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Chapter 1. Introduction

1.1. Scope of this manual

The User's Guide for Toolkit Developers provides detailed information about the design of Geant4 classes aswell
as the information required to extend the current functionality of the Geant4 toolkit. This manual is designed to:

 provide a repository of information for those who want to understand or refer to the detailed design of the
toolkit, and

 provide details and procedures for extending the functionality of the toolkit so that experienced users may
contribute code which is consistent with the overall design of Geant4.

This manual isintended for devel opers and experienced users of Geant4. It is assumed that the reader is already
familiar with functionality of the Geant4 toolkit as explained in the "User's Guide For Application Developers”,
and al so hasawaorking knowledge of programming using C++. A knowledge of object-oriented analysisand design
will aso be useful in understanding this manual. It is also useful to consult the " Software Reference Manual"
which provides alist of Geant4 classes and their major methods.

Detailed discussions of the physics included in Geant4 are provided in the “"Physics Reference Manual".

1.2. How to use this manual

Part I: to understand the goal of the software design of Geant4, it is useful to begin by reading the User
Requirements Document referred to in the next section.

Part |1: “"Design and Function of the Geant4 Categories' provides detailed information about the design of each
class category and the classes in it. Before considering an extension of one of the toolkit categories, a detailed
understanding of that category is required.

Part I11: “"Extending Toolkit Functionality" explains in some detail how to extend the functionality of Geant4.
Most of the class categories are covered and some, which are especially useful to most users, are covered in greater
detail.

Itisnot necessary to understand the entire manual before adding anew functionality. To add anew physics process,
for example, only the following items must be read and understood:

» thedesign principle described in the " Physics processes' chapter of Part |1
» techniques explained in the " Physics processes' chapter of Part I11.

1.3. User Requirements Document

At the beginning of Geant4 development, a set of user requirements was collected in order to inform the object-
oriented analysis and design of the toolkit. The User Requirements Document follows the PSS-05 software
engineering standards and is available at

http://cern.ch/geant4/OOAandD/URD.pdf .

This document provides ageneral description of the main capabilities and constraints of the toolkit. It also defines
three types of users characterized by their level of interaction with the system. Specific requirementsare also listed
and classified.

[Status of this chapter]

24.06.05 - re-organized and re-written by D.H. Wright
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Chapter 2. Design and Function of Geant4
Categories

2.1. Introduction

Geant4 exploits advanced software engineering techniques based on the Booch/UML Object Oriented
Methodology and follows the evolution of the ESA Software Engineering Standards for the development process.
The "spiral", or iterative, approach has been adopted. User requirements were collected in the initial phase and
problem domain decomposition, obj ect-oriented methods, and CA SE toolswere used for analysisand design. This
produced aclear hierarchical structure of sub-domainslinked by auni-directional flow of dependencies. Thisledto
asoftware product which ismodular and flexible (atoolkit) and in which the physicsimplementation istransparent
and open to user validation of physics predictions. It allows the user to understand, customize and extend the
toolkit in all domains. At the same time the modular architecture allows the user to load only needed components.

2.2. Run
2.2.1. Design Philosophy

Therun category manages collections of events (runs). In asinglerun the events share the detector implementation,
physics conditions and primary generation.

The classes associated with the run category can be considered as the main and higher level application
programming interface (API) used in aGeant4 application. A simple applicaiton will use concrete classes provided
with the toolkit, the developer will provide the detector description a primary genertor (possibly using one of the
general purpose ones provided with the toolkit), define the physics for the application (the physics list, possibly
one of the few provided with the toolkit) and optional user actionsto interact with the simulation itself.

Infew casesit ishowever necessary to modify the default behavior of one or more classesin this category to allow
for a user-customization. As an example the class G4AM TRunManager extends the basic run-manager class to
take into account event level parallelism via multi-threading.

During a run some states of the application are invariant and cannot be modified: the physics list (i.e. the list
of processes attached to each particle) and the detector layout (not that some geometry primitives allow for
changing parameters during the event run: parametrizations. However technically the class instances representing
the detector layout do not change during arun).

2.2.2. Class Design

The relevant classes for the run category are shown here. This show, in particular, the relation between classes
for the case of a multi-threaded application. For a sequential applicaiton the diagram is simplified since no
G4Worker RunManager class exist and G4AM TRunM anager is replaced by G4ARunM anager :
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]

User Initializations

[ GavuserPhysicsList | [G4VUserDetectorConstruction | [ G4VUserActi itialization |

| | j
\

G4WorkerRunManager

G4MTRunManager
1.4

[ Gauserworkerlnitialization |

v

User Actions

G4VUserPrimaryGeneratorAction G4UserRunAction
G4UserSteppingAction
[ GauserTrackingAction | [ G4UserStackingAction

Figure2.1. Classdiagram for main run category classes

For a descriptiont of multi-threading functionality refer to "Parallelism in Geant4: multi-threading capabilities’
chapter.

One of the main functions of the run category is to control the life-cycle of a Geant4 application, again with
reference to the case of a multi-threaded application the following schema describes it:
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Application
: 1: G4MTRunManager
2: BeamOn JI_
2.1: SetupGeometryAndPhysics
2.2: G4WorkerRunManager
|
2.3: BeamOn :
.3.2: PrepareNextEvent 2.3.1: SimulateEvent
<«
2.3.3: EndOfRun
2.3.4:
<
3: Terminate
3.1
R
4:
L
P> |
1|' |
T
! X X

Figure 2.2. Life cycle of a Geant4 application and main run category classes

A list of the main classes for the category is provided:

G4Run - This class represents a run. An object of this classis constructed and deleted by G4ARunManager.
G4RunManager - the run controller class. Users must register detector construction, physics list and primary
generator action classesto it. GARunManager or aderived class must be asingleton. This class provides several
virtual methods that can be used to define user-specific behavior for a Geant4 application.

G4RunM anager Kernel - provides control of the Geant4 kernel. This classis constructed by G4ARunManager.
This class does not provide virtua methods and user should not sub-class from it. The applicaiton
G4RunManager shold own an instance of a G4ARunManagerKernel singleton.

G4{MT ,Worker}RunManager[Kernel] - specidlized versions to provide a multi-threading enabled
application. Refer to chapter "Parallelism in Geant4: multi-threading capabilities’ for additional information.
G4V User Detector Construction - pure virtual base class that represents the simulation setup.

G4V UserParallelWorld - pure virtual base class of the user's parallel world.

G4V User PhysicsList - pure virtual base class for a physcislist.

G4V User PrimaryGener ator Action - pure virtual class used by user to define the primary generation.

G4V M odularPhysicsList - Purevirtual classto construct a physics list from G4V PhysicsConstructor. More
modern and modular approach preferred in current versions of pre-packaged physicslists.

G4UserRunAction - user action class for run. Instantiate user-derived G4Run and provides user-hooks for
begin and end of run.

G4UserWorker I nitialization and G4User Wor ker Threadl nitialization - define here the concrete behavior
for threading model. Both classes provide several virtual methods that can be modified in derived classes.
G4VUserActionlnitialization - pure virtual class used by user to instantiate concrete instances of the user-
actions.

G4Worker Thread - this class encapsul ates thread-specific data.

G4RNGHelper - helper class to register and use RNG seeds. Used by MT applicaitons to guarantee
reproducibility.
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[Status of this chapter]

28.06.05 - under construction
December 2006 - Converted from latex to Dochbook by K. Amako
July 2014- Review and new documnetation for MT by A. Dotti

2.3. Event
2.3.1. Design Philosophy

In high energy physics the primary unit of an experimental run is an event. An event consists of a set of primary
particles produced in an interaction, and a set of detector responses to these particles.

In Geant4, objects of the G4Event class are the primary units of a simulation run. Before the event is processed,
it contains primary vertices and primary particles produced by an external physics generator. After the event is
processed, it may also contain hits, digitizations ,and optionally, tragjectories generated by the simulation. The
event category manages events and provides an abstract interface to external physics generators.

G4Event and its content vertices and particles are independent of other classes. This isolation allows Geant4-
based simulation programs to be independent of specific choices for physics generators and of specific solutions
for storing the ““Monte Carlo truth". G4Event avoids keeping any transient information which is not meaningful
after event processing is complete. Thus the user can store objects of this class for processing further down the
program chain. For performance reasons, G4Event and its content classes are not persistent. Instead the user must
provide the transient-to-persistent conversion.

2.3.2. Class Design

* G4Event - This class represents an event. It is constructed and deleted by G4RunManager or its derived class.

e G4EventManager - This class controls an event. It must be a singleton and should be constructed by
G4RunManager.

» G4VPrimaryGenerator - the abstract base class of all of primary generators. This class has only one pure
virtual method, GeneratePrimaryVertex(), which takes a G4Event object, generates a primary vertex and
associates primary particles with the vertex.

Booch diagramsfor classesrelated to the event and event generator classes are shown in Figure 2.3 and Figure 2.4.

yyyyyyyyyyyyyy GaTrakVector

File: users/asal/g4lv_0830.mdl Thu Aug 31 14:00:49 1995 Class Diagram: Eventianagement / Main

Figure 2.3. Event
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G4EventGenerator
addGenerator( )
generateOneEvent( )
gimmeVertex( )
G4OrderedV
ector
(from BaseClass)
»

. 2"

generators

1.n

G4Prim:ryGen$rz::or' ; G4PrimaryVertex GADyregt\:\(%famc\e
generatePrimaryVertex| i

. y point : G4ThreeVector
vertex : G4PrimaryVertex time : Gadouble

@ vertex

1 1 (from PhysicsProcess)
@ particles insert()

G4UserPrimaryGen v L]
erator 1
A

«

0.n
G4ParticleDefinition G4DynamicParticle
G4ParticleGun (from ParticleDefinition) (from ParticleDefinition)
se1_pamc|e_devmman3)
set_particle_energy(
set_particle_momentum( )
set_particle_position( )

El
[ ]

1

File: /users/kurasiqe/ROSE2/q40831.mdl  Thu Aug 31 19:58:30 1995 ~ Class Diagram: EventGenerator / Main

Figure2.4. Event Generator

[Status of this chapter]

27.06.05 design philosophy section added (from Geant4 general paper) by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.4. Tracking

The tracking category manages the contribution of the processes to the evolution of atrack’s state and provides
information in sensitive volumes for hits and digitization.

2.4.1. Design Philosophy

It iswell known that the overall performance of a detector simulation depends critically on the CPU time spent
propagating the particle through one step. The most important consideration in the object design of the tracking
category is maintaining high execution speed in the Geant4 simulation while utilizing the power of the object-
oriented approach.

An extreme approach to the particle tracking design would be to integrate all functionalities required for the
propagation of a particle into a single class. This design approach looks object-oriented because a particle in the
real world propagates by itself whileinteracting with the material surrounding it. However, in terms of datahiding,
which is one of the most important ingredients in the object-oriented approach, the design can be improved.

Combining all the necessary functionalities into a single class exposes all the data attributes to alarge number of
methods in the class. Thisis basically equivaent to using a common block in Fortran.

Instead of the 'big-class' approach, a hierarchical design was employed by Geant4. The hierarchical approach,
whichincludesinheritance and aggregation, enableslarge, complex software systemsto be designed in astructured
way. The simulation of a particle passing through matter is a complex task involving particles, detector geometry,
physics interactions and hitsin the detector. It is well-suited to the hierarchical approach. The hierarchical design
manages the complexity of the tracking category by separating the system into layers. Each layer may then be
designed independently of the others.

