a V2.7 file. If this environment variable is not set or set to anything other
than TRUE, then thereis an option to choose for the file version when the program is executed.

3.2.2 Special Attribute Usage

The special attribute FORMAT is used by CDFedit (depending on the setting of the "format" qualifier) when displaying
variable values.

3.23 Executing the CDFedit Program

2 Note that the FILLVAL attribute is not the same as the pad value for a variable athough their values will often be the
same. The pad valueis used by the CDF library. The FILLVAL attribute is optionally used by a CDF toolkit program
or by your applications.

* Running CDFedit in a browse-only mode provides the same functionality as CDFbrowse once did.

68

Usage:

VMS:
$ CDFEDIT [/ [NO]BROWSE] [/ZMODE=<mode>] [/[NO]FORMAT] [/[NO]PROMPT]
[/ [NO]NEG2POSFPO] [/REPORT=(<types>)] [/CACHE=(<sizes>)]
[/[NO]STATISTICS] [/[NO]JGWITHENTRIES] [/[NO]VWITHENTRIES]
<cdf-spec>

UNIX (including Mac OS X):

% cdfedit [-[no]lbrowse] [-zmode <mode>] [-[no]format] [-[no]prompt]
[-[nolneg2posfp0] [-report "<types>"] [-cache "<sizes>"]
[-[no]lstatistics] [-[no]lgwithentries] [-[no]vwithentries]

<cdf-spec>

Parameter (s):
<cdf-spec>

The specification of the CDF(s) to edit. (Do not specify an extension.) This may be either a single CDF file
name or a directory/wildcard path. Wildcards are allowed in the CDF name but not in the directory path. If
the "prompt" qualifier is used, this will appear as the initial specification at the prompt. If this parameter is
omitted, the "prompt" qualifier must be specified (and the initial specification at the prompt will be the
default/current directory).

Qualifier(s):

/[NO]BROWSE (VMS)
-[no]browse (UNIX)

Specifies whether or not a browsing mode is desired. In browsing mode the creation, modification, or deletion
of aCDF is not allowed.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX)

Specifies which zMode should be used. The zMode may be one of the following:
0 Indicates that zM ode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/[NOJFORMAT (VMS)
-[no]format (UNIX)

Specifies whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/[NO]PROMPT (VMS)
-[no]prompt (UNIX)

69

Specifies whether or not a prompt is issued for the CDF(s) specification. When enabled the prompt will be
issued both at program startup and after editing the current CDF(s) specification (at which point anew CDF[9]
specification may be specified).

If a CDF(s) specification was entered on the command line, that CDF(s) specification will appear at the
prompt. (Otherwise, the current/default directory will appear at the prompt.)

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfp0 (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

ICACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/INOJSTATISTICS (VMYS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.

/[NO]JGWITHENTRIES (VMYS)
-[no]gwithentries (UNIX)

Specifies whether or not gEntries are displayed with the gAttributes or on separate menus (with one menu per
gAttribute).

/[INO]JVWITHENTRIES (VMS)
-[no]vwithentries (UNIX)

Specifies whether or not rEntries/zEntries are displayed with the vAttributes or on separate menus (with one

menu per VAttribute).

Example(s):

70

VMS:

CDFEDIT [.SAMPLES]
CDFEDIT/ZMODE=2/NOFORMAT/CACHE= (10D, 1005,200C) GISS WETLX
$ CDFEDIT/BROWSE/PROMPT/REPORT= (ERRORS)

vy Ur

UNIX:

oe

cdfedit samples
cdfedit -zmode 2 -noformat -cache "10d,100s,200c" giss wetl
cdfedit -browse -prompt -report "errors"

oo

oe

3.24 Interaction with CDFedit

Interaction with CDFedit is through a series of menus and windows. Extensive online help is provided and will not be
repeated here* The online help does refer to the sections of a window by name. Figure 3.1 illustrates the various
sections of the possible types of windows.

ItemWindow PromptWindow EditWindow
—| Label } | Label | I Lahel |—
HeaderSection HeaderSection HeaderSection
PromptField
ItemSection - - EditSection
TrailerSection
TrailerSection TrailerSection

igure3.1 Window Sections, CDFedit

ItemWindows are used when a choice is to be made from alist of one or more items (e.g., functions to perform, CDFs
to edit, variable names, etc.). In some cases the entire list of items may not fit on the screen at once. When this occurs,
the ItemSection may be scrolled to display hidden items. Some ItemWindows have a percentage indicator at the
bottom right portion of the ItemSection. The percentage indicator shows which part of the ItemSection is being

displayed.

PromptWindows are used when a textual response is required (e.g., a CDF specification, a new attribute name, a
variable value, etc.). If the text is too long to fit into the PromptField, the "more" indicators ("<" and ">") at the left
and right ends of the PromptField will display where hidden characters exist.

EditWindows are used to display/edit a text file or group of lines. EditWindows are currently used to display online
help and to edit gAttribute character string entries asiif they were atext file.

33 CDFexport

* It is our intention that the use of CDFedit be as intuitive as possible. Y ou may not even need the online help. We're
sureyou'll let us know.

71

3.3.1 Introduction

CDFexport allows the contents of a CDF to be exported to the terminal screen, a text file, or another CDF. The
variables to be exported can be selected along with a filter range for each variable which alows a subset of the CDF to
be generated. When exporting to another CDF, a new compression and sparseness can be specified for each variable.
When exporting to the terminal screen or a text file, the format of the output can be tailored as necessary. When
exporting the output to a CDF, if the environment variable CDF_FILEBACKWARD on Unix or Windows or
CDF$FILEBACKWARD on OpenVMS is set to TRUE, the output file is then automaticaly a V2.7 file. If this
environment variable is not set or set to anything other than TRUE, then there is an option to choose for the file version
when the program is executed.

3.3.2 Special Attribute Usage

CDFexport uses the following special attributes:

FORMAT Used as theinitial valuein avariable's Format field.
VALIDMIN Used as theinitial filter valuein avariable's Minimum field.
VALIDMAX Used as theinitial filter valuein avariable's Maximum field.
FILLVAL Used astheinitia valuein avariable's FillValuefield.
MONOTON Used astheinitia setting in avariable's Monotonicity field.

These fields are described in the online help for the appropriate menu. The values of these fields can be changed at any
time. The specia attributes are smply used to provide initial values. Note also that the usage of these special
attributes can be controlled by the options selected with the "initial" qualifier.

3.33 Executing the CDFexport Program

Usage:
VMS:
$ CDFEXPORT [/INITIAL=(<options>)] [/[NO]PROMPT] [/ZMODE=<mode>]
[/REPORT= (<types>)] [/[NO]STATISTICS] [/[NO]NEG2POSFPO]
[/CACHE= (<sizes>)] [/[NO]SIMPLE] [/BATCH=<mode>] [/CDF=<path>]
[

/TEXT=<path>] [/SETTINGS=<path>] <cdf-spec>

UNIX (including Mac OS X):

% cdfexport [-initial "<options>"] [-[no]lprompt] [-zmode <mode>]
[-report "<types>"] [-[no]lstatistics] [- [no]lneg2posfp0]
[-cache "<sizes>"] [-[no]simple] [-batch <mode>] [-cdf <path>]
[-text <path>] [-settings <path>] <cdf-spec>
Parameter (s):
<cdf-spec>

The specification of the CDF(s) from which to export. Do not specify an extension. This may be either a
single CDF file name or a directory/wildcard path. Wildcards are allowed in the CDF name but not in the
directory path.

72

Qualifier (s):

/[NO]JPROMPT (VMS)
-[no]prompt (UNIX)

Specifies whether or not a prompt is issued for the CDF(s) specification. If this qualifier is not specified, the
CDF(s) specification must be entered on the command line and is automatically opened.

If a CDF(s) specification was entered on the command line, that CDF(s) specification will initially appear at
the prompt. Otherwise, the current directory will appear at the prompt.

/INITIAL=(<defaults>) (VMS)
-initial "<defaults>" (UNIX)

The default settings that are initialy in affect when a CDF is opened. These setting are only the settings
initially in effect. The user may change any of them at any time. More detailed descriptions of each option
may be found in the appropriate sections that follow.

<defaults> is a commarseparated list of settings consisting of one or more of the options in the list that
follows.

[NOJFILTER (VMS)
[no]filter (UNIX)

Whether or not each item/variableisinitialy filtered.

[NOJFILLS (VMS)
[nolfills (UNIX)

Whether or not the use of fill valuesis enabled.

[NOJFORMAT (VMS)
[no]format (UNIX)

Specifies whether or not avariable's FORMAT attribute entry is used asitsinitial "format" field.

[NOJFILLVAL (VMS)
[nojfillval (UNIX)

Specifies whether or not avariable's FILLVAL attribute entry is used asitsinitia "fill value" field.

[NOJVALIDMIN (VMS)
[no]validmin (UNIX)

Specifies whether or not a variable's VALIDMIN attribute entry is used as its initial minimum filter
value.

[NO]JVALIDMAX (VMS)
[no]validmax (UNIX)

Specifies whether or not a variable's VALIDMAX attribute entry is used as its initial maximum filter
value.

[NO]JMONOTON (VMS)

73

[no]lmonoton (UNIX)
Specifies whether or not avariables MONOTON attribute entry is used asitsinitial monotonicity.

[NOJRECORD (VMS)
[no]record (UNIX)

Specifies whether or not the Record item will be present.

[NOJINDICES (VMS)
[nolindices (UNIX)

Specifies whether or not the Indices item will be present.

[NOJEXCLUSIVE (VMS)
[no]exclusive (UNIX)

Specifies whether or not exclusive filters are allowed.

[NOJOUTPUT (VMS)
[noJoutput (UNIX)

Specifies whether or not each item/variable isinitially output.

[NO]DELETE (VMS)
[no]delete (UNIX)

Specifies the initial setting of whether or not an existing CDF will be deleted when a new CDF is
created with the same name.

[NO]JPREALLOCATE (VMS)
[no]preallocate (UNIX)

Specifies the initial setting of whether or not variable records are to be preallocated when creating a
new CDF.

SINGLE or MULTI (VMS)
single or multi (UNIX)

Specifiestheinitial setting of whether single-file or multi-file CDFs are created.

HOST or NETWORK (VMS)
host or network (UNIX)

Specifiesthe initial setting of whether host-encoded or network-encoded CDFs are created.

ROW or COLUMN (VMYS)
row or column (UNIX)

Specifies the initial setting of whether row-major, column-major, or input-major CDFg/listings are
generated. Input-mgjority isthe mgority of the input CDF.

Input-majority is selected by specifying neither row-majority nor column-majority.

EPOCH, EPOCH1, EPOCH2, EPOCH3, EPOCHf or EPOCHx (VMYS)
epoch, epochl, epoch2, epoch3, epochf or epochx (UNIX)

74

Specifiestheinitial EPOCH encoding style.

HORIZONTAL or VERTICAL (VMS)
horizontal or vertical (UNIX)

Specifiesthe initial setting of whether horizontal or vertical listings are generated.

Note that these options can be changed at any time after the CDF has been opened. If this qudifier is not
specified, each of these options has a default setting. These default settings are also used for options not
specified with this qualifier.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX)

Specifies which zMode should be used. The zMode may be one of the following:
0 Indicates that zMode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfpO (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

ICACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NOJSTATISTICS (VMS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.
/[INO]SIMPLE (VMS)
-[no]simple (UNIX)

75

Specifies if asimplified version of CDFexport should be executed. The following conditions apply to ssmple
mode;

- Only text listings can be generated (to the screen or afile).

- Nofiltering is available.

- When listing to atext file, FORMAT attribute entries are ignored and standard formats are used instead.
- Only alimited set of the options for the “initial' qualifier may be specified.

- zMode/2 is used by default.

Horizontal listings are created by default.

/BATCH=<mode> (VMS)
-batch <mode> (UNIX)

Specifiesif CDFexport should execute in a non-interactive batch mode. The mode option may be either "text"
to generate atext file listing or "cdf" to output to anew CDF. A settingsfile will be used if one exists with the
default name in the current directory or is explicitly specified with the “settings' qualifier. The settings file
contains the parameters necessary to specify how the output CDF or text file should be generated. If a settings
fileis not available, default parameters will be used. CDFexport must be used interactively to create a settings
file.

ICDF=<cdf> (VMY)
-cdf <cdf> (UNIX)

Specifies an output CDF file name to be used when exporting to a CDF in batch mode. Do not include an
extension. When executing interactively, this file name will initially appear at the output CDF prompt. If this
qualifier is not specified, the default CDF name is "default” (in the current directory).

ITEXT=<path> (VMYS)
-text <path> (UNIX)

Specifies a file name to be used when exporting to a text file listing in batch mode. When executing
interactively this file name will initially appear at the text file prompt. If this qualifier is not specified, the
default text file nameis "default.lis* (in the current directory).

ISETTINGS=<path> (VMS) -settings <path> (UNIX)

Specifies a settings file name to be used when executing in batch mode. When executing interactively thisfile
name will initially appear at the settings file prompt when saving/restoring the current settings. The default
settings file is "simple.set” if executing in smple mode and "export.set" otherwise (with each being in the
current directory).

Example(s):
VMS:
$ CDFEXPORT [.SAMPLES]
$ CDFEXPORT/ZMODE=2/CACHE=(50d,100s) GISS WETLX
$ CDFEXPORT/PROMPT/REPORT= (W, E) /INITIAL= (EXCLUSIVE, NOFORMAT)
$ CDFEXPORT/SIMPLE/BATCH=TEXT/TEXT=FLUX.OUT FLUX1996

76

UNIX:

% cdfexport samples

% cdfexport -zmode 2 -cache "50d,100s" giss wetl

% cdfexport -prompt -report "w,e" -initia "exclusive,noformat”
% cdfexport -simple -batch text -text flux.out flux1996

3.34 Interaction with CDFexport

Interaction with CDFexport is through a 4-part SelectionWindow, an ActionMenu, an OptionMenu, numerous prompt
windows, and several screen listing windows. Detailed online help is available for each window so only a brief
description of each will be given here. After selecting a CDF from which to export, part 1 of the SelectionWindow will
be loaded with a line for the <Record> item, the <Indices> item, and each variable. The <Record> item allows the
record number to be included in a screen/file listing and/or filtering on the record number for any type of output. The
<Indices> item allows the dimension indices to be included in a screenffile listing and/or filtering on the dimension
indices for any type of output. Each variable line alows that variable to be included and/or filtered when generating
any type of output. The KeyDefinitions window displays the available functions and their corresponding keys for a
given window/prompt. The MessageBuffer displays errors/instructions as necessary.

Cycling through the four parts of the SelectionWindow allows the selection of the output to be generated. The online
help explains the purpose of each field in the four parts of the SelectionWindow. The OptionMenu allows additional
selections affecting the output. The ActionMenu is then used to generate the desired type of output (as well as some
other miscellaneous operations).

The easiest way to learn how to use CDFexport isto read through the online help while generating the various types of
output using a CDF with which you are familiar.

34 CDFconvert

34.1 Introduction

The CDFconvert program is used to convert various properties of a CDF. In al cases new CDFs are created. (Existing
CDFs are not modified.) Any combination of the following properties may be changed when converting a CDF.

1. Theformat of the CDF may be changed (see Section 2.2.7).

2. The data encoding of the CDF may be changed (see Section 2.2.8).

3. Thevariable majority of the CDF may be changed (see Section 2.3.15).

4. The compression of the CDF (see Section 2.2.10) or the CDF's variables (see Section 2.3.14) may be changed.
5. The sparseness of the CDF's variables may be changed (see Sections 2.3.12 and 2.3.13).

6. Thefile version may be changed to be backward compatible.

77

3.4.2 Executing the CDFconvert Program
Usage:
VMS:

NO] PERCENT]

$ CDFCONVERT [/SKELETON=<skt-cdf-path>] [/[NO]JLOG] [/[
[/ [NO]PAGE] [/[NO]STATISTICS]

[/REPORT= (<types>)] [/CACHE=(<sizes>)]
<src-cdf-spec>

[/ZMODE=<mode>] [/[NO]NEG2POSFPO]
<dst-cdf-spec>

[/SINGLE | /MULTI] [/ROW | /COLUMN] [/I[NO]DELETE]

[/ENCODING=<encoding> | /HOST | /NETWORK]

[/COMPRESSION= (<types>)] [/SPARSENESS= (<types>)]
[/BACKAWRD]
UNIX (including Mac OS X):
% cdfconvert [-skeleton <skt-cdf-path>] [-[no]log] [-[no]percent]
[-report "<types>"] [-cache "<sizes>"] [-[no]lpage] [-[no]lstatistics]
<src-cdf-spec>
[-zmode <mode>] [-[no]lneg2posfpl]

<dst-cdf-spec>
[-single | -multi] [-row | -column] [-[no]delete]
[-encoding <encoding> | -host | -network]
[-compression <types>] [-sparseness <types>]
[-backward]

Par ameter (s):
<src-cdf-spec>

The source CDF(s). This can be either a single CDF file name or a directory/wildcard path in which case all
CDFs that match the specification will be converted. Wildcards are allowed in the CDF name but not in the
directory path. In either case do not specify an extension.

<dst-cdf-spec>

The destination of the converted CDF(s). This may be a single CDF file name only if a single source CDF
was specified. If the directory paths are the same, then a different CDF name must be specified. If the
source CDF specification is a directory/wildcard path, then this must be a directory path (other than the
source directory path). This may aso be a directory path if only a single CDF is being converted. In any
case do not specify an extension.

Qualifier(s):

/SKEL ETON=<skt-cdf-path> (VM)
-skeleton <skt-cdf-path> (UNIX)

78

The file name of a skeleton CDF to be used during the conversions. (Do not enter an extension.) The skeleton
CDF is used in the following cases:

1. If aformat for the destination CDF was not specified, then the format of the skeleton CDF will be used.

2. If a variable mgjority for the destination CDF was not specified, then the variable mgjority of the
skeleton CDF will be used.

3. If adata encoding for the destination CDF was not specified, then the data encoding of the skeleton
CDF will be used.

Specifying a skeleton CDF is optional.

/[NOJLOG (VMS)
-[no]log (UNIX)

Specifies whether or not messages about the progress of each conversion are displayed.

/INOJPAGE (VMS)
-[no]page (UNIX)

Specifies whether or not the output is displayed a page at atime. A prompt for the RETURN key will be
issued after each page. A pageis generally 22 lines of output.

/[INO]PERCENT (VMS)
-[no] percent (UNIX)

Specifies whether or not the percentage of a variable's values converted is displayed during the conversion of
that variable. Message logging must also be enabled.

/[NO]DELETE (VMYS)
-[no]delete (UNIX)

Specifies whether or not a destination CDF is deleted if it already exidts.

ISINGLE | /IMULTI (VMS)
-single | -multi (UNIX)

The format of the destination CDF(S).

This overrides the format of the skeleton CDF (if one was specified). If neither this qualifier nor a skeleton
CDF is specified, then the format of a destination CDF will be the same as that of the source CDF.

/ROW | /COLUMN (VMS)
-row | -column (UNIX)

The variable majority of the destination CDF(s).
This overrides the variable majority of the skeleton CDF (if one was specified). If neither this qualifier nor a
skeleton CDF is specified, then the variable majority of a destination CDF will be the same as that of the
source CDF.

/ENCODING=<encoding> | /[HOST | /INETWORK (VMS)

-encoding <encoding> | -host | -network (UNIX)
Source/Host/Network/Sun...Vax radio buttons (Macintosh, Java/lUNIX & Windows NT/95/98)

79

The data encoding of the destination CDF(s).

This overrides the data encoding of the skeleton CDF (if one was specified). If neither this qualifier nor a
skeleton CDF is specified, then the data encoding of a destination CDF will be the same as that of the source
CDF. The possible values of <encoding> are host, network, sun, vax, decstation, sgi, ibmpc, ibmrs, mac, hp,
next, alphaosf1, alphavmsd, and alphavmsg (and their uppercase equivalents). Note that the host

and network qualifiers are no longer necessary (but are supported for compatibility with previous CDF
distributions).

/COMPRESSION=(<types>) (VMS)
-compression <types> (UNIX)

Specifies the types of compression to be used for the CDF and/or variables. The <types> option consists of a
comma-separated list of the following. . .

cdf:<cT> CDF's compression.

vars.<cT> Compression for all variables.

vars.<cT>:<bF> Compression for all variables with a blocking factor specified.
vars.<cT>:<bF>:<r%> Compression for all variables with a blocking factor and reserve

percentage specified.

var:<name>:<cT> Compression for one particular variable.
var:<name>:<cT>:<bF> Compression for one particular variable with a blocking factor specified.

var:<name>.<cT>:.<bF>:<r%> Compression for one particular variable with a blocking factor and reserve
percentage specified.

Where <cT> is one of the following compressions. none, rle.0, huff.0, ahuff.0, or gzip.<level>; <bF> is a
blocking factor; <r%> is a reserve percentage; and <name> is a delimited, case-sensitive variable name with
the following syntax:

<delim><charl><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited variable name
must be enclosed in double quote marks (to preserve case-sensitivity).

For the gzip compression, <level> must be in the range from 1 (fastest compression) to 9 (best compression).

For compressions not specified the compression in the source CDF will be used. Specifying a variable
compression using var:...overrides a compression specified with vars.. . .

JSPARSENESS=(<types>) (VMS) -sparseness <types> (UNIX)

Specifies the types of sparseness to be used for the variables. The <types> option consists of a comma-
separated list of the following. . .

vars.<sT> Sparseness for all variables.
var.<name>.<sT> Sparseness for one particular variable.

Where <sT> is one of the following: srecords.no, srecords.pad, or srecords.prev; and <name> is a delimited,
case-sensitive variable name with the following syntax:

80

<delim><char1><char2>...<charN><delim>

In general, do not use single or double quote marks as delimiters. VMS: The entire delimited variable name
must be enclosed in double quote marks (to preserve case-sensitivity).

For sparsenesses not specified the sparseness in the source CDF will be used. Specifying a variable sparseness
using var:. . . overrides a sparseness specified with vars... .

/ZMODE=<mode> (VM)
-zmode <mode> (UNIX)

Specifies the zM ode that should be used with the source CDF(s). The zMode may be one of the following:

0 Indicates that zMode should be disabled.
1 Indicates that zMode/1 should be used. The dimension variances of rVariables will be preserved.
2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of

NOVARY [false] are removed.

Note that using zMode/1 or zMode/2 on a source CDF that contains rVariables will produce a destination CDF
containing only zVariables. The zMode "view" provided for the source CDF is written to the destination CDF
during the conversion.

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfpO (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

ICACHE=(<sizes>) (VMS) -cache"<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]STATISTICS (VMS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.

[[BACKWARD] (VMS)
-backward (UNIX)

81

Specifies whether or not to make the converted file as a backward compatible file (i.e., V 2.7) instead of the
default V.3.* file. If the environment variable CDF _FILEBACKWARD on Unix or Windows or
CDF$FILEBACKWARD on OpenVMS is set to TRUE, the converted file is then automatically a V2.7 file
whether this option is set. If this environment variable is not set or set to anything other than TRUE, then use
this option to create a backward file.

Example(s):

VMS:
$ CDFCONVERT CDF$SMPL:TEMPLATEO TEMPLATEOX
$ CDFCONVERT/LOG/REPORT= (ERRORS) CDF$SMPL: USER DISK:[USER.CDF]
$ CDFCONVERT CAC_SST BLENDED CAC_SST BLENDEDX/SINGLE/NETWORK
$ CDFCONVERT/SKELETON=CDF$SMPL:TEMPLATE3 CAC_SST BLENDED* [USER.CDF]
$ CDFCONVERT SOURCE DESTINATION/BACKWARD

UNIX:
% cdfconvert ../samples/template0 templateOx
% cdfconvert -log -report "errors" ../samples /disk4/user/cdf
% cdfconvert cac sst blended cac _sst 1 -single -network
% cdfconvert -skeleton template3 '../cdf/cac_sst*' ~user/cdf
% cdfconvert source destination -backward

VMS, UNIX:

Command line help is displayed when CDFconvert is executed without any arguments.

343 Output from the CDFconvert Program

As CDFconvert executes, the name of each CDF being converted is displayed. If message logging is enabled, the
progress of each conversion is aso displayed.

3.5 CDFcompare

3.5.1 Introduction

The CDFcompare program displays the differences between two CDFs. More than one pair of CDFs can be compared.
This program would be used to verify changes made to a CDF (comparing it with the saved original) or to verify the
conversions performed by CDFconvert (see Section 3.4).

3.5.2 Executing the CDFcompare Program

Usage:

VMS,

$ CDFCOMPARE [/[NO]LOG] [/[NO]JATTR] [/[NO]VAR] [/[NO]JNUMBER] [/[NO]JETC]

82

/ [NO]NEG2POSFPO] [/ZMODES= (<model>,<mode2>)] [/[NO]LOCATION]
/REPORT= (<types>)] [/CACHE=(<sizes>)] [/I[NO]PAGE]

/ [NO]STATISTICS] [/[NO]PERCENT] [/[NO]VALUE]

/TOLERANCE= (<F:tolerancel>,<D:tolerancel>)]

<cdf-spec-1> <cdf-spec-2>

UNIX (including Mac OS X):

-tolerance "<f:tolerancel>,<d:tolerance2>"]
cdf-spec-1> <cdf-spec-2>

% cdfcompare [-[no]log] [-[nolattr] [-[nolvar] [-[no]lnumber] [-[noletc]
[-[nolneg2posfpl0] [-zmodes "<model>,<mode2>"] [-[no]location]
[-report "<types>"] [-cache "<sizes>"] [-[no]lpage]
[-[no]lstatistics] [-[no]lpercent] [-[no]value]
[
<

Parameter (s):
<cdf-spec-1> <cdf-spec-2>
The specifications of the CDFs to be compared. (Do not enter extensions.) These can be either afile name
specifying a single CDF or a directory/wildcard path specifying more than one CDF. Wildcards are
alowed in the CDF name but not in the directory path.
If two directory/wildcard paths are specified, al of the CDFs with matching names will be compared. If a
CDF file name and a directory/wildcard path are specified, the CDF specified will be compared with the

CDF in the directory/wildcard path having the same name. If two CDF file names are specified, the CDFs
are compared. (Thisisthe only way to compare two CDFs having different names.)

Qualifier (s):

/[NOJLOG (VMS)
-[no]log (UNIX)

Specifies whether or not messages about the progress of each comparison are displayed.

/[NO]JPERCENT (VMYS)
-[no] percent (UNIX)

Specifies whether or not the percentage of a variable's values compared is displayed during the comparison of
that variable. Message logging must also be enabled.

/INOJATTR (VMS)
-[no]attr (UNIX)

Specifies whether or not attributes (and their entries) are to be compared.

/INOIVAR (VMS)
-[nojvar (UNIX)

Specifies whether or not variables are to be compared. Note that an rVariable will never be compared with a
ZVariable.

83

/[INOINUMBER (VMS)
-[no]lnumber (UNIX)

Specifies whether or not numbering differences between attributes with the same names and between variables
with the same names are to be displayed.

/[NOJETC (VMS)
-[no]etc (UNIX)

Specifies whether or not differences transparent to an application will be displayed. These would consist of the
version/release/increment of the creating CDF library, format, encoding, etc.

[ZMODES=(<model>,<mode2>) (VMS)
-zmodes "<model>,<mode2>" (UNIX)

Specifies the zModes that should be used with the CDF(s) being compared. Note that different zModes may
be used for the two CDF(s) specifications. The zModes may be one of the following:

0 Indicatesthat zMode should be disabled.
1 Indicatesthat zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [falsg] are removed.

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfpO (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/[NOJPAGE (VMYS)
-[no]page (UNIX)

Specifies whether or not the output is displayed a page at atime. A prompt for the RETURN key will be
issued after each page. A pageis generally 22 lines of output.

/[NOJLOCATION (VMS)
-[no]location (UNIX)

Specifies whether or not the locations of variable value differences are displayed. The locations are displayed
in the form:

<record-number>:[<index1>,<index2>,...,<indexN>]

/[INO]JVALUE (VMYS)
-[nojvalue (UNIX)

Specifies whether or not the values are displayed when a difference is detected between variable values or
attribute entries. Note that for variable values to be displayed, the display of the locations of the differences
must also be enabled.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

84

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

JCACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/ITOLERANCE=(<F:TOLERANCE1,D:TOLERANCE2>) (VMYS)
-tolerance "<f:tolerancel,d:tolerance2>" (UNIX)

Specifies the tolerance(s) that is used to check the equality between two single/double-precision floating-point
values. The default option is no tolerance. It means that two values are considered unequal if their data
representations in common encoding are different. If atolerance(s) is provided, it is used against the difference
between the two unequal values. If their difference is within the tolerance, they are considered to be
technically equal. Either one or both of these two tolerances, one for 4-byte single-precision floating-point
data and the other for 8-byte double-precision floating-point data, respectively, can be specified.