In order to maintain high-performance tracking, use of the inheritance (‘is-a relation) hierarchy in the tracking
category wasavoided asmuch aspossible. For example, t r ack andpar ti cl e classesmight have been designed
sothat atrack 'isa parti cl e. In this scheme, however, whenever at r ack object is used, time is spent
copying the datafrom the par t i cl e object into thet r ack object. Adopting the aggregation (‘has-a relation)
hierarchy requires only pointers to be copied, thus providing a performance advantage.
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2.4.2. Class Design

Figure 2.5 shows a general overview of the tracking design in Unified Modelling Language Notation.

i erTrackingAction
DrawTrajectory) | ~fpTrajectory |Proc 0.1 011 PostUserTrackingActionO)

G4TrackingManager
GdTrajectory | i G4UserTrackingAction
GaTrajectoryPoint Gimme —fpTrackingManager
ShowTrajectory() immeS: 0 . PreUse ki 0
rackD ~fpUserTrackingActicr
entAborte

AppendStep()

~trackingManager
Gé4SelectedAlongStepDoltVector |

0.1

1

~fpSteppingManager | GaTrackingMessenger
~fSelectedAlongStepDoltVector 0.1 1
i G4SteppingManager

0.1

~steppingManager

1
~fSelectedAtRestDoltVector—|In:
0.1

GdSelectedAtRestDoltVestor
| G4TraokVegtor,

~fpSteppingManager 0.1

~fSecondary

~fSelectedPostStepDoltVector

G4SelectedPostStepDoltVector

~fUserSte ]
Iser: EWITZ?](W:IIO" rveraass 011 ;

GdUserSteppingAction

Gé4SteppingVerbose
[ ion() ~fU: i L

0.1 1

0.1 ~fVerbose

Figure 2.5. Tracking design

» G4TrackingManager is an interface between the event and track categories and the tracking category.
It handles the message passing between the upper hierarchical object, which is the event manager
(GAEvent Manager z), and lower hierarchical objects in the tracking category. GATr acki ngManager is
responsible for processing one track which it receives from the event manager.

ATr acki ngManager aggregates the pointers to A4St eppi ngManager, ATraj ectory and
HAUser Tracki ngActi on. It also hasa'use relationto GATr ack.

» G4SteppingManager plays an essential role in particle tracking. It performs message passing to objects
in all categories related to particle transport, such as geometry and physics processes. Its public method
St eppi ng() steersthe stepping of the particle. The algorithm employed in this method is basically the same
as that in Geant3. The Geant4 implementation, however, relies on the inheritance hierarchy of the physics
interactions. The hierarchical design of the physicsinteractions enables the stepping manager to handle them as
abstract objects. Hence, the manager is not concerned with concrete interaction objects such as bremsstrahlung
or pair creation. The actual invocations of various interactions during the stepping are done through a dynamic
binding mechanism. This mechanism shields the tracking category from any changein the design of the physics
process classes, including the addition or subtraction of new processes.

(ASt eppi ngManager also aggregates
« the pointersto G4Navi gat or from the geometry category, to the current G4Tr ack, and
« thelist of secondariesfrom the current track (throughaGATr ackVect or ) to ZAUser St eppi ngActi on
and to AVSt eppi ngVer bose.

It also hasa'use relationto GAPr ocessManager and G4Par t i cl eChange inthe physics processes class
category.

* G4Track - the class G4Tr ack represents a particle which is pushed by GASt eppi ngManager . It holds
information required for stepping aparticle, for example, the current position, the time since the start of stepping,
the identification of the geometrical volume which contains the particle, etc. Dynamic information, such as
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particle momentum and energy, is held in the class through a pointer to the G4Dynami cParti cl e class.
Static information, such as the particle mass and charge is stored in the GADynami cPar t i cl e classthrough
the pointer to the GAPar t i cl eDef i ni ti on class. Here the aggregation hierarchical design is extensively
employed to maintain high tracking performance.

GA4TrajectoryPoint and G4Trajectory - the class G4Tr aj ect or yPoi nt holds the state of the particle
after propagating one step. Among other things, it includes information on space-time, energy-momentum and
geometrical volumes.

(ATraj ectory aggregates al GATraj ect or yPoi nt objects which belong to the particle being
propagated. ATr acki ngManager takescareof addingthe GATr aj ect or yPoi nt toaG4Tr aj ect ory
object if the user requested it (see Geant4 User's Guide - For Application Developers. The life of a
(ATr aj ect ory object spans an event, contrary to GATr ack objects, which are deleted from memory after
being processed.

G4User TrackingAction and G4User SteppingAction - (AUser Tr acki ngAct i on is a base class from
which user actions at the beginning or end of tracking may be derived. Similarly, GAUser St eppi ngActi on
isabase class from which user actions at the beginning or end of each step may be derived.

2.4.3. Tracking Algorithm

Thekey classesfor tracking in Geant4 are A Tr acki ngManager and G4St eppi ngManager . The singleton
object "TrackingManager" from GATr acki ngManager keeps all information related to a particular track, and
it also manages all actions necessary to complete the tracking. The tracking proceeds by pushing a particle by
a step, the length of which is defined by one of the active processes. The "TrackingManager" object delegates
management of each of the steps to the " SteppingManager” object. This object keeps all information related to
aparticular step.

The public method Pr ocessOneTrack() in G4Tracki ngManager is the key to managing the tracking,
while the public method St eppi ng() isthe key to managing one step. The algorithms used in these methods
are explained below.

ProcessOneTrack() in G4TrackingM anager

o 0k, WDN PP

7.
8.

. Actions before tracking the particle: Clear secondary particle vector
. Pretracking user intervention process.

. Construct atrajectory if it is requested

. Give SteppingManager the pointer to the track which will be tracked
. Inform beginning of tracking to physics processes

. Track the particle Step-by-Step whileitisalive

* Call Stepping method of G4SteppingM anager

» Append atrajectory point to the trgjectory object if it is requested
Post tracking user intervention process.

Destroy the trgjectory if it was created

Stepping() in G4SteppingM anager

1
2.

3.

Initialize current step

If particleisstopped, get theminimum lifetimefrom all the at rest processesand invoke InvokeAtRestDoltProcs
for the selected AtRest processes

If particle is not stopped:

* Invoke DefinePhysical Stepl ength, that finds the minimum step length demanded by the active processes
* Invoke InvokeAlongStepDoltProcs

 Update current track properties by taking into account all changes by AlongStepDolt

» Update the safety

* Invoke PostStepDolt of the active discrete process.

» Update the track length

» Send G4Step information to Hit/Dig if the volumeis sensitive

8
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* Invoke the user intervention process.
 Return the value of the StepStatus.

2.4.4. Interaction with Physics Processes

Theinteraction of thetracking category with the physics processesis donein two ways. First each process can limit
the step length through one of itsthree Get Physi cal | nt er act i onLengt h() methods, AtRest, AlongStep,
or PostStep. Second, for the selected processes the Dolt (AtRest, AlongStep or PostStep) methods are invoked.
All thisinteraction is managed by the Stepping method of GASt eppi ngManager . To calculate the step length,
the Def i nePhysi cal St epLengt h() method iscaled. The flow of this method is the following:

» Obtain maximum allowed Step in the volume define by the user through G4UserLimits.

» The PostStepGetPhysical I nteractionLength of all active processesis called. Each process returns a step length
and the minimum one is chosen. This method also returns a G4ForceCondition flag, to indicate if the process
isforced or not:

« Forced : Corresponding PostStepDolt is forced.

» NotForced : Corresponding PostStepDolt is not forced unless this process limits the step.

e Conditionally : Only when AlongStepDolt limits the step, corresponding PoststepDolt is invoked.
« ExclusivelyForced : Corresponding PostStepDolt is exclusively forced.

All other Dolt including AlongStepDolts are ignored.

» The AlongStepGetPhysical InteractionLength method of all active processes is called. Each process returns a
step length and the minimum of these is chosen. This method also returns afGPIL Selection flag, to indicate if
the process is the selected one can be isforced or not:

« CandidateForSel ection: this process can be the winner. If its step length isthe smallest, it will be the process
defining the step (the process

» NotCandidateForSel ection: this process cannot be the winner. Eveniif its step length istaken as the smallest,
it will not be the process defining the step

The method GASt eppi ngManager: : |1 nvokeAl ongSt epDolts() is in charge of caling the
AlongStepDolt methods of the different processes:

« If thecurrent stepisdefined by a'ExclusivelyForced' PostStepGetPhysical I nteractionlL ength, no AlongStepDolt
method will be invoked
* Elsg, al the active continuous processes will be invoked, and they return the ParticleChange. After it for each
process the following is executed:
» Update the G4Step information by using final state information of the track given by a physics process. This
is done through the UpdateStepForAlongStep method of the ParticleChange
e Then for each secondary:
* It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only done if the flag ApplyCutFlag is set for the particle (by default it is set to false' for al
particles, user may changeit inits G4V UserPhysicsList). If thetrack hasthe flag |sGoodForTracking ‘true
this check will have no effect (used mainly to track particles below threshold)
» The parentID and the process pointer which created this track are set
» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it isonly added if it it
invokes arest process at the beginning of the tracking
» Thetrack statusis set according to what the process defined

The method A4St eppi ngManager : : | nvokePost St epDol t s is on charge of calling the PostStepDolt
methods of the different processes.

e Invoke the PostStepDolt methods of the specified discrete process (the one selected by the
PostStepGetPhysi cal I nteractionL ength, and they return the ParticleChange. The order of invocati on of processes
isinverse to the order used for the GPIL methods. After it for each process the following is executed:

» Update PostStepPoint of Step according to ParticleChange

» Update G4Track according to ParticleChange after each PostStepDolt
e Update safety after each invocation of PostStepDolts

¢ The secondaries from ParticleChange are stored to SecondaryL ist
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» Then for each secondary:

« It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only doneif the flag ApplyCutFlag is set for the particle (by default it is set to 'false’ for all
particles, user may changeitinits G4V UserPhysicsList). If thetrack hasthe flag IsGoodForTracking ‘true
this check will have no effect (used mainly to track particles below threshold)

» The parentl D and the process pointer which created this track are set

» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it is only added if it it
invokes arest process at the beginning of the tracking

» Thetrack statusis set according to what the process defined

The method G4St eppi ngManager : : | nvokeAt Rest Dol t s iscalled instead of the three above methodsin
case the track status is fStopAndALive. It is on charge of selecting the rest process which has the shortest time
before and then invoke it:

» To select the process with shortest tiem, the AtRestGPIL method of all active processesis called. Each process
returnsan lifetime and the minimum oneis chosen. Thismethod returm al so aG4ForceCondition flag, toindicate
if the process is forced or not: = Forced : Corresponding AtRestDolt is forced. = NotForced : Corresponding
AtRestDolt is not forced unless this process limits the step.

» Set the step length of current track and step to 0.

* Invoke the AtRestDolt methods of the specified at rest process, and they return the ParticleChange. The order
of invocation of processesisinverse to the order used for the GPIL methods.

After it for each process the following is executed:

» Set the current process as a process which defined this Step length.

» Update the G4Step information by using final state information of the track given by a physics process. This
is done through the UpdateStepForAtRest method of the ParticleChange.