If the given tolerance is positive, the following formulais used to check their equality:
abs(valuel-value?) > tolerance

If the given tolerance is negative, the following formulais applied:
abs(valuel-value?) > abs(tolerance)* max(abs(valuel),abs(value?))

tolerancel, used for the single-precision floating-point data, may be in one of the two forms: "default" or a
value. Using "default” indicates that the default value, 1.0E-06, is used for the tolerance check for any single-
precision floating-point data. Or, the specified valueis used for the tolerance check. Thisfield appliesto data
types of CDF_REAL4 and CDF_FLOAT. "def" can be used to substitute for "default".

tolerance2, used for the double-precision floating-point data,may be in one of the two forms: "default" or a
value. Using "default” indicates that the default value, 1.0E-09, is used for the tolerance check for any double-
precision floating-point data. Or, the specified value is used for the tolerance check. This field appliesto data
types of CDF_REALS8, CDF_DOUBLE and CDF_EPOCH. "default" can be abbreviated as "def".

/[NO]JSTATISTICS (VMS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.

Example(s):

VMS:

$ CDFCOMPARE GISS WETL GISS WETL1
$ CDFCOMPARE/LOG/TOLERANCE= (F:DEF,D:1.0E-12) /NOATTR/NUMBER/REPORT= (ERRORS) GISS WETL

CDF$SMPL:GISS WETL

$ CDFCOMPARE/NOVAR/NOETC/ZMODES=(1,2) NCDS$SMPL: NCDSSDATA:

85

UNIX:

oe

cdfcompare giss wetl giss wetll
cdfcompare -log -tolerance "f:def,d:1.0e-12" -noattr

-number -report "errors" giss wetl ../giss wetlx
cdfcompare -novar -noetc -zmodes "1,2" /user5/CDFs /user6/CDFs

oe

oe

VMS, UNIX: Command line help is displayed when CDFcompare is executed without any arguments.

353 Output from the CDFcompare Program

The output from CDFcompare consists of messages indicating the differences found. If message logging is enabled, the
progress of each comparison is also displayed.

3.6 CDFstats

3.6.1 Introduction

The CDFstats program produces a statistical report on a CDF's variable data. Both rVariables and zVariables are
analyzed. For each variable it determines the actual minimum and maximum values (in al of the variable records), the
minimum and maximum values within a valid range of values (with illegal/fill values being ignored), and the variable's
monotonicity.

Monotonicity refers to whether or not a variable's data values increase or decrease from record to record or along a
dimension. This property is checked only if the variable varies along just one "dimension" (considering records to be
another "dimension"). For example, consider a CDF with the 2-dimensional rVariables shownin Table 3.1.

rVariable Record Variance Dimension Variances Check Monotonicity?
EPOCH VARY NOVARY ,NOVARY Yes

LATITUDE NOVARY VARY ,NOVARY Yes

LONGITUDE NOVARY NOVARY ,VARY Yes

ELEVATION NOVARY VARY VARY No

TEMPERATURE VARY VARY VARY No

Table3.1 ExamplerVariables, CDFstats Monotonicity Checking

The EPOCH, LATITUDE, and LONGITUDE rVariables would be checked for monotonicity but the ELEVATION and
TEMPERATURE rVariables would not be checked.

3.6.2 Special Attribute Usage
CDFstats uses the following special attributes:

FORMAT Used when displaying a variable statistic (e.g., minimum variable value).

VALIDMIN If range checking is enabled, used as the minimum valid value for avariable. For avariable
with a non-character data type, only the first element of its VALIDMIN attribute entry is

86

VALIDMAX

FILLVAL

MONOTON

SCALEMIN

SCALEMAX

used. Also, if requested, the VALIDMIN attribute entry for avariable will be updated with
the actual minimum value found. Again, if the variable has a non-character data type the
VALIDMIN attribute entry will be updated to have just one element.

If range checking is enabled, used as the maximum valid value for a variable. For a
variable with a non-character data type, only the first element of its VALIDMAX attribute
entry is used. Also, if requested, the VALIDMAX attribute entry for a variable will be
updated with the actual maximum value found. Again, if the variable has a non-character
datatype the VALIDMAX attribute entry will be updated to have just one element.

If fill value usage is enabled, used as the value which is ignored while collecting statistics
for avariable.

If requested, the MONOTON attribute entry for a variable will be updated with the actual
monotonicity found. The possible values for the MONOTON attribute entry are described
in Section 3.1.5.

If requested, the SCALEMIN attribute entry for a variable will be updated with the actua
minimum value found.

If requested, the SCALEMAX attribute entry for a variable will be updated with the actual
maximum value found.

The usage of these special attributes can be controlled with command line qualifiers.

3.6.3 Executing the CDFstats Program

Usage:
VMS:

$ CDFSTATS

/[NOJRANGE] [/[NOJFILL] [/OUTPUT=<file-path>] [/[NO]FORMAT]
/ [NO]JPAGE] [/[NOJUPDATE VALIDS] [/[NO]UPDATE SCALES]

/ [NO]UPDATE MONOTONIC] [/ZMODE=<mode>] [/[NO]NEG2POSFPO]
/REPORT= (<types>)] [/CACHE=(<sizes>)] [/[NO]STATISTICS]
<cdf-path>

UNIX (including Mac OS X):

% cdfstats

Parameter (s):

<cdf-path>

[-[no]lrange] [-[no]fill] [-output <file-name>] [-[no]format]
[-[nolpage] [—[no]update_valids] [-[no]update scales]
[-[no]update monotonic] [-zmode <mode>] [-[no]lneg2posfpl]
[-report "<types>"] [-cache "<sizes>"] [-[no]lstatistics]
<cdf-path>

Thefile name of the CDF to analyze. (Do not specify an extension.)

Qualifier (9):

/INOJRANGE (VMS)

87

-[no]range (UNIX)

Specifies whether or not range checking will be performed. To perform range checking, the CDF must contain
VALIDMIN and VALIDMAX attributes. A variable must also have an entry for each of these attributes in
order for range checking to be performed on that variable. Note that for variables having a non-character data
type only the first element of the VALIDMIN and VALIDMAX attribute entries are used.

/INOJFILL (VMS)
-[noJfill (UNIX)

Specifies whether or not fill values are ignored when collecting statistics. The FILLVAL attribute entry for a
variable (if it exists) isused asthefill value.

IOUTPUT=<file-path> (VMYS)
-output <file-path> (UNIX)

If this qualifier is specified, the statistical output is written to the named file. If the named file does not have
an extension, .sts (UNIX & Macintosh) or .STS (VMS & MS-DOS) is appended automatically. If this
qualifier is not specified, the output is displayed on the screen.

[[NOJFORMAT (VMS)
-[no]format (UNIX)

Specifies whether or not the FORMAT attribute is used when displaying variable values (if the
FORMAT attribute exists and an entry exists for the variable).

/INOJPAGE (VMS)
-[no]page (UNIX)

Specifies whether or not the output is displayed a page at atime. A prompt for the RETURN key will be
issued after each page. A pageis generally 22 lines of output.

/[INOJUPDATE VALIDS (VMS)
-[nojupdate valids (UNIX)

Specifies whether or not the VALIDMIN and VALIDMAX attribute entry values are updated for each
variable based on the actual minimum and maximum values found (with fill values being ignored if
requested). If the VALIDMIN and VALIDMAX attributes do not exist, they are created.

/[NOJUPDATE SCALES (VMS)
-[no]Jupdate scales (UNIX)

Specifies whether or not the SCALEMIN and SCALEMAX attribute entry values are updated for each
variable based on the actual minimum and maximum values found (with fill values being ignored if
requested). If the SCALEMIN and SCALEMAX attributes do not exi<t, they are created.

/[NOJUPDATE MONOTONIC (VMYS)
-[noJupdate monotonic (UNIX)

Specifies whether or not the MONOTONIC attribute entry values are updated for each variable based on the
monotonicity found (with fill values being ignored if requested). If the MONOTONIC attribute does not exist,
it iscreated.

/ZMODE=<mode> (VMYS)
-zmode <mode> (UNIX)

88

Specifies the zMode that should be used with the CDF. The zMode may be one of the following:
0 Indicatesthat zMode should be disabled.
1 Indicatesthat zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfp0 (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. - 0.0 isan
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

JCACHE=(<sizes>) (VMS)
-cache "<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file as follows: d for the dotCDF file, s for the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not al of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NO]JSTATISTICS (VMS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.

Example(s):

VMS:

$ CDFSTATS TEST1
$ CDFSTATS/REPORT= (ERRORS) GISS SOIL
$ CDFSTATS/NOFILL/OUTPUT=TEMPLATE3/NORANGE CDF$SMPL:TEMPLATE3

UNIX:

oe

cdfstats giss soil
cdfstats -range -fill -report "errors" S$CDF _SMPL/giss_soil
% cdfstats -norange -output template3 ../../samples/template3

oe

VMS, UNIX: Command line help is displayed when CDFstats is executed without any

&9

arguments.

3.64 Output from the CDFstats Program
The format of the output from CDFstats is as follows:
For each variable (rVariables and zVariables),

<number>. <name> <n-dims>: [<dim-sizes>] <rec-vary>/<dim-varys> (<data-type>/<n-dems>)

min:; | <min-value>
mininrange: | <min-value-in-range>
valid min: | <valid-min>, <low-values> low value(s)

max: | <max-value>
max in range: | <max-value-in-range>
valid max: | <valid-max>, <high-vaues> high value(s)

fill value: | <fill-value>, <fill-values> fill value(s)

monotonic: | <monotonicity>

If range checking and/or fill value filtering is disabled, the corresponding fields will not be displayed. The fields are
defined asfollows:

<number> The variable number.

<name> The variable name.

<rec-vary> Therecord variance of the variable - either aT or F.

<dim-varys> The dimension variances of the variable - for each dimension either a T or F. This
field is not present if there are zero (0) dimensions.

<data-type> The data type of the variable (e.g., CDF REALA4).

<n-elems> The number of elements of the variable's data type.

<n-dims> The number of dimensions of azVariable. Thisfield is not present for an rVariable.

<dim-sizes> The dimension sizes of a zVariable. This field is not present for an rVariable or if
the zVariable has zero (0) dimensions.

<min-value> The minimum value found (regardless of any range checking performed).

<min-value-in-range>

The minimum value found within the valid range.

<vaid-min> The minimum valid value (VALIDMIN attribute entry value).
<low-values> The number of values found that are less than the valid minimum.
<max-vaue> The maximum value found (regardless of any range checking performed).

<max-vaue-in-range>

The maximum value found with the valid range.

90

<valid-max> The maximum valid value (VALIDMAX attribute entry value).

<high-values> The number of values found that are greater than the valid maximum.
<fill-value> Thefill value (FILLVAL attribute entry value).

<fill-values> The number of fill values found.

<monotonicity> The monotonicity of the variable.

The <monotonicity> field may take on one of the following values.

3.7

3.71

Steady (one value)
Steady (all values the same)

Increase

Decrease

noDecrease (some values the same)

nolncrease (some va ues the same)

False

n/a

SkeletonTable

Introduction

The variable has only one valuein the CDF.
All values of the variable are the same.

Vaues strictly increase (with increasing record
number/dimension index).

Values drictly decrease (with increasing record
number/dimension index).

Consecutive vaues either increase or are the same (with
increasing record number/dimension index).

Consecutive vaues ether decrease or are the same (with
increasing record number/dimension index).

Consecutive values both increase and decrease.
The variable was not checked for monotonicity because it varies

along more than one "dimension" (if records are considered
another "dimension”).

The SkeletonTable program is used to create an ASCII text file called a skeleton table containing information about a
given CDF. (SkeletonTable can aso be instructed to output the skeleton table to the terminal screen.) It reads a CDF
and writes to the skeleton table the following information.

1

2.

Format (single or multi file), data encoding, variable majority.

Number of dimensions and dimension sizes for the rVariables.

gAttribute definitions and gEntry values.

rVariable and zVariable definitions and vAttribute definitions with rEntry/zEntry values.

Data valuesfor all or asubset of the CDF's variables.

91

The above information is written in a format that can be "understood” by the SkeletonCDF program (see Section 3.8).
SkeletonCDF reads a skeleton table and creates a new CDF (called a skeleton CDF).

3.7.2 Special Attribute Usage

The specia attribute FORMAT is used by SkeletonTable (depending on the setting of the "format" qualifier) when
writing variable valuesin a skeleton table.

3.7.3 Executing the SkeletonTable Program
Usage:
VMS:

$ SKELETONTABLE /SKELETON=<skeleton-path>] [/[NO]LOG] [/ZMODE <mode>]
/NONRV | /NRVTABLE | /VALUES=<values>] [/[NO]SCREEN]
- [NO]NEG2POSFPO] [/I[NO]FORMAT] [/REPORT=(<types>)]

/CACHE= (<sizes>)] [/[NOJPAGE] [/[NO]STATISTICS]
<cdf-path>

UNIX (including Mac OS X):

% skeletontable [-skeleton <skeleton-path>] [-[nollog] [-zmode <mode>]
[-nonrv | -nrvtable | -values <values>] [-[no]screen]
[-[nolneg2posfp0] [-[no]format] [-report "<types>"]
[-cache "<sizes>"] [-[no]lpage] [-[no]statistics]
<cdf-path>
Parameter (s):
<cdf-path>

The file name of the CDF from which the skeleton table will be created. (Do not enter an extension.)

Qualifier (s):

I/SK ELETON=<skeleton-path> (VMS)
-skeleton <skeleton-path> (UNIX)

The file name of the skeleton table to be created. (Do not enter an extension because .skt is appended
automatically.) If this qualifier is not specified, the skeleton table will be named <cdf-name>.skt in the
default/current directory (where <cdf-name> is the name portion of the CDF from which the skeleton table
was created).

IVALUES=<vaues> | INRVTABLE | /NONRV (VMS)
-values <values> | -nrvtable | -nonrv (UNIX)

Only one of these qualifiers may be specified. The meaning of each isas follows:
IVALUES=<vaues> (VMYS)

-values <values> (UNIX)
No values/.../Selected values radio buttons (Macintosh, JavalUNIX & Windows NT/95/98)

92

VMS, UNIX: The <values> option specifies which variable values should be put in the skeleton
table. Select one of the options from the list which follows.

/INONRV (VMYS)
-nonrv (UNIX)

None (VMS)

No values radio button (UNIX)
Off radio button (Macintosh, Java/lUNIX & Windows NT/95/98)

No variable values should be put in the skeleton table.

Nrv (VMS)

NRV values radio button (UNIX)

NRV radio button (Macintosh, Java/lUNIX & Windows NT/95/98)
Only NRV variable values should be put in the skeleton table.

Rv (VMS)

RV values radio button (UNIX)

RV radio button (Macintosh, Java/UNIX & Windows NT/95/98)
Only RV variable values should be put in the skeleton table.

All (VMS)

All valuesradio button (UNIX)

All radio button (Macintosh, JavalUNIX & Windows NT/95/98)
All variable values should be put in the skeleton table.