¢ The secondaries from ParticleChange are stored to SecondaryL ist

e Then for each secondary:

It is checked if its kinetic energy is smaller than the energy threshold for the material. In this case the
particle is assigned a 0. kinetic energy and its energy is added as deposited energy of the parent track.
This check is only doneif the flag ApplyCutFlag is set for the particle (by default it is set to 'false’ for all
particles, user may changeitinits G4V UserPhysicsList). If the track hasthe flag 1sGoodForTracking 'true!
this check will have no effect (used mainly to track particles below threshold)

» The parentl D and the process pointer which created this track are set

» The secondary track is added to the list of secondaries. If it has 0. kinetic energy, it is only added if it it
invokes arest process at the beginning of the tracking

¢ Thetrack isupdated and its statusis set according to what the process defined

2.4.5. Ordering of Methods of Physics Processes

The ProcessManager of a particle is responsible for providing the correct ordering of process invocations.
GASt eppi ngManager invokes the processes at each phase just following the order given by the
ProcessManager of the corresponding particle.

For some processes the order is important. Geant4 provides by default the right ordering. It is always possible
for the user to choose the order of process invocations at theinitial set up phase of Geant4. This default ordering
isthe following:

1. Ordering of GetPhysicallnteractionLength
* Intheloop of GetPhysicalInteractionLength of AlongStepDolt, the Transportation process hasto be invoked
at theend.
* In the loop of GetPhysicallnteractionLength of AlongStepDolt, the Multiple Scattering process has to be
invoked just before the Transportation process.
2. Ordering of Dolts
» Thereis only some special cases. For example, the Cherenkov process needs the energy loss information
of the current step for its Dolt invocation. Therefore, the EnergyL oss process has to be invoked before the
Cherenkov process. This ordering is provided by the process manager. Energy 1oss information necessary
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for the Cherenkov process is passed using G4Step (or the static dE/dX table is used together with the step
length information in G4Step to obtain the energy loss information). Any other?

[Status of this chapter]

Nov. 1998 created by K. Amako
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Dec. 2006 Converted from latex to Docbook by K. Amako

2.5. Physics Processes

2.5.1. Design Philosophy

The processes category contains the implementations of particle transportation and physical interactions. All
physics process conform to the basic interface G4VPr ocess, but different approaches have been developed for
the detailed design of each sub-category.

For the decay sub-category, the decays of all long-lived, unstable particles are handled by a single process. This
process gets the step length from the mean life of the particle. The generation of decay products requires a
knowledge of the branching ratios and/or data distributions stored in the particle class.

The electromagnetic sub-category is divided further into the following packages:

e st andar d: handling basic properties for electron, positron, photon and hadron interactions,

» | owener gy: providing alternative models extended down to lower energies than the standard package,
» dna: providing DNA physics and chemistry simulation,

« hi ghener gy: providing models for rare high energy processes,

» nuons: handling muon interactions and energy |oss propagator,

» xrays: providing specific code for x-ray physics,

e opti cal : providing specific code for optical photons,

» util s: collecting utility classes used by the above packages.

It provides the features of openness and extensibilty resulting from the use of object-oriented technology;
alternative physics models, obeying the same process abstract interface, are often available for a given type of
interaction.

For hadronic physics, an additional set of implementation frameworks was added to accommodate the large
number of possible modeling approaches. The top-level framework provides the basic interface to other Geant4
categories. It satisfiesthe most general use-casefor hadronic shower simulations, namely to provideinclusive cross
sections and final state generation. The frameworks are then refined for increasingly specific use-cases, building
ahierarchy in which each level implements the interface specified by the level aboveit. A given hadronic process
may be implemented at any one of these levels. For example, the process may be implemented by one of several
models, and each of the models may in turn be implemented by several sub-models at the lower framework levels.

2.5.2. Class Design

2.5.2.1. General

The object-oriented design of the generic physics process G4V Process and its relation to the process manager is
shown in Figure 2.6. Figure 2.7 shows how specific physics processes are related to G4V Process.
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Figure2.6. Management of Physics Processes

Figure 2.7. Management of Physics Processes
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2.6. Hits and Digitization

2.6.1. Design Philosophy

In Geant4 a hit is a snapshot of a physical interaction or an accumulation of interactions of atrack or tracksin a
““sensitive" detector component. A digitization, or digit, represents a detector output, such asan ADC/TDC count
or atrigger signal. A digit is created from one or more hits and/or other digits.

Given the wide variety of Geant4 applications, ways of describing detector sensitivity and the quantities to be
stored in the hits and digits vary greatly. This category therefore provides only abstract classes for both detector
sensitivity and hits/digits. It also provides tools for organizing the hits/digits into collections.

2.6.2. Class Design

G4SensitiveDetector Manager - alist of G4SensitiveDetectors.

G4HitsStructure - a tree-like structure of G4Hit collections. Each branch represents the hits in given sub-
detector. For example, thefirst level of branches may consist of atracker, ECAL, and HCAL, while the second
level, in HCAL, consists of the barrel and endcaps. Finally the barrel may have phi-dlices, Z-dices, etc.

G4V SensitiveDetector - an abstract class of all of sensitive volumes.

G4HitsCallection - acollection of hits. Instantiates an RWCollection class.

G4VHit - this class has all the information about a particular hit caused by a single step.

G4VDigitizer - the class of objects which transform the hits deposited by particlesinto digitizations.
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» G4DigitizerManager - the (single) object dispatching common messages to individual digitizers.
e G4VDigi - an abstract (base) class for all G4 digitizations. This could be data as simple as a singe byte, or as
complex as an Ntuple.

» G4DigiStructure - digitizations are organized as a structure, which could be anything between a single value
and an Ntuple.

The object-oriented design of the 'hit' related classes is shown in the following class diagrams. The diagrams are
described in the Booch notation. Figure 2.8 shows the general management of hit classes. Figure 2.9 shows the
OO0 design of user-related hit classes. Figure 2.10 shows the OO design of the readout geometry.
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2.7. Geometry
2.7.1. Design Philosopy

The geometry category provides the ability to describe a geometrical structure and propagate particles efficiently
through it. Thisis done in part with the aid of two central concepts, the logical and physical volumes. A logical
volume represents a detector element of a given shape which may contain other volumes, and which may have
other attributes. It has access to other information which is independent of its phyisical location in the detector,
such as material and sensitive detector behavior. A physical volume represents the spatial positioning or placement
of the logical volume with respect to an enclosing mother (logical) volume. Thus a hierarchical tree structure of
volumes can be built with each volume containing smaller volumes (which may not overlap). Repetitive structures
can be represented by specialized physical volumes, such as replicas and parameterized placements, sometimes
resulting in alarge savingsin memory.

In Geant4 the logical volume has been refined by defining the shape as a separate entity, called a solid. Solids
with simple shapes, like rectilinear boxes, trapezoids, spherical or cylindrical sections or shells, each have their
properties coded separately, in accord with the concept of Constructed Solid Geometry (CSG). More complex
solids are defined for specific use, or having their surfaces approximated by facets (tessellated solids).

Another way to build solidsis by Boolean combination - union, intersection and subtraction. The elemental solids
should be CSGs.

Although a detector is naturally and best described as by a hierarchy of volumes, efficiency is not critically
dependent on this. An optimization technique, called voxelization, alows efficient navigation even in “flat"
geometries, typical of those produced by CAD systems.

2.7.2. Class Design

» G4GeometryManager - responsible for managing ““high level" objects in the geometry subdomain, notably
including opening and closing (" locking™) the geometry, and creating/deleting optimization information for
G4Navigator. The classisa"singleton”.

» G4L ogicalVolumeStore - a container for optionally storing created logical volumes. It enablestraversal of al
logical volumes by the Ul/user/etc.

» G4LogicalVolume - represents a leaf node or unpositioned subtree in the geometry hierarchy. It may have
daughtersascribed toit, and isalso responsiblefor retrieval of the physical and tracking attributes of the physical
volume that it represents. These attributes include solid, material, magnetic field, and optionally user limits,
sensitive detectors, etc. Logical volumes are optionally entered into the G4L ogicalVVolumeStore.

* G4MagneticField - a class responsible for the magnetic field in each volume, including the calculation of
particle trajectories along curved paths. In cases where the geometry step limits the particle's step, the distance
calculated is guaranteed to be the distance to a volume boundary.

» G4Navigator - a class used by the tracking management, able to obtain/calculate tracking-time geometrical
information such as distance to the next volume, or to find the physical volume containing a given point in
the world reference system. The navigator maintains a transformation history and other information used to
optimize the tracking time performance.

» G4NavigationHistory - responsible for maintenance of the history of the path taken through the geometrical
hierarchy. It is principally a utility class for use by G4Navigator.

* G4NormalNavigation - a utility class for navigation in volumes containing only G4PV Placement daughter
volumes.

» G4ParameterisedNavigation - autility classfor navigation in volumes containing asingle G4PV Parameterised
volume for which voxels for the replicated volumes have been constructed.

» G4VoxelNavigation - a utility class for navigation in volumes containing only G4PVPlacement daughter
volumes for which voxels have been constructed.
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» G4ReplicaNavigation - a utility class for navigation in volumes containing a single G4PV Parameterised
volume for which voxels for the replicated volumes have been constructed.

» G4PhysicalVolumeStore - a container for optionally storing created physical volumes. It enables traversal
of all physical volumes by the Ul/user/etc. All solids should be registered with G4PhysicalVolumeStore, and
removed on their destruction. It isintended principally for the Ul browser.

» G4VPhysicalVolume - avolume positioned within and relative to a given mother volume, and al so represented
by agiven logica volume. They are optionally entered into the G4PhysicalV olumeStore.

» G4PVPlacement - aphysical volume corresponding to a single touchable detector element, positioned within
and relative to a mother volume.

» G4PVReplica - aphysical volume representing many identically formed touchable detector elements, differing
only intheir positioning. The elements’ positions are determined by means of asimpleformula, and the elements
completely fill the containing mother volume.

» G4PVParameterised - a physical volume representing many touchable detector elements differing in their
positioning and dimensions. Both are calculated by means of a G4V Parameterisation object. Each element's
positioniscal culated as per G4PV Replica, and each element's shape can be modified by means of auser supplied
formula.

e G4VPVParameterisation - a parameterisation class able to compute the transformation and, indirectly, the
dimensions of parameterised volumes, given areplication number.

» G4SmartVoxelProxy - aclassfor proxying smart voxels. The class represents either a header (in turn refering
to more VoxelProxies) or a node. If created as a node, calls to GetHeader cause an exception, and likewise
GetNode when a header.

» G4SmartVoxelHeader - represents a single axis of virtual division. Contains the individual divisions which
are potentialy further divided along different axes.

» G4SmartVoxelNode- asinglevirtua division, containing the physical volumesinsideits boundaries and those
of its parents.

» G4VoxelLimits - represents limitation/restrictions of space, where restrictions are only made perpendicular to
the cartesian axes.

» G4solidStore - acontainer for optionally storing created solids. It enablestraversal of all/any solids by the U/
user/etc. The classisa"singleton”.

e G4VSsolid - position independent geometrical entities. They have only “shape’, and encompass both CSG and
boundary representations. They are optionally entered into the G4SolidStore. This class defines, but does not
implement, functions to compute distances to/from the shape. Functions are also defined to check whether a
point is inside the shape, to return the surface normal of the shape at a given point, and to compute the extent
of the shape.

» G4VTouchable - aclass that maintains a "~ "reference” on a given touchable element of the detector - akind of
bookmark. It enables a given detector element to be saved during tracking (in case of booleans/user code/etc.)
and the corresponding G4PhysicalVolume retrieved later, with its “state” information (path through the tree)
optionally restored so that navigation can be restarted. G4Touchables provide fast access to the transformation
from the global reference system to that of the saved detector element.

» G4TouchableHistory - object representing a touchable detector element, and its history in the geomtrical
hierarchy, including its net resultant local->global transform.

* G4GRSSolid} - object representing a touchable solid. It maintains the association between a solid and its net
resultant local-to-global transform.

* G4GRSVolume- object representing atouchabl e detector element. It maintains associations between aphysical
volume and its net resultant local-to-global transform.

» G4AffineTransform - aclass for geometric affine transformations. It supports efficient arbitrary rotation and
transformation of vectors and the computation of compound and inverse transformations. A “rotation flag" is
maintained internally for greater computational efficiency for transforms that do not involve rotation.

e G4UserLimits - responsible for user limits on step size, ascribable to individual volumes.

Figure 2.11 shows a general overview, in UML notation, of the geometry design. A detailed collection of class
diagrams from the geometry category is found in the Appendix.
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Figure 2.11. Overview of the geometry

2.7.3. Additional Geometry Diagrams

Additional diagramsfor the object-oriented design of the 'geometry’ related classes are included here. Figure 2.12
shows the class diagram for smart voxels. Figure 2.13 shows the class diagram for the navigator.
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Figure2.12. Classdiagram for smart voxels

The navigator makes use of four "utility"
navigation classes tightly coupled to
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“stack” of compounded transformations and
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2.8. Electromagnetic Fields

The object-oriented design of the classes related to the electromagnetic field is shown in the class diagram of
Figure 2.14. The diagram is described in UML notation.
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Figure 2.14. Electromagnetic Field

2.9. Particles
2.9.1. Design Philosophy

The particles category implements the facilities necessary to describe the physical properties of particles for
the simulation of particle-matter interactions. All particles are based on the G4ParticleDefinition class, which
describesbasic properties such asmass, charge, etc., and also allowsthe particleto carry alist of processesto which
itissengitive. A first-level extension of this class defines the interface for particlesthat carry cutsinformation, for
examplerange cut versus energy cut equivalence. A set of virtual, intermediate classesfor leptons, bosons, mesons,
baryons, etc., allows the implementation of concrete particle classes which define the actual particle properties
and, in particular, implement the actual range versus energy cuts equivalence. All concrete particle classes are
instantiated as singletons to ensure that all physics processes refer to the same particle properties.

2.9.2. Class Design

The object-oriented design of the'particles’ related classesis shown in the following class diagrams. The diagrams
are described in the Booch notation. Figure 2.15 shows a general overview of the particle classes. Figure 2.17
shows classes related to the particle table and Figure 2.16 shows the classes related to the ion table in the particle
table. Figure 2.18 shows the classes related to the particle decay table in the G4ParticleDefinition. This decay
tabeleisused by decay process and Figure 2.19 shows the classes related to the decay process and decay channels
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Figure 2.19. Particle Decay
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2.10. Materials
2.10.1. Design Philosophy

The design of the materials category reflects what exists in nature: materials are made of a single element or a
mixture of elements, and elements are made of a single isotope or a mixture of isotopes. Because the physical
properties of materials can be described in a generic way by quantities which can be specified directly, such as
density, or derived from the element composition, only concrete classes are necessary in this category.

The material category implements the facilities necessary to describe the physical properties of materials for the
simulation of particle-matter interactions. Characteristics like radiation and interaction length, excitation energy
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loss, coefficients in the Bethe-Bloch formula, shell correction factors, etc., are computed from the element, and
if necessary, the isotope composition.

The material category aso implements facilities to describe surface properties used in the tracking of optical
photons.

2.10.2. Class Design

The object-oriented design of the 'materials related classesisshownin the classdiagram: Figure 2.20. The diagram
is described in the Booch notation.
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Figure 2.20.
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2.11. Global Usage
2.11.1. Design Philosophy

The global category covers the system of units, constants, humerics and random number handling. It can be
considered a place-holder for "general purpose" classes used by al categories defined in Geant4. No back-
dependencies to other Geant4 categories affect the "global" domain. There are direct dependencies of the global
category on external packages, such as CLHEP, STL, and miscellaneous system utilities.

Within the management sub-category are “"utility" classes generally used within the Geant4 kernel. They are, for
the most part, uncorrelated with one another and include:

» G4Allocator
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* G4FastVector

» GA4ReferenceCountedHandle

» G4PhysicsVector, GALPhysicsFreeVector, G4PhysicsOr deredFreeVector
o GATimer

» G4UserLimits

» G4UnitsTable

A general description of these classesisgivenin section 3.2 of the Geant4 User's Guidefor Application Devel opers.

The module includes wrappers to most CLHEP classes used in Geant4, and tools for memory
management (ACache, (AAut oDel et e) and for threading (AAut oLock, AThr eadi ng,
(AThr eadLocal Si ngl et on, GATWor kspacePool ). It also provides specialised fast implementationsfor
some heavily used mathematical functions, like AExp, G4Log, GAPow.

In applications where it is necessary to generate random numbers (normally from the same engine) in many
different methods and parts of the program, it is highly desirable not to rely on or require knowledge of the global
objects instantiated. By using static methods via a unique generator, the randomness of a sequence of humbers
is best assured. Hence the use of a static generator has been introduced in the original design of HEPRandom as
aproject requirement in Geant4.

2.11.2. Class Design

Analysis and design of the HEPRandom module have been achieved following the Booch Object-Oriented
methodol ogy. Some of the original design diagramsin Booch notation are reported below. Figure 2.21 isageneral
picture of the static class diagram.

» HepRandomEngine - abstract class defining the interface for each Random engine. Its pure virtual methods
must be defined by its subclasses representing the concrete Random engines.

* HepJamesRandom - class inheriting from HepRandomEngine and defining a flat random number generator
according to the algorithm described in "F.James, Comp.Phys.Comm. 60 (1990) 329". This classisinstantiated
by default as the default random engine.

» DRand48Engine - class inheriting from HepRandomEngine and defining a flat random number generator
according to the drand48() and srand48() system functions from the C standard library.

» RandEngine- classinheriting from HepRandomEngine and defining aflat random number generator according
to the rand() and srand() system functions from the C standard library.

* RanluxEngine - class inheriting from HepRandomEngine and defining a flat random number generator
according to the algorithm described in "F.James, Comp.Phys.Comm. 60 (1990) 329-344" and originaly
implemented in FORTRAN 77 as part of the MATHLIB HEP library. It provides 5 different "luxury” levels
[0.4].

» RanecuEngine - class inheriting from HepRandomEngine and defining a flat random number generator
according to the algorithm RANECU originally written in FORTRAN 77 as part of the MATHLIB HEP library.
It uses atable of seeds which provides uncorrelated couples of seed values.

* HepRandom - the main class collecting all the methods defining the different random generators applied to
HepRandomEngine. It is a singleton class which all the distribution classes derive from. This singleton is
instantiated by default.

* RandFlat - distribution class for flat random number generation. It also provides methods to fill an array of
flat random values, given its size or shoot bits.

* RandExponential - distribution class defining exponential random number distribution, given a mean. It also
provides amethod to fill an array of flat random values, given itssize.

» RandGauss - distribution class defining Gauss random number distribution, given amean or specifying also a
deviation. It also provides a method to fill an array of flat random values, given its size.

» RandBreitWigner - distribution class defining the Breit-Wigner random number distribution. It also provides
amethod to fill an array of flat random values, given its size.

» RandPoisson - distribution class defining Poisson random number distribution, given a mean. It also provides
amethod to fill an array of flat random values, given its size.
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Figure2.21. HEPRandom module

Figure 2.22 is a dynamic object diagram illustrating the situation when a single random number is thrown by the
static generator according to one of the available distributions. Only one engine is assumed to active at atime.
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Figure 2.22. Shooting via the generator

Figure 2.23 illustrates a random number being thrown by explicitly specifying an engine which can be shared by

many distribution objects. The static interface is skipped here.
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Figure 2.23. Shooting via distribution objects

Figure 2.24 illustrates the situation when many generators are defined, each by a distribution and an engine. The
static interface is skipped here.
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Figure 2.24. Shooting with arbitrary engines

For detailed documentation about the HEPRandom classes see the CLHEP Reference Guide(http://cern.ch/clhep/
manual/RefGuide) or the CLHEP User Manua(http://cern.ch/clhep/manual/UserGuide).

Informations written in this manual are extracted from the original manifesto distributed with the HEPRandom
package (http://cern.ch/clhep/manual /UserGuide/Random/Random.html).

HEPNumerics

The HEPNumerics module includes a set of classes which implement numerical agorithms for general use in
Geant4. The User's Guide for Application Devel opers contains a description of each class. Most of the algorithms
were implemented using methods from the following books:

e B.H. Flowers, "An introduction to Numerical Methods In C++", Claredon Press, Oxford 1995.
« M. Abramowitz, |. Stegun, "Handbook of mathematical functions', DOV ER PublicationsINC, New Y ork 1965 ;
chapters 9, 10, and 22.

The HEPNUmerics modul e provides general mathematical methods supporting Geant4 Monte-Carlo simulation
processes. Among these, there are methods for function and array interpolations using known special functions,
class method integration solving polynomial equation (up to 4th order) and some others.

Of particular interest is the templated class (41 nt egr at or which consists of methods allowing to integrate
class methods. Since the type whose method should be integrated is not known in advance, G4l nt egr at or
uses templated signatures and pointers to functions in its API. It provides both usual humerical methods like
adaptive Gauss or Simpson integration, and more sofisticated (faster and at the same accurate) methods based on
the orthogonal polynomials.

23



Design and Function
of Geant4 Categories

Among the different integration methods involving orthogonal polynomials there are: Gauss-Legendre, Gauss-
Chebyshev, Gauss-Hermite and Gauss-Jacobi methods:

tenpl ate <class T, class F>
GAdoubl e G4l ntegrator<T, F>:: Legendre( T& typeT, F f, G4doubl e a,
G4doubl e b, GAint nLegendre )

/1 The val ue nLegendre set the accuracy required, i.e the nunber of points
/1 where the function pFunction will be evaluated during integration.

/1 The function creates the arrays for absci ssas and wei ghts that used

/1 in Gauss-Legendre quadrature nethod.

I/l The values a and b are the linmts of integration of the function f.

/1 nLegendre MJUST BE EVEN !!!

/Il Returns the integral of the function f between a and b, by 2*fNunmber poi nt
/| Gauss-Legendre integration: the function is eval uated exactly

/1 2*fNunber times at interior points in the range of integration.

/1 Since the weights and abscissas are, in this case, symetric around

/1 the midpoint of the range of integration, there are actually only

/1 fNunmber distinct values of each.