<named> (VMS)

Selected values radio button (UNIX)

named radio button (Macintosh, JavalUNIX & Windows NT/95/98)
Values of the named variables should be put in the skeleton table.
VMS, UNIX: <values> is acomma-separated list of delimited variable names with the

entire list enclosed in double quote marks. NOTE: Do not use double quote marks to
delimit avariable name.

Ignore NRV data. (No values are placed in the skeleton table.)

INRVTABLE (VMS)

-nrvtable (UNIX)

Put NRV variable data values in the skeleton table.

VMS, UNIX: Note that only the "vaues' quaifier is actualy needed. The others are supported for
compatibility with previous CDF distributions.

/[NOJLOG (VMS)

-[no]log (UNIX)

93

Specifies whether or not messages are displayed as the program executes.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX)

Specifies the zMode that should be used with the CDF. The zMode may be one of the following:
0 Indicates that zM ode should be disabled.
1 Indicatesthat zMode/1 should be used. The dimension variances of rVariables will be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of
NOVARY [false] are removed.

[[NOJFORMAT (VMS)
-[no]format (UNIX)

Specifies whether or not the FORMAT attribute is used when writing variable values (if the FORMAT
attribute exists and an entry exists for the variable).

/[NO]JNEG2POSFP0 (VMS)
-[no]neg2posfp0 (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>
option isacomma-separated list of zero or more of the following symbols: errors,
warnings, or informationals. Note that these symbols can be truncated (e.g., e, w, and i).

ICACHE=(<sizes>) (VMS) -cache "<sizes>" (UNIX)

Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file asfollows: d for the dotCDF file, sfor the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not all of the file types must be specified. Those not
specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/[NOJSTATISTICS (VMS)
-[no]statistics (UNIX)

Specifies whether or not caching statistics are displayed when a CDF is closed.

/[NO]SCREEN (VMS)
-[no]screen (UNIX)

94

Specifies whether or not the skeleton table is to be displayed on the terminal screen (written to the "standard
output"). If not, the skeleton table iswritten to atext file.

/INOJPAGE (VMS)
-[no]page (UNIX)

Specifies whether or not the output is displayed a page at atime. A prompt for the RETURN key will be
issued after each page. A pageis generally 22 lines of output.

Example(s):
VMS:

$ SKELETONTABLE/NOLOG/REPORT= (ERRORS) FGGE3B
$ SKELETONTABLE/SKELETON=FGGE3B/NONRV FGGE3B
$ SKELETONTABLE/SCREEN/VALUES="'Varl', 'Var2'"

UNIX:

oe

skeletontable -nolog -report "errors" fgge3b
skeletontable -skeleton fgge3b -nonrv ../cdfs/fgge3b
skeletontable -screen -values "'Varl',6 'Var2'"

o

oe

VMS, UNIX: Command line help is displayed when SkeletonTable is executed without any arguments.

3.74 Output from the SkeletonTable Program

The format of the skeleton table is described in Appendix A.

3.8 SkeletonCDF

3.8.1 Introduction

The SkeletonCDF program is used to make a fully structured CDF, called a skeleton CDF, by reading atext file called
askeleton table. The SkeletonCDF program allows a CDF to be created with the following:

1. The necessary header information - the number of dimensions and dimension sizes for the rVariables, format,
data encoding, and variable magjority.

2. The gAttribute definitions and any number of gEntries for each.

3. TherVariable and zVariable definitions.

4. The vAttribute definitions and the entries corresponding to each variable.
5. Thedatavauesfor any or al of the variables.

The created CDF isreferred to as a skeleton CDF.

°> This program was originally named CDFskeleton. It has been renamed to ease the confusion caused some users.
Now, SkeletonCDF is used to create skeleton CDFs and SkeletonTable is used to create skeleton tables.

95

3.8.2 Executing the SkeletonCDF Program
Usage:
VMS:

S SKELETONCDF [/CDF:<cdf—path>] [/[NO]JLOG] [/[NO]DELETE] [/[NO]FILLVAL]
[/REPORT= (<types>)] [/[NO]JNEG2POSFPO] [/CACHE=(<sizes>)]
[/ZMODE=<mode>] <skeleton-path>

UNIX (including Mac OS X):

% skeletoncdf [-cdf <cdf-path>] [-[no]log] [-[no]delete] [-[no]fillval]
[-report "<types>"] [-[no]lneg2posfpl0] [-cache "<sizes>"]
[-zmode <mode>] <skeleton-path>

Parameter (s):
<skeleton-path>
The file name of the skeleton table from which a skeleton CDF will be created. (Do not specify an
extension.)
Qualifier(s):

/CDF=<cdf-path> (VM)
-cdf <cdf-path> (UNIX)

The file name of the CDF that will be created (overriding the file name in the skeleton table). If this qualifier
is not specified, the CDF file name in the skeleton table isused. Do not specify an extension in the file name.

/[NOJLOG (VMS)
-[no]log (UNIX)

Specifies whether or not messages are displayed as the program executes.

/[NO]NEG2POSFPO (VMS)
-[no]neg2posfp0 (UNIX)

Specifies whether or not -0.0 is converted to 0.0 by the CDF library when encountered in a CDF. -0.0 is an
illegal floating point value on VAXes and DEC Alphas running OpenVMS.

/[NO]DELETE (VMYS)
-[no]delete (UNIX)

Specifies whether or not the CDF will be deleted first if it already exists (essentially overwriting it).

96

/INOJFILLVAL (VMS)
-[nojfillval (UNIX)

Specifies whether or not entries of the FILLVAL vAttribute are used to set the pad values for the
corresponding variables. If this qualifier is specified, the FILLVAL vAttribute must exist and only those
variables with an entry for the FILLVAL vAttribute will be affected.

/ICACHE=(<sizes>) (VMS) -cache"<sizes>" (UNIX)
Specifies the cache sizes to be used by the CDF library for the dotCDF file and the various scratch files. The
<sizes> option is a comma-separated list of <size><type> pairs where <size> is a cache size and <type> isthe
type of file asfollows: d for the dotCDF file, sfor the staging scratch file, and ¢ for the compression scratch
file. For example, 200d,100s specifies a cache size of 200 for the dotCDF file and a cache size of 100 for the
staging scratch file. The dotCDF file cache size can aso be specified without the d file type for compatibility
with older CDF releases (e.g., 200,100s). Note that not al of the file types must be specified. Those not

specified will receive a default cache size chosen by the CDF library. A cache size is the number of 512-byte
buffersto be used. Section 2.1.5 explains the caching scheme used by the CDF library.

/ZMODE=<mode> (VMS)
-zmode <mode> (UNIX)

Specifies the zMode that should be used with the skeleton table. If zMode is enabled, zVariables will be
created from the definitionsin the rVariables section. The zMode may be one of the following:

0 Indicates that zMode should be disabled.
1 Indicatesthat zMode/1 should be used. The dimension variances of rVariableswill be preserved.

2 Indicates that zMode/2 should be used. The dimensions of rVariables having a variance of F [false]
are removed.

/IREPORT=(<types>) (VMYS)
-report "<types>" (UNIX)

Specifies the types of return status codes from the CDF library that should be reported/displayed. The <types>

option is acomma-separated list of zero or more of the following symbols: errors, warnings, or informationals.
Note that these symbols can be truncated (e.g., e, w, and i).

Example(s):
VMS:

$ SKELETONCDF FGGE3B
$ SKELETONCDF/NOLOG/CDF=[-.TEMP]FGGE3B_ X/REPORT= (ERRORS) FGGE3B

% skeletoncdf fgge3b
% skeletoncdf -nolog -cdf ../fgge3b x -report "errors" fgge3b

VMS, UNIX: Command line help is displayed when SkeletonCDF is executed without any arguments.

3.8.3 Creating the Skeleton Table

97

A skeleton table is atext file having .skt as afile extension. The normal method of creating and using a skeleton table
would be to use SkeletonTable on an existing CDF that is similar to the CDF you want to create. Then edit the created
skeleton table to meet your needs, and use SkeletonCDF to create the new CDF. The skeleton table could also be
created from scratch with any text editor.

The format of the skeleton table is described in Appendix A.

3.9 CDFinquire

3.9.1 Introduction

The CDFinquire program displays the version of the CDF distribution being used, most configurable parameters, and
the default toolkit qualifiers.

3.9.2 Executing the CDFinquire Program
Usage:
VMS:

$ CDFINQUIRE /ID [/[NO]PAGE]

UNIX:

)

% cdfinquire -id [-[nolpage]
Parameter (s):

None

Qualifier (9):

/1D (VMS)
-id (UNIX)

Causes the version of your CDF distribution and the default toolkit qualifiers to be displayed. This qudifier is
required.

/[NOJPAGE (VMS)
-[no]page (UNIX)

Specifies whether or not the output is displayed a page at atime. A prompt for the RETURN key will be
issued after each page. A pageis generally 22 lines of output.

98

Example(s):
VMS:
$ CDFINQUIRE/ID/PAGE

UNIX:

)

% cdfinquire -id -page

VMS, UNIX: Command line help is displayed when CDFinquire is executed without any arguments.

393 Output from the CDFinquire Program

The version of your CDF distribution is displayed first followed by the configurable parameters and then the default
toolkit qualifiers (in the style of the system being used).

3.10 CDFdir

3.10.1 Introduction
The CDFdir utility is used to display a directory listing of a CDF's files.® The dotCDF file is displayed first followed
by the rVariable files and then the zVariablefiles (if either exist in amulti-file CDF) in numerical order.
3.10.2 Executing the CDFdir Program
The command line syntax for CDFdir is as follows:
Usage:
VMS:
$ CDFDIR <cdf-path>

UNIX (including Mac OS X):

% cdfdir <cdf-path>

NOTE: Thistool is not supported by Windows.

Parameter (s):

<cdf-path> The file name of the CDF for which to display a directory listing (do not specify an
extension).

¢ CDFdir is not available on Windows systems. It's also not available in Java version pf the CDF toolkit.

99

Example(s):

VMS:
$ CDFDIR NCDS$DATA:GISS WETL CLIMATOLOGY
$ CDFDIR [-.TEMP]FGGE3B

UNIX:
% cdfdir ../cac_sst _blended

$ cdfdir ~/CDFs/giss _wetl climatology

Help is displayed when CDFdir is executed without any arguments.

3.10.3 Output from the CDFdir Program

The format of the output from CDFdir is that of a directory listing on the operating system being used.

100

Appendix A Skeleton Table Format

A.1 Introduction

Skeleton tables are both created by and read by CDF utility programs. SkeletonTable creates a skeleton table by
reading a CDF. SkeletonCDF creates a CDF by reading a skeleton table. In almost all cases the format of the skeleton
tables read and written will be the same. Any differences are minor and will be described where appropriate.

The skeleton table has a free format (except where noted) - you need not be concerned with any column alignments,
spaces between fields, or spaces between successive lines. However, certain syntax rules do apply to skeleton tables.

1. Linesare limited to 132 characters.

2. Keywords for the header section, gAttributes section, vAttributes section, rVariables section, and end section
must always be specified (in that order). The zVariables section is optional - its keyword may be omitted.

3. An exclamation point (!) at any point signifies acomment until the end of the line. Any characters encountered
after the exclamation point will be ignored. An exclamation point may begin a line (making the entire line a
comment). Exclamation points inside delimited character strings are part of the string and do not cause the
start of a comment.

4. Attribute and variable names must be delimited. Any character not in the name may be used as the delimiter
with the following exceptions:

(@) Do not use an exclamation point (1) to delimit an attribute or variable name.
(b) Do not use a period (.) to delimit an attribute name in the variables section.
(c) Do not use a left square bracket ([) or anumeral to delimit avariable name.

5. When specifying a character string attribute entry value, do not use a hyphen (-) to delimit the string or strings
(if the string is split across one or more lines).

6. All items are referenced from one (1). These include gAttribute gEntry numbers and NRV variable index
values.

In the descriptions that follow, optional fields are shown in brackets ([...]).

A.2 Header Section

The header section contains general information about the CDF. The format of the header section is as follows:

#header

CDF NAME: <cdf-name>

DATA ENCODING: <data-encoding>

! Variables

MAJORITY: <variable-majority>
FORMAT: <cdf-format>

G.Attributes V .Attributes Records Dims Size

<rVars>/<zVars> <gAttrs> <VAttrs> <n-recs>/z <n-dims> <dim-sizes>

The fields are defined as follows:

<cdf-name>

<data-encoding>

<variable-majority>

<cdf-format>

<rVars>

<zVars>

<gAttrs>

The name of the CDF. When SkeletonT able creates a skeleton table, this will be the name of
the corresponding CDF (not the full file name specified). When SkeletonCDF reads a
skeleton table, this will be the name of the CDF created unless a CDF file name is specified
on the command line. If the CDF name in the skeleton table is to be used, a full file name
must be specified (if desired) or else the CDF will be created in the default/current directory.

The data encoding of the CDF. When specifying a data encoding to the SkeletonCDF
program, the following encodings are valid: HOST, NETWORK, VAX, ALPHAVMSd,
ALPHAVMSg, ALPHAVMSI, SUN, SGi, DECSTATION, ALPHAOSF1, IBMRS, HP, PC,
MAC, and NeXT. When a skeleton table is created by SkeletonTable, al of the above
encodings with the exception of HOST are possible. Data encoding is described in Section
2.2.8.

The variable mgjority of the CDF. This may be either ROW or COLUMN. Variable
majority is described in Section 2.3.15.

The format of the CDF. This may be either SINGLE or MULTI. CDF formats are described
in Section 2.2.7. Note that thislineis optional. Skeleton tables created by SkeletonTable in
CDF V2.0 did not have this line because the single-file option did not exist. To allow
SkeletonCDF to read skeleton tables created with SkeletonTable in CDF V2.0, this line was
made optional. If omitted, SkeletonCDF will create a CDF with the default format for your
CDF distribution. Consult your system manager to determine this default. SkeletonTable (in
CDF V2.1 and beyond) always generates this line regardless of the version of the CDF being
read.

The number of rVariablesin the CDF. SkeletonTable always places the correct number here.
However, when SkeletonCDF reads a skeleton table, this value isignored (but a place holder
is necessary). The number of rVariables created is determined by the number of rVariable
definitions in the rVariable definitions section.

The number of zVariables in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton table, this value isignored (but a place
holder is necessary). The number of zVariables created is determined by the number of
zVariable definitions in the zVariable definitions section.

The number of gAttributes in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton table, this value isignored (but a place
holder is necessary). The number of gAttributes created is determined by the number of
definitions in the gAttributes section.

<VAttrs> The number of vAttributes in the CDF. SkeletonTable always places the correct number
here. However, when SkeletonCDF reads a skeleton table, this value isignored (but a place
holder is necessary). The number of vAttributes created is determined by the number of

definitions in the vAttributes section.