/1 Convenient for using with some class object dataT

tenpl ate <class T, class F>
GAdoubl e G4l nt egrat or <T, F>: : Legendrel0( T& typeT, F f, G4double a,
Gddoubl e b )

/Il Returns the integral of the function to be pointed by T::f between a and b,

/1 by ten point Gauss-Legendre integration: the function is evaluated exactly

// ten tines at interior points in the range of integration. Since the weights

/1 and abscissas are, in this case, symmetric around the m dpoint of the

/'l range of integration, there are actually only five distinct values of each

/] Convenient for using with class object typeT. The nethod is very fast and accurate enough.
// Roots and wei ghts are from Abranbwitz M, Stegan |I.A 1964 , Handbook of Math... , p. 916

tenpl ate <class T, class F>
GAdoubl e G4l nt egrat or <T, F>: : Legendre96( T& typeT, F f, G4doubl e a,
Gddoubl e b )

/Il Returns the integral of the function to be pointed by T::f between a and b,

/1 by 96 point Gauss-Legendre integration: the function is eval uated exactly

// ten Tines at interior points in the range of integration. Since the weights

/1 and abscissas are, in this case, symmetric around the m dpoint of the

/'l range of integration, there are actually only five distinct values of each

/] Convenient for using with sone class object typeT. The nmethod is very accurate and fast enough.
// Roots and wei ghts are from Abranbwitz M, Stegan |I.A 1964 , Handbook of Math... , p. 919

tenpl ate <class T, class F>

GAdoubl e G4l nt egr at or <T, F>: : Chebyshev( T& typeT, F f, G4double a,
G4doubl e b, G4int nChebyshev )

I/

/1 Integrates function pointed by T::f froma to b by Gauss- Chebyshev

/] quadrature nethod.

/1 Convenient for using with class object typeT

tenpl ate <class T, class F>
GAdoubl e G4l ntegrator<T, F>:: Laguerre( T& typeT, F f, G4doubl e al pha,
G4i nt nLaguerre )

Il Integral fromzero to infinity of std::pow X, al pha)*std::exp(-x)*f(x).
/1 The val ue of nLaguerre sets the accuracy.

/1 The function creates arrays fAbscissa[O0,..,nLaguerre-1] and

/1 fWeight[O,..,nLaguerre-1]

/1 Convenient for using with class object 'typeT" and (typeT.*f) function
[l (T::f)

tenplate <class T, class F>

G4doubl e Alntegrator<T,F>::Hermite( T& typeT, F f, Gdint nHermte )
I/

/'l Gauss-Hermite nmethod for integration of std::exp(-x*x)*f(x)

/]l frommnus infinity to plus infinity.

tenplate <class T, class F>

G4doubl e Al nt egr at or <T, F>: : Jacobi ( T& typeT, F f, G4doubl e al pha,
GAdoubl e beta, 4int nJacobi )

11

/| Gauss-Jacobi nethod for integration of ((1-x)”alpha)*((1+x)”beta)*f(x)
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/1 frommnus unit to plus unit (-1,+1).

HEPGeometry

Documentation for the HEPGeometry module is provided in the CLHEP Reference Guide(http://cern.ch/clhep/
manual/RefGuide) or the CLHEP User Manual (http://cern.ch/clhep/manual/UserGuide).
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2.12. Visualisation
2.12.1. Design Philosophy

The visualisation category consists of the classes required to display detector geometry, particle trajectories,
tracking steps, and hits. It also provides visualisation drivers, which are interfaces to external graphics systems.

A wide variety of user requirements went into the design of the visualisation category, for example:

* very quick response in surveying successive events,

* high-quality output for presentation and documentation,

» flexible camera control for debugging detector geometry and physics,

* selection of visualisable objects,

* interactive picking of graphical objects for attribute editing or feedback to the associated data,
* highlighting incorrect intersections of physical volumes,

 co-working with graphical user interfaces.

Because it is very difficult to respond to all of these requirements with only one built-in visualiser, an abstract
interface was devel oped which supports several complementary graphics systems. Here the term graphics system
means either an application running as a process independent of Geant4 or a graphics library to be compiled with
Geant4. A concrete implementation of the interface is called a visualisation driver, which can use a graphics
library directly, communicate with an independent process via pipe or socket, or smply write an intermediate file
for a separate viewer.

2.12.2. The Graphics Interfaces

* G4VVisManager: All user code writes to the graphics systems through this pure abstract interface. It contains
Draw methods for al the graphics primitives in the graphics reps category (G4Polyline, G4Circle, etc.),
geometry objects (through their base classes, G4V Solid, G4PhysicalVolume and G4L ogicalVolume) and hits
and trajectories (through their base classes, G4VHit and G4V Trajectory).

Sincethisisan abstract interface, all user code must check that there exists a concrete instantiation of it. A static
method is provided, so atypical user code fragment is:

GAWi sManager * pWi sManager = AV sManager : : Get Concr et el nst ance() ;
i f (pWisManager) {
pWi sManager - >Drawm{ ACircl e. . .

Note that this allows the building an application without a concrete implementation, for example for a batch
job, even if some code, like the above, is still included. Most of the novice examples can be built this way if
G4VIS_NONE is specified.

The concrete implementation of thisinterface is hereafter referred to as the visualisation manager.

25



Design and Function
of Geant4 Categories

* G4VGraphicsScene: The visualisation manager must also provide a concrete implementation of the subsidiary
interface, G4V GraphicsScene. It isonly for use by the kernel and the modeling category. It offers direct access
to a ~“scene handler” through a reference provided by the visualisation manager. It is described in more detail
in the section on extending the toolkit functionality.

The Geant4 distribution includes implementations of the above interfaces, namely G4VisManager and
G4V SceneHandler respectively, and their associated classes. These define further abstract base classes for
visualisation drivers. Together they form the Geant4 Visualisation System. A variety of concrete visualisation
drivers are aso included in the distribution. Details of how to implement a visualisation driver are given in
Section 3.7. Of coursg, it is always possible for a user to implement his or her own concrete implementations of
G4VVisManager and G4V GraphicsScene replacing the Geant4 Visualisation System atogether.

2.12.3. The Geant4 Visualisation System

The Geant4 Visualisation System consists of

» G4VisManager: Animplementation of the G4VVisManager interface. It manages multiple graphics systems
and defines three more concepts -- the scene (G4Scene), the scene handler (base class G4V SceneHandler,
itself a sub-class of G4V GraphicsScene) and the viewer (base class G4V Viewer) -- see below. G4VisManager
is a singleton and an abstract class, requiring the user to derive from it a concrete visualisation manager
(GAVisExecutive is provided -- see below). Roles and structure of the visualisation manager are described in
Chapter 8 of the User's Guide for Application Developers.

* G4VisExecutive: A concrete visuadlisation manager that implements the virtua functions
RegisterGraphi csSystems and RegisterM odel Factories. These functions must be in the users domain, since the
graphics systems and models that are instantiated by them are, in many cases, provided by the user (graphics
libraries, etc.). It istherefore implemented as a .hh-.icc combination that is designed to beincluded in the users
code. Of course, the user may write his or her own.

» G4Scene The scene is a list if models for physical volumes, axes, hits, trajectories, etc. - see Section
Section 2.12.4. They are distinguished according to their lifetime -- ““run-duration" for physical volumes, etc.,
““end-of-event" for hits and trajectories, etc. The end-of-event models are only to be used when the Geant4 state
indicates the end of event has been reached. The scene has an extent (G4VisExtent), which is updated by the
scene when a new model is added (each model itself has an extent), and a *“standard"” target point; these are
used to define the standard view -- see below. In addition, the scene keeps flags which indicate whether end-
of -event objects should be accumulated or refreshed for each event or run.

* G4VGraphicsSystem: Thisis an abstract base class for scene handler and viewer factories. It is used by the
visualisation manager to create scene handlers and viewers on request.

e G4VSceneHandler: A sub-classof G4V GraphicsScene, itself an abstract base classfor specific scenehandlers,
whose job is to convert the scene into graphics-system-specific code for the viewer. For example, the scene
handler may create a graphical database, taking care to separate run-duration (persistent) and end-of-event
(transient) information (this is described further in Section 3.7.1.6.

» G4VViewer: An abstract base class for specific viewers. Its job is to create windows or files and identify
where and how the final view should be rendered. It has view parameter s (G4ViewParameters) which specify
viewpoint direction, type of rendering (wireframe or surface), etc. It is the view's responsibility, noting the
scene's extent and target point, to choose a camera position and magnification that ensures that the scene is
automatically and comfortably rendered in the viewing window. This is then the standard view, and any
further operations requested by the user - zoom, pan, etc. - are relative to this standard view. The class
G4ViewParameters has utility routines to assist this procedure; it is strongly advised that toolkit developers
writing aviewer should study the G4ViewParameters class, whose header file contains much useful information
(also preserved in the Software Reference Manual).

The viewer is messaged by the vis manager when the user issues commands, such as / vi s/ vi ewer/
r ef r esh. This invokes methods such as SetView, ClearView and DrawView. A detailed description of the
call sequencesisgiven in Section 3.7.1.2- Section 3.7.1.5.

Note there is no restriction on the number or type of scene handlers or viewers. There may be severa scene
handlers processing the same or different scenes, each with several viewers (for example, the same scene from
differing viewpoints).
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By defining a set of three C++ classes inheriting from the virtual base classes - G4V GraphicsSystem,
G4V SceneHandler and G4VViewer - an arbitrary graphics system can easily be plugged in to Geant4. The
plugged-in graphics system is then available for visualising detector simulations. Together, this set of three
concreteclassesiscalled a"visualisation driver". The DAWN-Filedriver, for example, istheinterfaceto the Fukui
Renderer DAWN, and isimplemented by the following set of classes:

1. GADAWNFILE : public G4V GraphicsSystem for creation of the scene handlers and viewers
2. GADAWNFILESceneHandler : public G4V SceneHandler for modeling 3D scenes
3. GADAWNFILEView : public G4VView for rendering 3D scenes

Severa visualisation drivers are distributed with Geant4. They are complementary to each other in many aspects.
For details, see Chapter 8 of the User's Guide for Application Developers.

2.12.4. Modeling sub-category

* G4VModel - abase class for visualisation models. A model is a graphics-system-independent description of
a Geant4 component.

The sub-category visualisation/modeling defines how to model a 3D scene for visualisation. The term "3D
scene" indicates a set of visualisable component objects put in a 3D world. A concrete class inheriting from
the abstract base class G4VModel defines a "model”, which describes how to visualise the corresponding
component object belonging to a 3D scene. G4AM odelingParameters defines various associated parameters.

For example, G4PhysicalVolumeModel knows how to visualise a physical volume. It describes a physical
volume and its daughtersto any desired depth. G4HitsModel knows how to visualise hits. G4TrajectoriesM odel
knows how to visualise trgjectories.

Themain task of amodel isto describeitself to a3D scene by giving aconcrete implementation of thefollowing
virtual method of G4VModel:

virtual void DescribeYoursel fTo (&G4VG aphi csScene&) = 0;

The argument class G4V GraphicsScene is a minimal abstract interface of a 3D scene for the Geant4 kernel
defined in the graphics_reps category. Since G4V SceneHandler and its concrete descendants inherit from
G4V GraphicsScene, the method DescribeY ourselfTo() can pass information of a 3D scene to a visualisation
driver.

It is easy for atoolkit developer of Geant4 to add a new kind of visualisable component object. It is done by
implementing a new class inheriting from G4VModel.
* G4VTrajectoryModel - an abstract base class for trgjectory drawing models.

A trajectory model governs how an individua trgectory is drawn. Concrete models inheriting from
G4V TrajectoryModel must implement two pure virtua functions:

virtual void Drawmconst AVTrajectory& Gdint i_node = 0) const = O;
virtual void Print(std::ostream& ostr) const = 0;

See for example G4ATrajectoryDrawByParticlel D.
» G4VModelFactory - an abstract base class for factories creating models and associated messengers.

Itisnot necessary to generate messengersfor atrajectory model that will be constructed and configured directly
in compiled code. If the user requires model creation and configuration features through interactive commands,
however, there must be a mechanism to generate both models and their associated messengers. This is the
role of G4V ModelFactory. Concrete factories inheriting from G4V Model Factory are responsible for creating
a concrete model and concrete messengers. To help ensure a type safe messenger to model interaction on the
command line, the messengers should inherit from G4V M odel Command.

Concrete factories must implement one pure virtual function:
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virtual Model AndMessengers
Create(const GAString& pl acenent, const GAString& nodel Nane) = 0;

where placement indicates which directory space the commands should occupy. See for example
GA4TrajectoryDrawByParticlel DFactory.

2.12.5. View parameters

View parameters such as camera parameters, drawing styles (wireframe/surface etc) are held by
G4ViewParameters. Each viewer holds aview parameters object which can be changed interactively and adefault
object (for useinthe/ vi s/ vi ewer/ r eset command).

If atoolkit developer of Geant4 wants to add entries of view parameters, he should add fields and methods to
G4ViewParameters.

2.12.6. Visualisation Attributes

All drawable objects (should) have a method:

const AVisAttributes* GetVisAttributes() const;
A drawable object might be:

« a"visible" (i.e, inheriting G4Visible), such as a polyhedron, polyline, circle, etc. (note that text is a dightly
special case - see below) or
 asolid whose vis attributes are held in its logical volume.

2.12.6.1. Finding the applicable vis attributes

Thisisanissuefor all scene handlers. The scene handler iswherethe colour, style, auxiliary edgevisibility, marker
size, etc., of individual drawable objects are needed.

2.12.6.1.1. Visibles
If the vis attributes pointer is zero, drivers should pick up the default vis attributes from the viewer:
const AVisAttributes* pVisAtts = visible. CGetVisAttributes();

if (!pVisAtts)
pVisAtts = fpVi ewer->Cet Vi ewPar anet ers(). Get Defaul t Vi sAttri butes();

where visible denotes any visible object (polyhedron, circle, etc.).
Thereisautility function G4V Viewer::GetApplicableVisAttributes which does this, so an alternativeis:
const AVisAttributes* pVisAtts =
f pVi ewer - >Get Appl i cabl eVi sAttri butes(visible. GetVisAttributes());

Confusingly, there is a utility function G4V SceneHandler::GetCol our which also does this, so if it's only colour
you need, the following suffices:
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const (ACol our & col our Get Col our (Vi si bl e);

but equally well:

const AVisAttributes* pVisAtts =
f pVi ewer - >Get Appl i cabl eVi sAttri butes(visible. GetVisAttributes());
const (ACol our & col our pVi sAtts->Get Col our();

or even:

const AVisAttributes* pVisAtts = visible. GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpVi ewer->Get Vi ewPar anet ers() . Get Def aul t Vi sAttri butes();
const (ACol our & col our pVi sAtts->Get Col our();

2.12.6.1.2. Text

Text isaspecial case because it hasits own default vis attributes:

const AVisAttributes* pVisAtts = text.GetVisAttributes();
if (!pVisAtts)

pVisAtts = fpVi ewer->Get Vi ewPar anet er s() . Get Def aul t Text Vi sAttri butes();
const (ACol our & col our pVi sAtts->Get Col our();

and there is a utility function G4V SceneHandler::GetTextColour:

const GACol our & col our Cet Text Col our (text);

2.12.6.1.3. Solids

For specific solids, the G4PhysicalVolumeModdl that provides the solids also provides, via PreAddSolid, a
pointer to its vis attributes. If the vis attribites pointer in the logical volume is zero, it provides a pointer to
the default vis attributes in the model, which in turn is (currently) provided by the viewer's vis attributes (see
G4V SceneHandler::CreateM odelingParameters). So the vis attributes pointer is guaranteed to be pertinent.

If the concrete driver does not implement AddSolid for any particular solid, the base class convertsit to primitives
(usually a G4Polyhedron) and again, the vis attributes pointer is guaranteed.

2.12.6.1.4. Drawing style

The drawing style is normally determined by the view parameters but for individual drawable objects
it may be overridden by the forced drawing style flags in the vis attributes. A utility function
G4ViewParameters::DrawingStyle G4V SceneHandler::GetDrawingStyle is provided:

GAVi ewPar anet ers: : Drawi ngStyl e drawi ng_styl e = Get Drawi ngStyl e(pVi sAtts);
2.12.6.1.5. Auxiliary edges

Similarly, the visibility of auxiliary/soft edges is normaly determined by the view parameters but may
be overridden by the forced auxiliary edge visible flag in the vis attributes. Again, a utility function
G4V SceneHandler::GetAuxEdgeVisible is provided:
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G4bool i sAuxEdgeVi si bl e = Get AuxEdgeVi si bl e (pVi sAtts);
2.12.6.1.6. LineSegmentsPerCircle

Also, the precision of rendering curved edgesin the polyhedral representation of volumesis normally determined
by the view parameters but may be overridden by a forced attribute. A utility function that respects this,
G4V SceneHandler::GetNoOfSides, is provided. For example:

GAPol yhedr on: : Set Nunber O Rot at i onSt eps (Get NoOf Si des (pVi sAttribs));
2.12.6.1.7. Marker size

These have nothing to do with vis attributes; they are an extra property of markers, i.e., objects that inherit
G4VMarker (circles, squares, text, etc.). However, the algorithm for the actual size is quite complicated and a
utility function G4V SceneHandler::GetMarkerSize is provided:

Mar ker Si zeType si zeType;
G4doubl e size = Get Marker Si ze (text, sizeType);

sizeTypeisworld or screen, signifying that the sizeisin world coordinates or screen coordinates respectively.

[Status of this chapter]

27.06.05 partially re-organized and section on design philosophy added (from Geant4 general paper) by D.H.
Wright

13.10.05 Section on vis attributes added by John Allison.

06.01.06 Re-write of "Design Philosphy" and introduction of ~“The Graphics Interfaces' and ~The Geant4
Visualisation System™ by John Allison.

Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.13. Intercoms
2.13.1. Design Philosophy

The intercoms category implements an expandable command interpreter which is the key mechanism in Geant4
for realizing customizable and state-dependent user interactionswith all categories without being perturbed by the
dependencies among classes. The capturing of commandsis handled by a C++ abstract class G4UlIsession. Various
concrete implementations of the command capturer are contained in the [user] interfaces category. Taking into
account the rapid evolution of graphical user interface (GUI) technology and consequent dependence on external
facilities, plural and extensible GUIs are offered.

Programmers need only know how to register the commands and parameters appropriate to their problem domain;
no knowledge of GUI programming is required to allow an application to use them through one of the available
GUls.

The intercoms category also provides the virtual base classes

» G4VVisManager,
» G4V GraphicsScene, and
» G4V Global FastSimulationM anager.

2.13.2. Class Design

» G4UlSession -
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» G4UlBatch -

* G4UlCommand -

e GA4Ulparameter -

e G4UImessenger -

» G4UlExecutive: A concrete interface manager. It will register the Ul selected by the environment variable
set. It will take first by defaul the following order : GAUI_USE_QT, G4UI_USE_XM, G4UI_USE_WIN32,
G4Ul_USE _TCSH, Termina

The object-oriented design of the 'user interface' related classes is shown in the class diagram Figure 2.25. The
diagram is described in the Booch notation.

GavisManager
G4UImanager visManager 1
1

o .
h
UlManager

GaUIxvt G4Ultel

. 'EXIT and other
1 control

mmmmmmmm

session . GaUlcontrol
1®  Messenger

treeTop

G4UlcommandTree
adk nd()

Ssuloatch GaUlterminal %

Figure 2.25. Overview of intercom classes

[Status of this chapter]

27.06.05 design philosophy (from Geant4 general paper) and class design sections added by D.H. Wright
Dec. 2006 Conversion from latex to Docbook verson by K. Amako

2.14. Parallelism in Geant4: multi-threading
capabilities

2.14.1. Event level parallelism

Geant4 event-level parallelism is based on a master-worker model in which a set of threads (the workers) are
spawned and are responsible for the simulation of events, while the steering and control of the smulation isgiven
to an additional entity (the master).

Multi-threading functionalities are implemented with new classes or modifications of existing classes in the run
category:

» The new run-manager class GAMTRunManager (that inherits from G4RunManager) implements the
master model. It uses the mandatory class GAM TRunManagerKernel, a multi-threaded equivaent of
G4RunM anagerK ernel

* The new run-manager class G4WorkerRunManager (that inherits from G4RunManager) implements
the worker model. It uses the mandatory class G4Worker RunManagerKernel the worker equivaent of
G4RunM anager K er nel

e The new user-initialization class G4V User Actionl nitialization is responsible for the instantiation of thread-
local user actions
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e The new user-initialization class G4User Worker Initialization is responsible for the initialization of worker
threads

Additional information on Geant4 multi-threading model can be found in the next section.

In this chapter, after a brief reminder of basic design choices, we will concentrate on aspects that are important
for kernel developers, particularly the most critical aspects for multi-threading in Geant4: memory handling, split-
classes and thread-local storage. In the following it is assumed that the user is already familiar with the general
aspects of multi-threading. The section Additional Material provides more information on this topic.

2.14.2. General Design

Geant4 Version 10.0 introduces parallelism at the event level: events are tracked concurrently by independent
threads. The parallelism model is master-worker in which one or more threads are responsible of performing the
simulation, while a separate control flow controls and steers the work. A diagram of the general overview of a
multi-threaded Geant4 application is shown here:

Geometry and
Physics
configuration

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge

Yy e results from threads

Figure 2.26. Simplified schema of the master-worker model employed in Geant4

The user interacts with the master which is responsible for creating and controlling worker threads. Before the
simulation is started per-event seeds are generated by the master. This operation guarantees reproducibility. Once
threads are spawned and configured, each worker is responsible for creating a new G4Run and for smulating a
subset of the events. At the end of the run the results from each run are merged into the global run. Details on how
to interact with a multi-threaded simulation are discussed in the Guide for Application Developers.

Geant4 parallelization makes use of the POSIX standard. The use of this standard in Geant4 guarantees maximum
portability between systems and integration with advanced paralléelization frameworks (for example we have
verified that this model co-workswith TBB and MPI).

To effectively reduce the memory consumption in amulti-threaded application, workers share instances of objects
that consume the majority of memory (geometry and physics tables); workers own thread-private instances of the
other classes (e.g. SensitiveDetectors, hits, etc). This choice allowed the design of a lock-free code (i.e. no use
of mutex during the event loop), which guarantees maximum scalability (cfr: Euro-Par2010, Part 1| LNCS6272,
pp.287-303). Thread safety is obtained via Thread Local Storage.