<n-recs> The (maximum) number of rVariable records in the CDF. SkeletonTable always places the
correct number here. However, when SkeletonCDF reads a skeleton table, this value is
ignored (but a place holder is necessary). The number of records written to the CDF depends
on whether or not any values are specified for variables. NRV variables are described in

Section 2.3.10.
<n-dims> The number of dimensions for the rVariablesin the CDF.
<dim-sizes> The dimension sizes for the rVariables in the CDF - one value per dimension.

rVariables have zero (0) dimensions, this field would be left blank.

An example header section for a CDF with 2-dimensional rVariables follows:
#header

CDF NAME: sample2
DATA ENCODING: NETWORK
MAJORITY: ROW

FORMAT: SINGLE

! Variables G.Attributes V .Attributes Records Dims Size
| mmmmmmmmes oot e
14/0 18 4 1/z 2 180 360
If the rVariables had zero dimensions, the header section would be as follows:
#header
CDF NAME: sample0
DATA ENCODING: NETWORK
MAJORITY: ROW
FORMAT: SINGLE
! Variables G.Attributes V .Attributes Records Dims Size
| mmmmmciit et et e e e
14/0 18 4 1/z 0

A.3 gAttributes Section

The gAttributes section contains the definition of each gAttribute as well as any gEntries for those gAttributes. The

format of the gAttributes section is as follows:
#GLOBA L attributes

[<global -scope-attribute-definition>

<global -scope-attribute-definition>
<global -scope-attribute-definition>

<global —scopeattr.i bute-definition>]

Where <global -scope-attribute-definition>, needless to say, is a gAttribute definition.

Zero or more gAttribute definitions are allowed. (There is no limit on the number of attributes that a CDF may have.)
The format of each gAttribute definition isas follows:

Attribute
Name

<attr-name>

Entry Data

Number Type Value

[<entry-n>: <data-type> <vaue>

<entry-n>: [<data-type>] <value>

<entry-n>: [<data-type>] <vaue>

<ent.ry-n>: [<data'-typ9] <vai ue>]. ! Notethe“.”

The fields are defined as follows:

<attr-name>

<entry-n>

<data-type>

<value>

The name of the gAttribute. The name must be delimited with a character not appearing in
the name itself (e.g., "TITLE" or 'History'). The delimiting characters are not part of the
gAttribute name in the CDF.

The gEntry number. Zero or more gEntries may be specified for a gAttribute, and there are
no restrictions on the gEntry numbers that may be used (except that they must be greater
than zero).

The data type for the gEntry. The data type must be one of the following: CDF_BYTE,
CDF_INT1, CDF_UINT1, CDF_INT2, CDF_UINT2, CDF_INT4, CDF_UINT4,
CDF_REAL4, CDF_FLOAT, CDF_REALS8, CDF_DOUBLE, CDF_EPOCH, CDF_CHAR,
or CDF_UCHAR. The <data-type> field is optional for all but the first gEntry specified. If
omitted, the data type of the previous gEntry is assumed.

The value(s) for the gEntry. A period (.) follows the value(s) of the last gEntry for a
gAttribute.

Attribute Entry Values

An attribute entry can have more than one element of the specified data type. For character
data types (CDF_CHAR and CDF_UCHAR), each character is the element of astring. The
character string must be delimited with a character not appearing in the string itself, and the
entire delimited string must be enclosed in braces (e.g., { "The CDF title." }). If the string
will not fit on one ling, it may be continued on additiona lines. The substrings are each
delimited with a unique character, and a dash (-) is placed at the end (after the terminating
delimiter) of each line except the last one. For example,

{ "Thisisalonger " —
"CDF title that will" -

" not fit on oneline." }
For non-character data types, the elements are enclosed in braces and separated by commas
(eg., { 1, 2, 3}). If the dements will not all fit on one line, they may be continued on
additional lines. For example,

{10, 20,3.0,4.0,5.0,
6.0, 7.0, 8.0,9.0,10.0}

Note that an individual element value may not be split across lines.

The format of a value for the CDF_EPOCH data type (which is aso considered a non-
character data type) is defined in Section 2.5.4. A CDF_EPOCH vaue may not be split
across two lines.

Several example gAttribute definitions follow:

#GL OBA L attributes

Attribute Entry Data
Name Number Type Value
"TITLESA" 1 CDF_CHAR { "CDAW-9A; SABRE" }.
"TITLERL" 1 CDF_CHAR { "CDAW-9A; SABRE " -
"Backscatter Radar, 20s." }.
"History" 1 CDF_CHAR { "CDF created 02-Jan-1961" }
2: { "CDF modified 23-Oct-1964" }.
"TIMES" 1 CDF_EPOCH. { 04-Jul-1976 12:00:00.000,
31-Oct-1976 00:00:00.000 }
2: { 25-Dec-1976 01:10:00.000,
01-Jan-1977 01:10:30.000 }.
& Factors& 1 CDF_REALA4 { 125}
2: {174}
3: { 85}
4: {7}
5: {12 }.

A.4 vAttributes Section

The VAttributes section contains the names of the vAttributes in the CDF. Any rEntries or zEntries for these vAttributes
are defined in the rVariables/zVariables sections (following the definition of the corresponding variable). The format
of the vAttributes section is as follows:

#VARIABLEattributes

[<attribute-name>

<attribute-name>
<attribute-name>

<attribute-name>]
Where <attribute-name> is a vAttribute name delimited with a character not appearing in the name itself (e.g.,
"VALIDMIN" or 'Units). The delimiting characters are not part of the vAttribute name in the CDF. There may be zero
or more VAttribute names. (There is no limit on the number of attributes that a CDF may have.)
An exampl e VAttributes section follows:
#VARIABLEattributes
"FIELDNAM"

"VALIDMIN"
"Units'

A.5 rVariable Section

The rVariables section contains the definition of each rVariable in the CDF, the vaues for any vAttribute rEntries
associated with each rVariable, and (optionally) data values for those rVariables. The format of the rVariables section
isasfollows:

#variables

[<variable-definition>

<variable-definition>
<variable-definition>

<variable-definition>]

Where <variable-definition>isan rVariable definition. The format of each rVariable definition is as follows:

! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
o U S S
<var-name> <var-data-type> <n-elems> <rec-vary> <dim-varys>
I Attribute Data
! Name Type Value
| e e e
[<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>

<attr-name> <entry-data-type> <entry-value>

<attr-name>

[[<rec-num>:]<indices>
[<rec-num>:]<indices>
[<rec-num>:]<indices>

<entry-data-type> <entry-value>]. ! Note the "."

<value>
<vaue>
<vaue>

[<rec-num>:]<indices> = <vaue>]

Each field is defined as follows:

<var-name>

<var-data-type>

<n-eems>

<rec-vary>

<dim-varys>

<attr-name>

<entry-value>

<rec-num>

The name of the rVariable. The name must be delimited with a character not appearing in
the name itself (e.g., "EPOCH" or 'Temperature’). The delimiting characters are not part of
the rVariable namein the CDF.

The data type for the rVariable. The data type must be one of the following: CDF BYTE,
CDF_INT1, CDF_UINT1, CDF_INT2, CDF_UINT2, CDF_INT4, CDF _UINT4,
CDF_REAL4, CDF_FLOAT, CDF_REALS8, CDF_DOUBLE, CDF_EPOCH, CDF_CHAR,
or CDF_UCHAR.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string. For non-character data
types, this value must be one (1).

The record variance of the rVariable. This must be either T (the values vary from record to
record) or F (the values do not vary from record to record).

The dimension variances of the rVariable. For each dimension there must be either a T (the
values vary along that dimension) or F (the values do not vary along that dimension). Each
dimension variance must be separated by at least one space. If the rVariables have zero
dimensions, thisfield would be left blank.

The name of the vAttribute for which to specify an rEntry for this rVariable. The vAttribute
must have been specified in the vAttributes section. The name must be delimited with a
character not appearing in the name itself (e.g., "SCALEMAX" or 'rang€’). The delimiting
characters are not part of the vAttribute name in the CDF.<entry-data-type> The data
type for the vAttribute rEntry. The data type must be one of the following: CDF_BYTE,
CDF_INT1, CDF _UINT1, CDF_INT2, CDF _UINT2, CDF_INT4, CDF _UINTA4,
CDF_REAL4, CDF_FLOAT, CDF_REALS, CDF_DOUBLE, CDF_EPOCH, CDF_CHAR,
or CDF_UCHAR.

The value(s) for the vAttribute rEntry. The format of attribute entry values is described in
Section A.3.

NOTE: Thelast rEntry MUST be followed by aperiod (.). If no rEntries
are specified for an rVariable, the period must still be present.

The record number of an rVariable value. Thiswill be present only for record-variant (RV)
rVariables.

<indices>

<vaue>

The indices of an rVariable value. The indices are enclosed in brackets and separated by
commas (e.g., [23,1] or [1,80]). If the rVariables have zero dimensions, [] would be
specified (the brackets are still required).

The value at the given record/indices. For character data types (CDF_CHAR or
CDF_UCHAR) the string must be delimited with a unique character and enclosed in braces
({...}) in the same manner as for an attribute entry for a character data type. For non-
character data types the value is not enclosed in braces (the braces are not necessary because
there can only be one element). The format for CDF_EPOCH values is described in Section
254.

The vAttribute rEntries are optional. If omitted, the terminating period is still required. The rVariable values are also

optional.

Several sample rVariable definitions for a CDF with 2-dimensional rVariables follow:

! Variable
I Name

| “Latitude”

I Attribute
I Name

“VALIDMIN”
“VALIDMAX”
“scale’

[1.1]
[1.2]
[1.3]
[1.4]
[1.5]

-60.0
-30.0
0.0
30.0
60.0

! Variable

I Name

I “EPOCH”

! Attribute
I Name

Data Number Record Dimension
Type Elements Variance Variances
CDF _REALA4 1 F FT
Data
Type Value
CDF_REALA4 { -90.0 }
CDF _REAL4 { 90.0 }
CDF REALA4 { -60.0, 60.0 }.
Data Number Record Dimension
Type Elements Variance Variances
CDF_EPOCH 1 F FF
Data
Type Value
CDF _REALA4 { 10-Oct-1991 00:00:00.000,

20-Oct-1991 23:59:59.999 }.
Data Number Record Dimension

Type Elements Variance Variances

HTmp’ CDF_INT2 1 T TT

! Attribute Data

! Name Type Value

U,

‘Feldname’ CDF_CHAR { "Temperature (C)" }.

! Variable Data Number Record Dimension
! Name Type Elements Variance Variances
| oo e
I “pres_Iv1” CDF_REAL4 1 T FF

! Attribute Data

! Name Type Vaue

! no attribute entries

1:[1,1] = 1013.1
21,1] = 1015.0
3[1,1] = 1012.3

A sample variable definition for a CDF with O-dimensiona rVariables follows:

! Variable Data Number Record Dimension
I Name Type Elements Variance Variances
| oo e
| “Latitude” CDF_REALA4 1 F
! Attribute Data
! Name Type Value
b e el
“VALIDMIN" CDF_REAL4 { -90.0 }
“VALIDMAX" CDF _REALA4 { 90.0 }.
[1 =-123

A.6 zVariable Section

The optional zVariables section contains the definition of each zVariable in the CDF, the vaues for any vAttribute
ZEntries associated with each zVariable, and (optionally) data values for those zVariables. The format of the
zVariables section isasfollows:

#zVariables

[<variable-definition>
<variable-definition>
<variable-definition>

<variable-definition>]

Where <variable-definition> is azVariable definition. The format of each zVariable definition is as follows:

I Variable Data Number Record Dimension
I Name Type Elements Dims Sizes Variance Variances
| el
<var-name> <var-datatype> <n-edems> <dims> <sizes> <rec-vary> <dim-varys>
! Attribute Data
! Name Type Value
e,
[<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>
<attr-name> <entry-data-type> <entry-value>]. ! Note the "."
[[<rec-num>:]<indices> = <vaue>
[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <value>

[<rec-num>:]<indices> = <vaue>]

Each field is defined as follows:

<var-name>

<var-data-type>

The name of the zVariable. The name must be delimited with a character not appearing in
the name itself (e.g., "EPOCH" or 'Temperature’). The delimiting characters are not part of
the zZVariable name in the CDF.

The data type for the zVariable. The data type must be one of the following: CDF BYTE,
CDF_INT1, CDF_UINT1, CDF_INT2, CDF_UINT2, CDF_INT4, CDF _UINT4,
CDF_REAL4, CDF _FLOAT, CDF _REALS, CDF_DOUBLE, CDF_EPOCH,
CDF_CHAR, or CDF_UCHAR.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR) thisis the number of charactersin each string. For non-character data types

<n-elems>

this value must be one (1).
<dims> The number of dimensions for the zZVariable.
<sizes>

The dimension sizes - one value per dimension. If the zVariable has zero (0) dimensions,
this field would be left blank.

<rec-vary>

<dim-varys>

<attr-name>

<entry-data-type>

<entry-value>

<rec-num>

<indices>

<vaue>

The record variance of the zZVariable. This must be either T (the values vary from record to
record) or F (the valuesdo not vary from record to record).

The dimension variances of the zVariable. For each dimension there must be either aT (the
values vary along that dimension) or F (the values do not vary along that dimension). Each
dimension variance must be separated by at least one space. If the zVariable has zero
dimensions, this field would be | eft blank.

The name of the vAttribute for which to specify a zEntry for this zVariable. The vAttribute
must have been specified in the vAttributes section. The name must be delimited with a
character not appearing in the name itself (e.g., "SCALEMAX" or 'range’). The delimiting
characters are not part of the vAttribute name in the CDF.

The data type for the vAttribute zEntry. The data type must be one of the following:
CDF_BYTE, CDF_INT1, CDF_UINT1, CDF_INT2, CDF_UINT2, CDF_INT4,
CDF_UINT4, CDF_REAL4, CDF FLOAT, CDF_REAL8, CDF _DOUBLE,
CDF_EPOCH, CDF_CHAR, or CDF_UCHAR.

The value(s) for the vAttribute zEntry. The format of attribute entry values is described in
Section A.3.

NOTE: Thelast zEntry MUST be followed by a period (.). If no zEntries are specified for
azVariable, the period must still be present.

The record number of an zVariable value. Thiswill be present only for record-variant (RV)
ZVariables.

The indices of an zVariable value. The indices are enclosed in brackets and separated by
commas (e.g., [23,1] or [1,80]). If the zVariable has zero dimensions, [] would be specified
(the brackets are still required).

The value at the given record/indices. For character data types (CDF_CHAR or
CDF_UCHAR) the string must be delimited with a unique character and enclosed in braces
({..}) in the same manner as for an attribute entry for a character data type. For non-
character data types the value is not enclosed in braces (the braces are not necessary because
there can only be one element). The format for CDF_EPOCH values is described in Section
254.