Similar to the sequentia version of Geant4, master and workers are represented by instances of classes
inheriting from G4RunManager: the GAMTRunManager class represents the master model, while
G4WorkerRunManager instances represent worker models. The user is responsible for instantiating a
single GAMTRunManager (or derived user-class) instance. This class will instantiatiate and control one
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or more G4WorkerRunManager instances. Users should never instantiate directly an instance of the
G4Worker RunM Anager class.

A simplified class-diagram of the relevant classes for multi-threading and their relationship is shown here:

1 g o
inManager GaWorke E
=
i 1 7 S B B e VYT
i ; .
i . =
{ 1.+ [GAWorkerThread G4UserTrackingAction
y
s [ [
tion

Figure2.27. Relevant classes and their interaction for multi-threaded applications

As in sequential Geant4 users interact with the Geant4 kernel via user initidizations and
user actions. User initiaizations (G4VUserDetector Construction, GVUserPhysicsList and the new
G4V User Actionl nitializtion) instances are shared among al threads (as such they are registered to the
GAMTRunM anager instance); while user actions (G4VUser PrimaryGenerator Action, G4User RunAction,
GA4User SteppingAction and G4User TrackingAction) are not shared and a separate instance exists for each
thread. Since the master does not perform simulation of events user actions do not have functions for
G4AMTRunM anager and should not be assigned to it. G4ARunAction is the exception to thisrule since it can be
attached to the master G4AM TRunM anager to allow for merging of partial results produced by workers.

2.14.3. Memory handling in Geant4 Version 10.0

2.14.3.1. Introduction

In Geant4 we distinguish two broad types of classes. ones whose instances are separate for each thread (such
as a physics process, which has a state), and ones whose instances are shared between threads (e.g. an element
G4Element which holds constant data).

A few cases classes exist which have mixed behavior - part of their state is constant, and part is per-worker. A
simple example of thisis a particle definition, such as G4Electr on, which holds both data (which is constant) and
apointer to the G4ProcessM anager object for electrons - which must be different for each worker (thread).

We handle these 'split’ classes specially, to enable data members and methods which correspond to the per-thread
stateto give adifferent result on each worker thread. The implementation of this requires an array for each worker
(thread) and an additional indirection - which imposesacost each timethemethod iscalled. However thisoverhead
issmall and has been measured to be about 1%. In this section wewill discussthe details of how we achievethread-
safety for different use-cases. The information contained hereis of particular relevance for toolkit devel opers that
need to adapt code to multi-threading to increase performances (typically to reduce the memory footprint of an
application sharing between threads memory consuming objects). It is however of general interest to understand
some of the more delicate aspects of multi-threading.

2.14.3.2. Thread safety and sharing of objects

To better understand how memory is handled and what are the issues introduced by multi-threading it is easier
to proceed with asimplified example.

Let us consider the simplest possible class G4Class that consists of a single data member:

class 4C ass {
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[static] GAdouble fValue; //static keyword is optional

Our goal is to transform the code of G4Class to make it thread-safe. A class (or better, a method of a class) is
thread-safe if more than one thread can simultaneously operate on the class data member or its methods without
interfering with each other in an unpredictable way. For example if two threads concurrently write and read the
value of the data field fValue and this data field is shared among threads, the two threads can interfere with each
other if no specia code to synchronize the thread is added. This condition is called data-race and is particularly
dangerous and difficult to debug.

A classical way to solvethe data-race problemisto protect the critical section of the code and the concurrent access
to ashared memory location using alock or amutex (see section Threading model utilities and functions. However
this technique can reduce overall performance because only one thread at atime is allowed to be executed. It is
important to reduce to a minimum the use of locks and mutexes, especially in the event loop. In Geant4 we have
achieved thread-safety via the use of thread local storage. This allows for virtually lock-free code at the price
of an increased memory footprint and a small CPU penalty. Explanations of thread-local storage are provided by
several external resources. For a very simple introduction, but adequate for our discussion, web resources give
sufficient detail (e.g. wikipedia).

Before going into the details of how to use the thread-local storage mechanism we need to introduce some
terminology.

We define an instance of a variable to be thread-local (or thread-private) if each thread owns a copy of the
variable. A thread-shared variable, on the contrary, is an instance of a variable that is shared among the threads
(i.e. al threads have access to the same memory location holding the value of the variable). If we need to sharethe
same memory location containing the value of fValue between several instances of G4Classwe call the datafield
instance-shared otherwise (the majority of cases) it isinstance-local. These defintions are an over-simplification
that does not take into account pointers and sharing/ownership of the pointee, however the issues that we will
discussin the following can be extended to the case of pointers and the (shared) pointee.

It is clear that, for the case of thread-shared variables, all threads need synchronization to avoid data-race
conditions (it is worth recalling that there are no race conditions if the variable is accessed only to be read, for
example in the case that the variable is marked as const.

One or more instances of G4Class can exist at the same time in our application. These instances can be thread-
local (e.g. G4V Process) or thread-shared (e.g. G4L ogicalVolume). In addition the class data field fValue can be
by itself thread-local or thread-shared. The actions to be taken to transform the code depend on three key aspects:

» Do we need to make the instance(s) of G4Class, thread-local or thread-shared?
» Do we need to make the data field fValue, thread-local or thread-shared?

* |n case more than one instance of G4Class exits at the same time, do we need fValue to be instance-local or
instance-shared?

This gives rise to 8 different possible combinations, summarized in the following figures, each one discussed in
detail in the following.
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Figure 2.28. The eight possible scenariosfor sharing of objects

2.14.3.2.1. Case A: thread-local class instance(s), thread-shared and instance-

shared data field

In this case each thread has its own instance(s) of type G4Class. We need to share fValue both among threads
and among instances. As for a sequentia application, we can simply add the static keyword to the declaration
of fValue. This technique is common in Geant4 but has the disadvantage that the resulting code is thread-unsafe
(unless locks are used). Trying to add const or modify its value (with the use of alock) only outside of the event

loop isthe simplest and best solution:

class 4C ass {

static const Adoubl e fVal ue;

b

2.14.3.2.2. Case B: thread-local class instance(s), thread-local and instance-

shared data field.

This scenario is also common in Geant4: we need to share a variable (e.g. a data table) between instances of the
same class. However it isimpractical or it would lead to incorrect results if we share among threads fValue (i.e.
the penalty due to the need of locks is high or the data field holds a event-dependent information). To make the
code thread-safe we mark the data field thread-local viathe keyword G4ThreadL ocal:
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#i ncl ude "ATypes. hh"
class Ad ass {

static GAThreadLocal G4doubl e f Val ue;
iE

It should be noted that only simple data types can be declared G4ThreadlL ocal. More information and the
procedures to make an object instance thread-safe via thread-local -storage are explained in this web-page.

2.14.3.2.3. Case C: thread-local class instance(s), thread-shared and instance-
local data field

One possible use-case isthe need to reduce the application memory footprint, providing acomponent to the thread-
local instances of G4Class that is shared among threads (e.g. alarge cross-section data table that is different for
each instance). Since this scenario strongly depends on the implementation details it is not possible to define a
common strategy that guarantees thread-safety. The best option is to try to make this shared component const.

2.14.3.2.4. Case D: thread-local class instance(s), thread-local and instance-
local data field

This case is the simplest; nothing has to be changed in the original code.

2.14.3.2.5. Case E: thread-shared class instance(s), thread-shared and
instance-shared data field

With respect to thread-safety thiscaseisequivalent to Case A, and the same recommendati ons and comments hold.

2.14.3.2.6. Case F: thread-shared class instance(s), thread-local and instance-
shared data field

Concerning thread-safety this case is equivalent to Case B, and the same recommendations and comments hold.

2.14.3.2.7. Case G: thread-shared class instance(s), thread-shared and
instance-shared data field

Since the class instances are shared among threads the data fields are automatically thread-shared. No action is
needed, however accessto thedatafieldsisin general thread unsafe, and the same comments and recommendations
for Case A arevalid.

2.14.3.2.8. Case H: thread-shared class instance(s), thread-local and instance-
local data field

This is the most complex case and it is relativdly common in Geant4 Version 10.0. For example
G4ParticleDefinition instances are shared among the threads, but the G4ProcessM anager pointer data field
needs to be thread- and instance-local. To obtain thread-safe code two possible solutions exist:

» Use the split-class mechanism. This requires some deep understanding of Geant4 multi-threading and
coordination with the kernel developers. Split-classes result in thread-safe code with good CPU performance,
however they also require modification in other aspects of the kernel category (in particular the run category).
The idea behind the split-class mechanism is that each thread-shared instance of G4Classinitializesthe thread-
local datafields by copying theinitial status from the equivalent instance of the master, which is guaranteed to
be fully configured. Additional details on split classes are available in a dedicated section. An important side
effect of the split-class mechanism is that exactly the same number of instances of G4Class must exist in each
thread (e.g. the full set of G4Particles owned by the master is shared by threads. If a new particle is created,
this has to be shared by al threads).

« If performance is not a concern a simpler solution is available. This is a simplified version of the split-class
mechanism that does not copy the initial status of the thread-local data field from the master thread. A typical
exampleisacachevariable that reduces CPU usage, storing in memory the value of aCPU intensive cal culation
for several events. In such a case the G4Cache utility class can be employed (see ACache).
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2.14.3.3. Details on the split classes mechanism

We describe here the split-class mechanism, central to Geant4 multi-threading, by developing a thread-safe split-
class starting from our simplified example of G4Class. It will be clear that this technique allows for minimal
changes of the public API of the classes and thus is very suitable for making thread-safe code without breaking
backward compatibility.

To better describe the changes we introduce a setter and getter methods in the sequential version of our class (e.g.
before migration to multi-threading):

class 4d ass

{ .
private:
G4doubl e f Val ue;
public:
HAd ass() { }
voi d Set MyDat a( GAdoubl e aValue ) { fValue = aVal ue; }
GAdoubl e Get M\yData() const { return fValue; }
&

Instances of this class will be shared among threads (because they are memory-consuming objects) and we want
to transform this classinto a split-class.

Asafirst step we add to the declaration of fValue the TLS keyword G4ThreadL ocal (in aPOSIX system, thisis
atypedef to __thread). Unfortunately there are several constraints on what can be specified as TLS. In particular
the data member hasto be declared static (or be aglobal variable):

#i nclude "tls. hh"
cl ass 4C ass

{ .
private:
static GAThreadLocal G4doubl e f Val ue;
public:
HAd ass() { 1}
voi d Set MyDat a( GAdoubl e aValue ) { fValue = aVal ue; }
GAdoubl e Get M\yData() const { return fValue; }

i
GAThr eadLocal G4doubl e Ad ass: : fValue = -1;

The problem occurs if we need more than one instance of type G4Class with an instance-local different value of
fValue. How can this behavior be obtained now that the we have declared the data member as static? The method
used to solve this problem is called the split class mechanism. The ideais to collect all thread-local data fields
into aseparate new class, instances of which (one per original instance of GAClass) are organized in an array. This
array is accessed via an index representing a unigue identifier of a given class instance.