The vAttribute zEntries are optional. If omitted, the terminating period is still required. The zVariables values are also

optional.

Several sample zVariable definitions follow:

| Variable
I Name

“Instrument”

! Attribute

I Name
“FIELDNAM”

[1 = { "Gonkulator" }

Data Number Record Dimension
Type Elements Dims Sizes Variance Variances
CDF_CHAR 10 0 F

Data

Type Value

CDF_CHAR { "Measuring instrument" }.

! Variable
I Name

“Ticks’

! Attribute
I Name

Data
Type

CDF BYTE

Data
Type

I no attribute entries

1[1]
1:[2]
1[3]
2:[1]
2:[2]
2:[3]

PNWWN PR

Variable

“WIND VELOCITY”

I Attribute
I Name

“FIELDNAM”
“VALIDMIN”
“VALIDMAX”
“UNITS’
“FORMAT”

A.7 End Section

Data
Type

CDF_REAL4

Data
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_CHAR
CDF_CHAR

Number Record Dimension
Elements Dims Sizes Variance Variances
1 1 3 T T

Vaue
Number Record Dimension
Elements Dims Sizes Variance Variances

1 3 360 180 10 T TTT

Vaue

{ "Wind velocity." }

{ 00}

{ 300.0 }

{ "Knots" }

{ "Fo.1" }.

This section simply consists of the keyword #end. This section isrequired.

A.8 Example Skeleton Table

An exampl e skeleton table containing rVariables and zVariables follows:

Skel eton table for the "exanpl e2" CDF.

Cener at ed: Thur sday,

17-Nov-1994 14:07:58

!

!

! CDF created/nodified by CDF V2.4.10
I Skel eton table created by CDF V2.5.0

#header

CDF NAME: exanpl e2
DATA ENCODI NG NETWORK
MAJORI TY: ROW

FORMAT: SI NGLE

! Variables G Attributes V.Attri butes Records

#G.OBALattri butes

Dins Sizes

I Attribute Entry Dat a
! Nare Nunber Type Val ue
|l oo oo .
"TI TLE" 1 CDF_CHAR { "Title for exanple2 CDF." }
#VARI ABLEat tri but es
" FI ELDNAM'
"VALI DM N'
"VAL| DVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"
" FORMAT"
#vari abl es
! Variable Dat a Nunber Record Di nensi on
! Narme Type El enent s Vari ance Vari ances
| - mmme mmmmmmma mmmmmmma mmmmmm——a
" EPOCH" CDF_EPCCH 1 T FF
Attribute Dat a
Narme Type Val ue
" FlI ELDNAM' CDF_CHAR { "Time since 0 A D "}
"VALI DM N' CDF_EPCCH { 01-Jan- 0000 00: 00: 00. 000 }
"VAL| DVAX" CDF_EPCCH { 01-Jan-2089 00: 00: 00. 000 }
" SCALEM N' CDF_EPCCH { 01-Apr-1986 07:00: 00.000 }
" SCALEMAX" CDF_EPCCH { 01- Apr-1986 23:00: 00.000 }
"UNI TS" CDF_CHAR { "mlliseconds (UT) "}
" FORMAT" CDF_CHAR { "E14.0 " }
! Variable Dat a Nunber Record Di nensi on
I Nane Type El enent s Vari ance Vari ances

"LONG TUD"

Attribute
Nane

" FI ELDNAM'
"VALI DM N'
" VALI DVAX"
" SCALEM N'
" SCALEMAX"

"UNI TS"
" FORVAT"

[1,1]
[2,1]
[3,1]
[4,1]
[5, 1]
[6,1]
[7,1]
[8,1]
[9,1]
[10, 1]
[11, 1]

Vari abl e
Nane

" LATI TUDE"

I Attribut
I Nane

-50.0
-40.0
-30.0
-20.0
-10.0
0.0
10.0
20.0
30.0
40.0
50.0

e

" FI ELDNAM'

"VALI DM N'
"VALI DVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORVAT"

[1,1]
[1,2]
[1,3]
[1,4]
[1,5]
[1,6]
[1,7]

Vari abl e
Name

-30.0
-20.0
-10.0
0.0
10.0
20.0
30.0

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR

CDF_CHAR

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR
CDF_CHAR

Dat a
Type

"Longi tude vari abl e

{

{ 00}
{ 180.0 }
{ -50.0 }
{ 50.0}
{
{

" Degr ees

"F8.3

Nunber
El enent s

"Latitude variabl e

{

{ 0.0}
{ 90.0 }
{ -30.0}
{ 30.0}
{
{

" Degr ees

"F8.3

Nunber
El enent s

"}

Record
Vari ance

"}

Record
Vari ance

"}

Di mensi on
Vari ances

Di nensi on
Var i ances

" TEMPERATURE"

I Attribute

" FI ELDNAM'
"VALI DM N'
"VAL| DVAX"
" SCALEM N'
" SCALEMAX"
"UNI TS"

" FORVAT"

#zVari abl es

I Variable

I Nane

"Bl AS"

I Attribute

" FI ELDNAM'
"VALI DM N'
"VALI DVAX"
"UNNTS "
"FORMAT

WN
I
N W
(e N

3l
3l
3l

=
~

I Variabl e

"Coefficients"

I Attribute
I Nane

" FI ELDNAM'
"FORVAT "

[1]
[2]
[3]

-0. 0254
14. 2338
-9. 9444

I Variabl e

CDF_| NT4

Dat a
Type

CDF_CHAR
CDF_I NT4
CDF_I NT4
CDF_I NT4
CDF_I NT4
CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_| NT4

Dat a
Type

CDF_CHAR
CDF_I NT4
CDF_I NT4
CDF_CHAR
CDF_CHAR

Dat a
Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_CHAR

Dat a

1 T TT
Val ue
{ "Tenperature "}
{ 0}
{ 50 }
{ 0}
{ 10 }
{ "Deg C "}
{12 "}
Nunber Record D mensi on
Elenrents Dins Sizes Variance Variances
1 0 T
Val ue
{ "Correction bias for tenperature" }
{ -5}
{ 51}
{ "deg C "}
{ "2 "}

Nunber Record D nmensi on
Elenrents Dins Sizes Variance Variances
1 1 3 F T

Val ue

{ "Tenperature nodel coefficients." }

{ "F9.1 "}

Nunber Record D mensi on

" TMP- nodel "

#end

Attribute
Name

" FI ELDNAM'
"VALI DM N'
"VALI DVAX"
" SCALEM N'
" SCALEMAX"
"UNITS "
"FORVAT '

Type

CDF_REAL4

Dat a
Type

CDF_CHAR
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_REAL4
CDF_CHAR

CDF_CHAR

Vari ance

Dns Sizes

El enent s

1 2 360 180 T

{ "Tenperature nodel." }
{ -20.0 }
{ 50.0 }
{ 0.0}

{ 30.0 }
{ "deg C
{

"F9.6 "}

Vari ances

Appendix B IDL Support

B.1CDF/IDL Interface and Legacy Applications

In addition to the built-in CDF functions (e.g. CDF_CREATE, CDF_OPEN, etc.) in IDL, the CDF distribution package
prior to CDF 3.0 used to include its own set of IDL functiong/procedures (e.g. CDFcreate, CDFopen, etc.) that are
functionally equivalent to the ones that are built into IDL. The CDF office had to supply its own routines (hereafter
referred to as the CDF/IDL interface) for manipulating CDF filesin IDL because IDL originally didn’t include support
for CDF. Research Systems, Inc. (the developers of IDL) later implemented an interface to CDF as part of the IDL
product. It differs from the interface provided with the CDF/IDL interface distribution in that it is intended more for
the non-programmer (and is functionally similar to other interfaces IDL provide).

The CDF/IDL interface was always included as part of the CDF standard distribution package for Unix (albeit they are
redundant with IDL’s built-in CDF routines) up until CDF 2.7.2 to support legacy applications that utilitized the
CDF/IDL interface. Those users who must run applications that are based on the old CDF/IDL interface SHOULD
NOT upgrade to CDF 3.0 or alater version. For those IDL applications that utilize the CDF/IDL interface, it's highly
recommended to port these applications to use the IDL’s built-in CDF interface. The migration is relatively easy since
IDL’s built-in CDF functions are very similar to the onesin the CDF/IDL interface.

B.2CDF Version 3.x and IDL

The advent of CDF 3.0 introduced, among many other things, an ability to create files bigger than 2G bytes and a new
data type (CDF_EPOCH16) to address the limitation of the highest timestamp resolution offered by the CDF_EPOCH
data type. Although the maximum timestamp resolution of CDF_EPOCH (milliseconds, 10**3) is adequate for many
users, there are some users who need a finer timestamp. As aresult, a new data type CDF_EPOCH16 was introduced
to accommodate a finer timestamp that address up to picoseconds (10** 12).

IDL 6.2 or earlier versions understand CDF 2.7.2 or earlier versions, but not CDF 3.0 or later versions. This means that
if you need to take advantage of any of the new CDF 3.0 features (e.g. ability to create a CDF file bigger than 2 GB) or
need to manipulate CDF files that were created with CDF 3.0 or later in IDL, you'll have to wait until RSI
(manufacturer of 1DL) incorporates the CDF 3.1 library into IDL 6.3, scheduled for release in late 1Q, 2006. In order
to address this problem, as an interim solution, the CDF office obtained a copy of the IDL’s built-in CDF functions
(e.g. CDF_CREATE, CDF_OPEN, etc.) from RSl and extended it to support CDF Version 3.x’s new file structure and
data type. If you now need to use any of the CDF 3.0's new features or manipulate CDF files that were created with
CDF 30 or a laer verson in IDL 6.2 or ealier, please contact the CDF support office at

cdfsupport@listserv.gsfc.nasa.gov for abinary copy of the IDL CDF system routines.

mailto:cdfsupport@listserv.gsfc.nasa.gov

B.3Backward File Compatibility with CDF 2.7

By default, a CDF file created by IDL 6.3 (scheduled for release in late 1Q, 2006) or later cannot be read by IDL 6.2 or
earlier, or by CDF version 2.7.2 or earlier. However, IDL 6.3 or later versions can read CDF files by IDL 6.2 or
earlier, or by CDF version 2.7.2 or earlier. The file incompatibility problem is due to the use of 64-hit file offset in
CDF 3.0 and later versions to allow for creation of files bigger than 2G bytes. Notethat IDL 6.3 uses CDF 3.1.

If you wish to create and share CDF files with colleagues who access CDF files using IDL 6.2 or earlier, or CDF
version 2.7.2 or earlier, there’s an IDL procedure called CDF_SET_CDF27_BACKWARD_FILE_COMPATIBLE that
allow users of IDL version 6.3 or later to create a CDF file that can be read by IDL 6.2 or earlier, or by CDF version
2.7.2 or earlier. This procedure must be called prior to creating a CDF file with CDF_CREATE. If afileiscreated in
the CDF 2.7 format, the maximum file sizeis 2G bytes. If you can’'t wait until IDL 6.3 is released and now need to use
any of the CDF 3.0's new features or manipulate CDF files that were created with CDF 3.0 or later in IDL 6.2 or
earlier, please contact the CDF support office at cdfsupport@listserv.gsfc.nasa.gov for a binary copy of the IDL CDF
system routines.

mailto:cdfsupport@listserv.gsfc.nasa.gov

Appendix C Status Codes

C.1Introduction

A status code is returned from most CDF functions. The cdf.h (for C) and CDF.INC (for Fortran) include files contain
the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror (for C) and CDF_error (for Fortran) can be used
within a program to inquire the explanation text for a given status code. The Internal Interface can also be used to
inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additiona information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that afatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF WARN < Warning codes < CDF OK < Informational codes

CDF OK indicates an unqualified success (it should be the most commonly returned status code). CDF WARN is
simply used to distinguish between warning and error status codes.

C.2Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, awarning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR_NAME_TRUNC Attribute name truncated to CDF ATTR NAME LEN characters.
The attribute was created but with a truncated name. [Warning]

BAD_ALLOCATE_RECS

BAD_ARGUMENT

BAD_ATTR_NAME

BAD_ATTR_NUM

BAD_BLOCKING_FACTOR?

BAD_CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_COMPRESSION_PARM

BAD_DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

An illegad number of records to allocate for a variable was
specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

Anillega file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
which has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

Anillegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

’ The status code BAD BLOCKING FACTOR was previously named BAD_EXTEND RECS.

BAD_DIM_INTERVAL

BAD_DIM_SIZE

BAD_ENCODING

BAD_ENTRY_NUM

BAD_FNC_OR_ITEM

BAD_FORMAT

BAD_INITIAL_RECS

BAD_MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0_MODE

BAD_NUM_DIMS

BAD_NUM_ELEMS

BAD_NUM_VARS

BAD_READONLY_MODE

BAD_REC_COUNT

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

Anillegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the datatypeisillegal. The number of
elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(2). [Error]

Ilegal number of variables in arecord access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

BAD_REC_INTERVAL

BAD_REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS PARM

BAD_VAR NAME

BAD_VAR_NUM

BAD_zMODE

CANNOT_ALLOCATE RECORDS

CANNOT_CHANGE

Illegal record interval specified. A record interval must be at
least one (1). [Error]

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

Anillega scratch directory was specified. The scratch directory
must be writeable and accessible (if arelative path was specified)
from the directory in which the application has been executed.
[Error]

Anillegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

2. Changing a CDF's format after a variable has been created
or if acompressed single-file CDF.

3. Changing a CDF's variable magjority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been alocated for that variable.

6. Changing a variable's dimension variances after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL_ERROR

CDF_NAME_TRUNC

CDF_OK

CDF_OPEN_ERROR

7. Writing "initial" records to a variable after a vaue
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a value
has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been alocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, or records have been alocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named aready exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with atruncated name. [Warning]

Function completed successfully.

Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege
exists to open it. Also check that an open file quota has not
already been reached. [Error]

CDF_READ_ERROR

CDF_WRITE_ERROR

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID_NOTCOMPRESS

EMPTY_COMPRESSED_CDF

END_OF VAR

FORCED_PARAMETER

IBM_PC_OVERFLOW

ILLEGAL_EPOCH_VALUE

ILLEGAL_FOR_SCOPE

ILLEGAL_IN_zMODE

ILLEGAL_ON_V1 CDF

MULTI FILE_FORMAT

Failed to read the CDF file - error from file system. Check that
the dotCDF fileis not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an interna error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to be
valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For acompressed variable, ablock of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result if the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. Thiswill result if a
program which was creating/modifying the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for avariableis
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytesin size has
been specified for PCs running 16-bit DOS/Windows 3.*. [Error]

The time or date value supplied for the CDF_EPOCH or
CDF_EPOCH16 datatypeisinvalid. [Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
ZEntries. [Error]

The attempted operation is illegal while in zMode. Most
operations involving rVariables or rEntries will be illegal. [Error]

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO_PADVALUE_SPECIFIED

NO_STATUS_SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARSIN_CDF

NO_WRITE ACCESS

NOT_A_CDF

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (an illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not alowed (read-only access). Make sure that delete
accessis alowed on the CDFfile(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not alowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. In any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was
returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been sdlected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is not
applicable to a CDF with no rVariables. [Informational]

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. This can also
occur if an older CDF distribution is being used to read a CDF

PRECEEDING_RECORDS_ALLOCATED

READ_ONLY_DISTRIBUTION

READ_ONLY_MODE

SCRATCH_CREATE_ERROR

SCRATCH_DELETE_ERROR

SCRATCH_READ_ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE FORMAT

SOME_ALREADY_ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

UNSUPPORTED_OPERATION
VAR _ALREADY_CLOSED

VAR_CLOSE_ERROR

created by a more recent CDF distribution. Contact CDF User
Support if you are sure that the specified file isa CDF that should
be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Y our CDF distribution has been built to allow only read accessto
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot writeto a scratch file - error from file system. [Error]

The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in asingle-file CDF. [Informational]

Some of the records being alocated were aready allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

The attempted operation is not supported at this time. [Error]
The specified variableis already closed. [Informational]
Error detected while trying to close variable file. Check that

sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

VAR_CREATE_ERROR

VAR_DELETE_ERROR

VAR_EXISTS

VAR_NAME_TRUNC

VAR_OPEN_ERROR

VAR_READ_ERROR

VAR_WRITE_ERROR

VIRTUAL_RECORD_DATA

An error occurred while creating a variable file in a multi-file
CDF. Check that afile quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF files.
[Error]

Named variable aready exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
ZVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN characters.
The variable was created but with a truncated name. [Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated fileis not corrupted. [Error]

One or more of the records are virtua (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

Appendix D Release Notes

D.1Supported Systems

CDF V3.1 iscurrently supported on the following computers/operating systems.

1

2.

8.

9.

VAX (OpenVMS & POSIX shell)

Sun (Solaris)

DECgtation (ULTRIX)

Silicon Graphics Iris & Power Series (IRIX)

IBM RS6000 series (AlX)?

HP 9000 series (HP-UX)*

PC (MS-DOS, Windows NT/95/98/2000/X P, Linux, & QNX)
NeXT (Mach)*

DEC Alpha (OSF/1 & OpenVMS)

10. Macintosh (MacOS X)

D.2Compatibility with CDF 2.7.2 and Earlier Versions

CDF V3.1 is backward compatible with the previous versions of CDF, and it can read CDF files that were created with
CDF 3.0 or CDF 2.7.2 or earlier. If afile was created with CDF 2.7 and read and modified by CDF 3.1, the resultant
file will be saved in the CDF 2.7 format, not CDF 3.1. The same principle applies to files that were created with CDF
25and 2.6. CDF files that are created from scratch with CDF V3.1 are compatible with CDF 3.0, but not compatible
(due to a 64-hit file offsets used in CDF 3.0 or later versions) with CDF 2.7.2 or earlier, and an attempt to read CDF 3.0

or 3.1 filesfrom CDF 2.7.2 or earlier will produce an error.

¢ Due to lack of user’s interest and hardware, this operating system is not tested. If you need to run the CDF V3.1
library on either HP-UX or IBM’'s AIX operating system, please contact the CDF support office at

cdfsupport@listserv.gsfc.nasa.gov.

1

Users of CDF 3.1 or later versions will be able to create CDF files that can be read by CDF 2.7.2 or earlier by using the
CDFsetFileBackward function (in C) or CDF set FileBackward subroutine (in Fortran), or using the
CDF _FILE BACKWARD environment variable. See section 4.18 of the CDF C Reference Manual and the CDF
Fortran Reference Manual for details on how to create CDF 2.7-compatible files.

The command-line version of the CDFedit and CDFexport utility programs can now create CDF files that can be read
by CDF 2.7.2 or earlier.

The <GET_, CDF_INFO_> routine now returns the data type of 64-bit off t (or __int64 on Windows) for the
compressed file size (cSize) and uncompressed file size (uSize) parameters in V3.1 while they used to return as 32-bit
long integer in V2.5, 2.6 or 2.7. Thus, if you have a legacy application that calls the <GET_, CDF_INFO_> routine,
you MUST change the data type of the cSize and uSize parameters to off t (or __int64 on Windows) from long to
access files that were created with V3.1. If the file accessed was created with V2.5, V2.6, or V2.7, you should always

use ‘long’ instead of off t to get the correct results. Using off_t for non-3.0 files in V3.1 may or may not return the
correct results depending upon what operating system it is executed under.

D.3Changes

The following features have been added to CDF 3.1:
1. Ability to create a CDF file that is compatible with CDF 2.7.2 or earlier.

2. Addition of the easy-to-use New Standard Interface that allows almost all of the CDF operations which were
previously only available through the Internal Interface.

3. Retrofit of CDFedit and CDFexport to create a CDF file that is compatible with CDF 2.7.2 or earlier

4. Many miscellaneous bug fixes

Appendix E Glossary

AHUFF

alocated records

Attribute

big-endian

blocking factor

Caching

CDF

The Adaptive Huffman compression algorithm.

For uncompressed variables in a single-file CDF it is possible for an
application to allocate records before they are written. This has the advantage
of reducing the indexing overhead in the dotCDF file which will improve
performance when accessing a variable. An application would generally then
write to the records that were allocated.

A CDF object with which entries of metadata are associated.

The byte ordering in which the most significant byte (MSB) is stored in the
lowest memory location.

For a standard variable (in a single-file CDF), the blocking factor is the
minimum number of records actually allocated when a new record is written.
More records may be alocated than are actually needed in order to keep the
variable's records as contiguous as possible (with the assumption that the
records will eventually be written).

For a compressed variable in a single-file CDF, the blocking factor is the
maximum number of records per compressed block.

For an uncompressed variable having sparse records in a single-file CDF, the
blocking factor is the number of records alocated in the staging scratch file.
For this type of variable the staging scratch file is used to optimize the
indexing in the dotCDF file by storing sequentia records contiguously when
possible.

Blocking factors are not applicable to variables in multi-file CDFs.

The method used by the CDF library to improve performance when accessing
afile. An attempt is made to keep commonly accessed blocks of the file in
memory rather than repeatedly reading them from or writing them to disk.

Thisterm is used in more than one way. . .

1. The actual files that contain your data/metadata. For example: The CDF
library must be used to create a"CDF."

2. The software distribution containing the CDF library, include files, and
toolkit. For example: Welike using "CDF" to store our data.

CDF base name

CDF distribution

CDF library

CDF toolkit

CDFedit

CDFexport

CDFstats

CDFcompare

CDFconvert

CDFinquire

CDF_OK
cdf.h
cdf.inc
cdfdf.inc
cdfdvf2.inc
cdfdvf3.inc
cdfdvf.inc
cdfmsf.inc

column-major

Compression

conceptua view

The file name of a CDF minus the extension (or extensions if a multi-file
CDF).

The directory of software consisting of the CDF library, include files, and
toolkit.

The software library that is used to access a CDF.

A st of utility programs which ease the creation, modification, and
verification of CDFs.

A CDF toolkit program that allows the display and modification of a CDF's
contents.

A CDF toolkit program that allows the (possibly filtered) contents of a CDF to
be exported to the terminal screen, atext file, or another CDF.

A CDF toolkit program that generates a report containing various statistics
about a CDF's variables.

A CDF toolkit program that reports any differences between two CDFs.

A CDF toolkit program that allows various overall properties of a CDF to be
changed (in anewly created CDF).

A CDF toolkit program that displays the version of the CDF distribution being
used, many of the configurable parameters, and the default CDF toolkit
qualifiers/options.

A completion status code indicating unqualified success.

Anincludefile used in C applications.

An include file used in Fortran applications.

Aninclude file used in Digital Visual Fortran applications.

Anincludefile used in Digital Visual Fortran applications.

Anincludefile used in Digital Visual Fortran applications.

Aninclude file used in Digital Visual Fortran applications.

An include file used in Microsoft Fortran applications.

The variable majority where the first index of a multidimensional array of
values increments the fastest.

The process of encoding a group of bytesinto a smaller group of bytes, storing
the smaller group of bytes, and then decoding the smaller group of bytes back
to the original group of bytes. CDF allows both a CDF and/or individual
variables to be compressed when stored.

The way that values along a dimension having a variance of NOVARY are
made to appear as if they do actually exist (only one value is actually
physicaly stored). This also applies to records beyond the last record actually

Current

data specification

datatype

Decoding

DLLCDF.DLL

dimension variance

Dimensionality

dotCDF file

Encoding

Entry

error code

Format

full-physical record
gAttribute
gEntry

global scope

GZIP

host decoding

stored. The conceptual view of a variable consists of "virtual" records and
values (in addition to the physical records and values actually stored).

When the Internal Interface is used, current objects/states are those items
affected when an operation is performed. For example, a current CDF is
selected and then any operation performed involving a CDF is performed on
that CDF (until adifferent current CDF is selected).

For a variable or attribute entry the data type and number of elements of that
data

For a variable or attribute entry, the type of data being stored (e.g., integer,
floating-point, character).

The integer/floating-point representation of data values passed to an
application by the CDF library as they are read from a CDF. This is
independent of the way the data values are physically stored in the CDF.

The dynamic CDF library for Windows NT/95/98 systems.

The property of a variable that specifies whether or not the values aong a
dimension change or stay the same.

The number of dimensions and the dimension sizes for the rVariables or a
zVariable.

A file having an extension of .cdf (or .CDF if the operating system being used
prefers uppercase). For a single-file CDF this will be the only file. For a
multi-file CDF this file will exist along with zero or more variable files
(depending on the number of variables in the CDF).

The integer/floating-point representation of the data values physically stored in
aCDF.

A CDF object in which metadata is stored. An entry is associated with an
attribute.

A status code indicating that afatal condition was encountered. The operation
was aborted.

In reference to a CDF, the way in which files are used to store the CDF's
control/data/metadata. This may be single-file or multi-file.

A variable record consisting of values exactly as physicaly stored in the CDF.
A global scoped attribute.
An entry for a gAttribute.

Global scope indicates that an attribute describes some property of the entire
CDF.

The Gnu ZIP compression algorithm.

The decoding of the computer currently being used.

host encoding
HUFF

hyper access

IDL Interface

|IEEE 754

includefile

Indexing

informational code

Internal Interface

Item

libcdf.a
libcdf.dl
libcdf.so
LIBCDF.LIB
LIBCDF.OLB

little-endian

Majority

Metadata

Monotonicity

multi-file

The encoding of the computer currently being used.
The Huffman compression agorithm.

A variable access method in which multiple records/values are read/written for
avariable.

A set of functions callable from within IDL (Interactive Data Language) that
allow access to CDFs. The CDF distribution contains an IDL interface in
addition to the CDF interface built into IDL by Research Systems, Inc. (RS -
the digtributors of IDL).

The floating-point representation of XDR.

A file, included by a C or Fortran application, that contains constants
recognized by the CDF library pertaining to various aspects of CDF
objects/states.

The method used in a single-file CDF to keep track of where each variable's
records are located.

A status code indicating success but providing some additional information
that may be of interest.

A set of routines in the CDF library calable from C and Fortran applications
that provide all types of accessto CDFs.

When the Internal Interface is used, an object or state on which a function is
performed.

The static CDF library on UNIX systems.

The dynamic CDF library on HP-UX systems.

The dynamic CDF library on UNIX (other than HP-UX).

The static CDF library on MS-DOS or Windows NT/95/98 systems.
The CDF library on VM S and OpenVMSS systems.

The byte ordering in which the least significant byte (LSB) is stored in the
lowest memory location.

The order in which the values of a multidimensional array are stored. This
may be either row-major or column-major.

Data about data. A CDF stores metadata using attributes and attribute entries.
The property of a variable that specifies whether or not that variable's values
increment or decrement (or neither) along a dimension or from record to

record.

A CDF format. Multi-file CDFs consist of one file for control/metadata and
onefile per variable of data.

multiple variable access

network encoding

NOVARY

NRYV variable

NSSDC

number of elements

Object

Operation

pad value

physical record
physica vaue
read-only

record variance

reserve percentage

eEntry

RLE

row-major

RV variable

A variable access method in which one full-physical record is read/written for
each of one or more variables.

The encoding that uses the XDR representation.

A record/dimension variance indicating that the values do not change from
record to record or along a dimension.

Non-record variant variable. A variable whose values do not change from
record to record (arecord variance of NOVARY).

National Space Science Data Center.

For a variable the number of instances of the data type at each value. For an
attribute entry the number of instances of the data type for that entry.

When the Internal Interface is used, an item that exists and may be
accessed/manipulated (e.g., a CDF or variable).

When the Internal Interface is used, a function performed on an item (e.g.,
creating or writing).

A value written to a variable by the CDF library in those cases where a
physical record must be written but not all of its values have been specified by
an application. For example, when asingle value is written to a new record, all
of the other values are written using the pad value.

A variable record actually stored in a CDF.
A variable value actually stored in a CDF.
A mode of the CDF library in which modifications to a CDF are not allowed.

The property of a variable that specifies whether or not its values change from
record to record.

For a compressed variable, the reserve percentage specifies how much
additional space to allocate in the dotCDF file when a compressed block of
records is initially written. A value of 0 (zero) causes no reserve space to be
alocated. Values from 1 to 100 cause at least that percentage of the
uncompressed size to be allocated. Values greater than 100 cause that
percentage of the compressed size to be alocated (but not exceeding the
uncompressed size).

An entry for avAttribute corresponding to an rVariable.
A run-length encoding compression algorithm. Currently, the only type of
RLE compression supported is the run-length encoding of bytes containing

Z€ero.

The variable majority where the last index of a multidimensional array of
values increments the fastest.

Record variant variable. A variable whose values change from record to
record (arecord variance of VARY).

rVariable

scratch directory

scratch files
scope

sequential access

single-file

single value access

skeleton CDF

skeleton table

SkeletonCDF

SkeletonTable

sparse arrays

sparse records

Standard Interface

standard variable

State

status code

"R" variable. A CDF object in which data values are stored. All rVariables
have the same dimensionality.

The directory in which the CDF library creates scratch files. This directory
may be specified by a user or an application.

Temporary files used by the CDF library to minimize core memory usage.
Theintended use for an attribute. This may be global scope or variable scope.

A variable access method in which values are read/written in the physical order
in which they are stored in the CDF.

A CDF format. Single-file CDFs are entirely contained within onefile.

A variable access method in which exactly one value is read/written for a
variable.

A CDF consisting of only control, metadata, and NRV variable values.

A text file containing the control, metadata, and traditionally only the NRV
variable values of a CDF. RV variable values may now aso be included in a
skeleton table. A skeleton table is read by the SkeletonCDF toolkit program
which then creates the corresponding skeleton CDF (or complete CDF if the
RV variable values also existed in the skeleton table). The SkeletonTable
toolkit program can be used to create a skeleton table from a CDF.

A CDF toolkit program which creates a skeleton CDF based on a skeleton
table. A complete CDF may also be created if the skeleton table contained RV
variable valuesin addition to NRV variable values.

A CDF toolkit program which creates a skeleton table from a CDF.

A property assigned to a variable indicating that only those values written to a
record should be stored. Because the values of a variable record can be written
in any order this allows gaps of missing values to occur.

A property assigned to a variable indicating that only those records written to
the variable should be stored. Because the records of a variable can be written
in any order this allows gaps of missing records to occur.

A set of routines in the CDF library calable from C and Fortran applications
that provide access to a commonly used subset of the capabilities of the
Internal Interface. This interface was defined with the release of CDF V2.0
and has not changed since. New features since that time are available only
through the Internal Interface (e.g., ZVariables and zMode).

A variablein asingle-file CDF that is not compressed nor has sparse records or
arrays.

When the Internal Interface is used, a property pertaining to an object (e.g., a
CDF'sformat or variabl€e's data specification).

The result of a CDF function/subroutine call. CDF OK indicates unqualified
SUCCESS.

status handler

variablefile

variable scope

variance (dimension)

variance (record)

VARY

vAttribute

virtual record

virtual value

warning code

XDR

ZEntry

zMode

zVariable

A function/subroutine that acts upon a status code received from the CDF
library.

In a multi-file CDF, these are the files containing the data values for each
variable (in one file per variable). These files are named using the CDF's base
name with extensions of ".v0', ".v1', and so on for rVariables and ".z0', ".z1',
and so on for zVariables.

Variable scope indicates that an attribute describes some property of each
variable.

The property of a variable that specifies whether or not the values along a
dimension change or stay the same.

The property of a variable that specifies whether or not its values change from
record to record.

A record/dimension variance indicating that the values change from record to
record or along adimension.

A variable scoped attribute.

A variable record that is not actually stored in a CDF but does appear in the
conceptua view of the CDF. Virtual records would be those records beyond
the first record of an NRV variable and those records beyond the last record
actually written to an RV variable.

A variable value this is not actualy stored in a CDF but does appear in the
conceptua view of the CDF. Virtual values would be those values beyond the
first value of a dimension whose varianceis NOVARY.

A status code indicating that the operation did complete but probably not as
expected.

External Data Representation. An integer/floating-point representation using
big-endian byte ordering and the | EEE 754 floating-point representation.

An entry for avAttribute corresponding to a zVariable.

A mode of the CDF library in which rVariables are made to appear as
zVariables (and rEntries appear as zEntries).

"Z" variable. A CDF object in which data values are stored. zVariables can
have dimensionalities that are different than those of the rVariables (and each
other).

| ndex

Adaptive Huffman compression...........c.ccoeeeeeneveeeseennnnns 64
AllOCAEd FECOITS........ceeverrceeeereie s 49
BSSUME SCOPE......cuveeeeenerieieseeieeie st seese et sbe e e sbe e e e enens 60
2 4attributes.......
creating......
deleting......... et
2.4.5entries........... et eeee et e e eieeeaaeeearaeeebeeaareaanans 23, 60
ACCESSINE.envenvenviteeieeiteitetetente sttt ettt sae e sieene 61
data specification.........cccoceveerieineneceeeecece 61
data specification:data type.........cccceeveveerererenenenene 61
data specification:number of elements...
ElEtiNgG....ceveeienieierieeieeieeeeeeee e

case sensitivity....
trailing blanks......
numbering...............
numbering.....
assigning..........

assumed:converting....
ASSUMEA:COITECHING.eveieniveieiieieneeieeeeeeieeeieee e 60

PUIPOSE. .ttt ettt ettt ettt see e eaeeaean 60
TESTIICHIONS. ...ttt ere v e e ean e 60
Variable.....o.oooiiiieiiecc e

3.1.5specid.......

2. 1CDF lBrary...ccovceceeeccesesecesees e 13,28
2.1.5caching scheme..........cccccevvvivenececce e, 31
selecting......cccevevevienienenenenne 70,75, 81, 85, 89, 94, 97
INEEITACES. ... v 24,28
1T 4] USSR
OPEN CDFS..cuiiiiiiiiiiiiiiiecece e 31
2.1.2MOUES.....cceicieseeieeeerte et 29
decoding:performance considerations..............c.c.e.n... 40
T€AA-0NLY ..ot 29
ZMode.....ooveiiieiiee 29, 69,75, 81, 84, 88, 94, 97
ZMode:ZMOode/1......ccuveiieiieiicieeeceeeeee e 29
ZMOde:ZMOde/2......c.vveiveiieieeeceee e 29
20100 0. 30

command liNE SYNtaX.........ccevrverereenereeeeeeeee e ee e 65
default SEINGS.....ccoereere e 66
JAVAVEISION....ccueciieieceicie sttt st 67
MaCINtOSN OS X.....uiiiiieiiieere e 66

Windows NT/95/98/2000/XP..... s 66

CDF_EPOCH......ccccooevrrieeniinnine e ————— 62
CDF_EPOCH1S6......... S 62
(O] == 1 (o] SR ...119
3.5CDFCOMPAIE.......ceieerieriesieree e s see st e s seens 82

EXECULING. ... v vttt see e 82

executing............... ettt bttt nean 68
iNteraCtion With.........cccooe e 71
(01D] 5= ¢ (o] (R ...119
CDFEXPOM. ...ttt s
EXECULING.- .ttt r et

interaction with

changing
conceptual organiZation...........ccoeververereeninieenesene e 12
converting

changing
default........ccooiiiiee

(0] 7< 211 o TR SO S S 33

subsetting...... ST PU PR RPPRTPRPRRTRON 72
verifying........ ettt n e 82
3.6CDFdtats....86
EXECULING. vttt ettt st enas 87
OULPUL. ...ttt 90
1.4.3COMPIESSION......ervineiuirieieierie ettt e 18
CDF fIlE(S) ettt 18, 40
VAT ADIE(S) et 18
2.3.9data SPECIfiCatioN.........coueuerireeerrce s 43
AHDULE ENEIY ... 61

2 5BALYPES. .o esseees e eeses s oot
CRArACLET ...

PhYSICEl VIEW.....cviiiiiiiciieieee e

SKeEletoN table........coeieeieeicee e 25,112
FILLVAL attribute....... et 68, 87
FORMAT attribute........cccovvviveeeeieeerrcssee e 67, 72, 86
GZIP COMPIESSION....c.eieeueeeeieeuineesieeereseeeeteseesesseseeseenessesaens 64
hoSt dECOdING......c.vviveeiiieeirie s 39

indexing, variable records.
INItIAl TECOIAS......ccveiieecieecee et e

attribute name length...........coooiiiniie e 40
CDFfilenamelength..........cccoooiiiiiiinnccn 40
dimensions.

majority..........
variable.........cooueee.
MONOTON attribute...
multi-file format..................
multiple variable access......
network encoding................
pad values, variable..........c..cccue.....
performance CoNSIdErations...........coevevreeeeernereneneeene s
deCOdiNG......cveveireeet e
(<2070 o [oo TSRS SSRR

(0072 [0 12O 53
QUBITTTEN ..
SPECIAL ... 68
reserve percentage, compression........ .52
Run-Length encoding COMPression..........cccooeveeeesiereeeeeenns 64
SCALEMAX éttribute.........cccccvueennee. ..68, 87
SCALEMIN attribute..................68, 87
Scope, attribute.................. e 60
scratch files........oooeeveieene. ettt seeneeaea 31
sequential access, variable.........coeveeneienineieeene 53, 56
SiNGle-file fOrmat..........ocvveriirecce e 34

Skeleton CDF

SKElELON tADIE.......vvcvcrccce 91, 95
(o 1= (] o OSSR 97
file extension.. ettt 98

SkeletonCDF-.......

EXECULING. .. v eveee ettt et ne e eee s

SkeletonTable.....

SKEEONTEDIE......ceciee s
EXECULING.vvevieveereeete ettt et re st e re e s
OULPUL. ..ottt

SPASENESS.....ceevenerereererneneens
BITAYS. ceeetenereetenesee ettt st ettt nsenenens
(15 o0 o S

Standard Interface.........cceoeeeee.

SEAIUS COUBS......eovereriitisieeete e seenens
CALEGONTES. ...ttt

trailling blanks.........ccooveiieieices e
CDF flle NAME......ccoiiririierre et 34
variable Name.........ccceiiiire e 42

VALIDMAX attribute... s 68, 72, 87

VALIDMIN atribute........cccceovrveeerieirerereneeeneennnes 68, 72, 86

2.3variableS.......eeeee e
2.3.28CCESSING. c. . vttt eee e re e

hyper read/write
hyper read/write:example............cccoeeerieineirenieennne 54
hyper read/write:reading..........ccocevereeereieeniecneene 53
hyper read/write:writing .. 53
sequential values:example..........ccoceeeeeerienenenenennne 56
BITAYS. ettt eeeente ettt et et be et e et sbe b e ae e e sne e enean 43
ClOSING. ..ttt 41
2.3.14compression........ ..18,51
reserve percentage.... 52
data SPECITICALION.....c.ccveieieeceeeeee e
Chang@ing........cccooeveveneinceeee e .. 43
data EYPC..eeueieiiietieiieieeee e 43
number of elements..........coceverieienienenineneneeeeen 43

example

2.3.5naming
CASE SENSILIVILY.c.veveveeeeiieiieeeieieree e 42
trailing blanks.................. e 42

non-record-variant (NRV)... e 44

NUMDENING.....covieieereeceene e 42
OpPENING....cvueeeereenenne ettt ettt ettt nente e eaea 41
2.3.20pad values........ e 58

default.......oooviiii e 59

AllOCAEd.evievieiieiecee e 49

blocking factor.........ccccevvereriereene ... 50
compression:reserve percentage...... w52
deleting.......cccoceveeuinieieeieiecne .. 51

INAEXINEG. ¢ttt 35
maximum....
numbering... .
PRYSICAL ..ouiiiiiriecieeeeteeeee e
VITEUAL .ottt
rVariables...
ZVaANADIES ...
ATz L= 1410 ST
dimension....

~0.0t0 0.0 MOGE.......ccvieeteiereectee ettt 30

	1Primer
	1.1Introduction
	1.2Why use CDF?
	1.3Conceptual Organization
	1.4Features of the CDF Library
	1.4.1File Format Options
	1.4.2Data Encoding Options
	1.4.3Compression
	1.4.4Sparseness
	1.4.5Variable Data Access Options

	1.5Organizing Your Data in a CDF
	1.5.1Variables

	1.6Attributes
	1.7CDF Toolkit
	1.8Library Interface Routines
	1.8.1Standard Interface
	1.8.2Internal Interface

	1.9CDF Java Interface
	1.10How to create a CDF
	1.10.1Sample C, Fortran, or Java Programs
	1.10.2Creating a CDF with SkeletonTable

	2Concepts
	2.1CDF Library
	2.1.1Interfaces
	2.1.2CDF Modes
	2.1.3Limits
	2.1.4Scratch Files
	2.1.5Caching Scheme

	2.2CDFs
	2.2.1Accessing
	2.2.2Creating
	2.2.3Opening
	2.2.4Closing
	2.2.5Deleting
	2.2.6Naming
	2.2.7Format
	2.2.8Encoding
	2.2.9Decoding
	2.2.10Compression
	2.2.11Limits

	2.3Variables
	2.3.1Types
	2.3.2Accessing
	2.3.3Opening
	2.3.4Closing.
	2.3.5Naming
	2.3.6Numbering
	2.3.7Deleting
	2.3.8Dimensionality
	2.3.9Data Specification
	2.3.10Record Variance
	2.3.11Dimension Variance
	2.3.12Records.
	2.3.13Sparse Arrays
	2.3.14Compression
	2.3.15Majority
	2.3.16Single Value Access
	2.3.17Hyper Access
	2.3.18Sequential Access
	2.3.19Multiple Variable Access
	2.3.20Variable Pad Values.

	2.4Attributes
	2.4.1Naming
	2.4.2Numbering
	2.4.3Attribute Scopes
	2.4.4Deleting
	2.4.5Attribute Entries

	2.5Data Types
	2.5.1Integer Data Types
	2.5.2Floating Point Data Types
	2.5.3Character Data Types
	2.5.4EPOCH Data Types
	2.5.5Equivalent Data Types

	2.6Compression Algorithms
	2.6.1Run-Length Encoding
	2.6.2Huffman
	2.6.3Adaptive Huffman
	2.6.4GZIP

	3Toolkit Reference
	3.1Introduction
	3.1.1VMS and UNIX (including Mac OS X)
	3.1.2How to Invoke the GUI Toolkit for Macintosh OS X
	3.1.3How to Invoke the GUI Toolkit for Windows NT/95/98/2000/XP
	3.1.4How to Invoke the GUI Toolkit for Unix
	3.1.5Special Attributes
	3.1.6Special Qualifier

	3.2CDFedit
	3.2.1Introduction
	3.2.2Special Attribute Usage
	3.2.3Executing the CDFedit Program
	3.2.4Interaction with CDFedit

	3.3CDFexport
	3.3.1Introduction
	3.3.2Special Attribute Usage
	3.3.3Executing the CDFexport Program
	3.3.4Interaction with CDFexport

	3.4CDFconvert
	3.4.1Introduction
	3.4.2Executing the CDFconvert Program
	3.4.3Output from the CDFconvert Program

	3.5 CDFcompare
	3.5.1Introduction
	3.5.2Executing the CDFcompare Program
	3.5.3Output from the CDFcompare Program

	3.6 CDFstats
	3.6.1Introduction
	3.6.2Special Attribute Usage
	3.6.3Executing the CDFstats Program
	3.6.4Output from the CDFstats Program

	3.7 SkeletonTable
	3.7.1Introduction
	3.7.2Special Attribute Usage
	3.7.3Executing the SkeletonTable Program
	3.7.4Output from the SkeletonTable Program

	3.8 SkeletonCDF
	3.8.1Introduction
	3.8.2Executing the SkeletonCDF Program
	3.8.3Creating the Skeleton Table

	3.9 CDFinquire
	3.9.1Introduction
	3.9.2Executing the CDFinquire Program
	3.9.3Output from the CDFinquire Program

	3.10CDFdir
	3.10.1Introduction
	3.10.2Executing the CDFdir Program
	3.10.3Output from the CDFdir Program