We can modify the code as follows:

cl ass 4C assData {
public:
GAdoubl e fVal ue;
void intialize() {
fvalue = -1;
}

b

typedef (ASplitter>G4C assDat a< GAC assManager ;
typedef 40 assManager (Ad assSubl nst anceManager ;

#define GAMT_f Val ue ((subl nstanceManager. of f set[gd assl nstancel d]) . f Val ue)
class 4C ass {
private:
i nt gC assl nstancel d;
stati c 4C assSubl nst anceManager subl nst anceManager ;
public:
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G4AC ass()

gCl assl nstancel d = subl nst anceManager . Cr eat eSubl nst ance() ;
}
voi d Set MyDat a( GAdoubl e aValue ) { AMI_f Val ue = aVal ue; }
G4doubl e Get MyData() const { return GAMI_f Val ue; }
h

GAC assSubl nst anceManager GAC ass: : subl nst anceManager ;
tenpl ate >cl ass GAC assDat a< GAThreadLocal G4int ASplitter>34d assDat a<: : wor kert ot al space = 0;
tenpl ate >cl ass GAC assDat a< GAThreadLocal G4int ASplitter>&Ad assDat a<::of fset = 0;

As one can see, the use of the value of fValue variable is very similar to how we use it in the origina sequential
mode, all the handling of the TLS is done in the template class G4Splitter that can be implemented as:

tenpl ate <class T>
class ASplitter
{ .
private:
G4int total obj;
public:
static GAThreadLocal G4int workert ot al space;
static GAThreadLocal T* offset;
public:
GASplitter() : totalobj(0) {}
G4i nt Creat eSubl nst ance()

t ot al obj ++;
if ( totalobj > workertotal space ) { NewSubl nstances(); }
return (total obj-1);

}
voi d NewSubl nst ances()
{
if ( workertotal space >=totalobj ) { return; }
G4int original total space = workertotal space;
wor kert ot al space = total obj + 512;
offset = (T*) realloc( offset , workertotal space * sizeof(T) );
if ( offset == 0)
{
G4Excepetion( "GASplitter:: NewSubl nstances", " Qut Of Menory", Fat al Excepti on, "Cannot mal | oc space!");

for ( G4int i = originaltotal space; i& t; workertotal space ; i++)

offset[i].intialize();

}

voi d FreeWrker ()

if ( offset == 0) { return; }
del ete of fset;
}
¥

Let's consider afunction that can be called concurrently by more than one thread:

#i ncl ude "&4d ass. hh"

[/ Variabl es at gl obal scope
(Ad ass a;

AC ass b;

voi d foo()
{

a. Set MyData(0.1); //First instance

b. Set MyDat a(0. 2); //Second instance

Gdcout << a. CGetMWData()<< " "<< b.GetMWData() << Gendl;
}

We expect that each thread will write on the screen: "0.1 0.2"

When we declare the variable a, the static object sublnstanceManager in memory has the state;
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totalobj =0
TLS wor kert ot al space = 0
TLS of fset = NULL

The constructor of GA4Class cals CreateSublnstance, and since at this point totalobj equals 1,
G4xplitter:: NewSublnstances() is called. This will create a buffer of 512 pointers of type G4ClassData, each
of which isinitialized (via G4ClassData::initialize()) to the value -1. Finally, G4plitter: : CreateSublnstance()
returns 0 and a.gClasslnstanceld equals 0. When a.SetMyData(0.1) is called, the call is equivalent to:

subl nst anceManager . of fset[ 0] . f Val ue = 0. 1;

When now we declare the instance b the procedure is repeated, except that, since totalobj how equals 1 and
workertotalspace is 512, there is no need to call G4Splitter:: NewSublnstances() and we use the next available
array position in offset. Only if we create more than 512 instances of G4Class is the memory array reallocated
with more space for the new G4ClassData instances.

Since offset and workertotal space are marked G4ThreadLocal this mechanism allows each thread to haveits own
copy of fValue. The function foo() can be called from different threads and they will use the thread-shared a and b
to accessathread-local fValue datafield. No data-race condition occurs and thereis no need for mutexes and locks.

An additional complication is that if the initialization of the thread-local part is not trivial and we want to copy
some values from the corresponding values of the master thread (in our example, how is fValue to be initialized
to avalue that depends on the run condition?). Theinitia status of the thread-local data field must be initialized,
for each worker, in a controlled way. The run cateogory classes must be modified to preapre the TLS space of
each thread before any work is performed.

The following diagram shows the chain of callsin G4ParticleDefinition when athread needs to access a process
pointer:

<shared> <static singleton> <thread local>
. G4ParticleDefinition . GA4PartDefSplitter | TLS pointer r G4ProcessManager
- G4double mass - Array of TLS - Proc man* J \ - Process A*
- G4double charge pointers of

- Proc man* ‘ - Process B*

- G4double life time G4ProcessManager |
- Decay table - TLS pointer -Proc man* |
- *]
~(&4H i - TLS pointer w{
- ’ - Proc man*
- TLS pointer

TLS pointer =

l
{
[ - Process C* ’

- Process D*

- TLS pointer

- TLS pointer

Figure 2.29. Simplified view of the split-class mechanism

2.14.3.3.1. List of split-classes
In Geant4 Version 10.0 the following are split-classes:

» For geometry related split classes the class G4GeomSplitter implements the split-class mechanism. These are
the geometry-related split-classes:
i. G4LogicalVolume
ii. G4PhysicalVolume
iii.G4PVReplica
iv. G4Region
v. G4PloyconeSide
vi. G4PolyhedraSide
 For Physics related split-classes the classes G4PDefSplitter and G4V UPL Splitter implement the split-class
mechanism. These are the physics-related split-classes:
i. G4ParticleDefinition
ii. G4V UserPhysicsList
iii.G4VModular PhysicsList
iv. G4V PhysicsConstructor
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2.14.3.4. Explicit memory handling

In the following, some utility classes and functions to help memory handling are discussed. Before going into
detail it should be noted that all of these utilities have a(small) CPU and memory performance penalty; they should
be used with caution and only if other simpler methods are not possible. In some cases limitations are present.

2.14.3.4.1. The template class G4Cache

In many cases the full functionality of split-classesis not needed and what we really want are independent thread-
local and instance-local data fields in thread-shared instances of G4Class. A concrete example would be a class
representing a cross-section that is made shared because of its memory footprint. It requires a data field to act as
a cache to store the value of a CPU intensive calculation. Since different threads share this instance we need to
transform the code in a manner similar to what we do for the split-class mechanism. The helper class G4Cache
can be used for this purpose (note that the complication of the initial value of the thread-local data field is not
present in this case).

G4Cache is atemplate class that implements a light-weight split-classes mechanism. Being a template it allows
for storing any user-defined type. The public API of thisclassis very simple and it provides two methods

T& ACache<T>:: CGet () const;
voi d G4Cache<T>:: Put(const T& val) const;

to access athread-local instance of the cached object. For example:

#i ncl ude " &ACache. hh"
class Ad ass {
G4Cache<Gdoubl e> f Val ue;
void foo() {
/] Store a thread-1local val ue
GAdoubl e val = soneHeavyCal c();
fVal ue. Put ( val );

}

void bar() {
/1 Get a thread-|ocal val ue:
G4doubl e 1 ocal = fValue. Get();

b

Since Get returns areference to the cached object is possible to avoid the use of Put to update the cache:

voi d G4C ass: :bar() {
//CGet a reference to the thread-1ocal val ue:
G4doubl e & ocal = fValue. Get();
/1 Use local as in the original sequential code, cache is updated, w thout the need to use Put
| ocal ++;

}

In case the cache holds an instance of an object it is possible to implement lazy initialization, asin the following
example:

#i ncl ude "ACache. hh"
class Ad ass {
(ACache<G4Sonet hi ng*> f Val ue;
voi d bar () {
/1 Get a thread-|ocal val ue:
G4Sonet hi ng* | ocal = fVal ue. Get ();
if (local == 0) {
l ocal = new G4Sonething( ... );
//warning this may cause a menory |eak. Use of (AAutoDel ete can help, see later

}s

Since the use of G4Cache implies some CPU penalty, it is good practice to try to minimize its use. For example,
do not use a single G4Cache for several datafields; instead use a helper structure as the template parameter for
GA4Cache:
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class 4C ass {
struct {
GAdoubl e f Val uel;
G4ASonet hi ng* f Val ue2;
} ToBeCached_t;
G Cache<ToBeCached_t > f Cache;

i
Two speciaized versions of G4Cache exist that implement the semantics of std::vector and std::map

» G4Vector Cache<T> implements a thread-local std::vector<T> with methods Push_back(...) , operator[],
Begin(), End(), Clear(), Sze() and Pop_back()

* G4MapCache<K,V> implements a thread-local std::map<K,V> with methods Insert(...), Begin(), End(),
Find(...), Sz&(), Get(...), Erase(...), operator[] and introduces the method Has(...)

A detailed example of the use of these cache classes is discussed in the unit test source/global/management/test/
testG4Cache.cc.

2.14.3.4.2. G4AutoDelete namespace

During the discussion of G4Cache we have shown the example of storing apointer to adynamically created object.
A common problem is to correctly delete this object at the end of its life-cycle. Since the G4Class instance is
thread-shared, it is not possible to delete the cached object in the destructor of G4Class because it is called by
the master and the thread-local instances of the cached object will not be deleted. In some cases, to solve this
problem, it is possibleto use ahel per introduced in the namespace G4AutoDelete. A simplified garbage collection
mechanism without reference counting isimplemented:

#i ncl ude " 4Aut oDel et e. hh"
voi d G4d ass: :bar() {
//Cet a thread-|ocal val ue:
(ASonet hi ng* | ocal = fValue. Get();
if ( local ==0) {
| ocal = new G4Sonet hing( ... );
G4Aut oDel ete: : Regi ster( local ); //Al thread instances will be delete automatically

}

Thistechniquewill deleteall instances of the registered objectsat theend of the program, after the main function
has returned (if they were declared static).

This method has severa limitations:

i. Registered objectswill be deleted only at the end of the program

ii. The order in which objects of different type will be deleted is not specified

iii.Once an object isregistered it cannot be deleted anymore explicitly by user

iv. The objects that are registered with this method cannot contain data filed marked G4ThreadlL ocal and cannot
be a split-classes

v. Registered object cannot make use of G4Allocator functionalities

vi. These restrictions apply to all data members for which the class owns property

In addition, sincethe objectswill be deleted in anon-specified order after the main program exit, it isrecommended
to provide a very simple destructor that does not depend on other objects (in particular should not call any kernel
functionality).

2.14.3.4.3. Thread Private singleton

In Geant4 the singleton pattern is used in several cases. The mgjority of the managers are implemented via the
singleton pattern, the simplest of which is:

cl ass ASingl eton {
public:
G4Si ngl et on* Getlnstance() {
static GASingl eton anl nstance;
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r et ur n&anl nst ance;
}
iE

With multi-threading, many managers and singletons are thread-local.. For this reason they have been transformed
to:

class G4Singl eton {

private:

static GAThreadLocal * i nstance;
public:

&4Si ngl eton* Getlnstance() {

if ( instance == 0 ) instance = new G4Si ngl et on;
return instance;

}
b

This causes a memory leak: it is not possible to delete thread-local instances of the singletons. To solve this
problem the class G4T hreadL ocal Singleton has been added to the toolkit. Thistemplate class has asingle public
method T* G4ThreadLocal Sngleton<T>::Instance() that returns a pointer to a thread-local instance of T. The
thread-local instances of T will be deleted, asin the case of G4Cache, at the end of the program.

The example code can be transformed to:

#i ncl ude "GAThr eadLocal Si ngl et on. hh"
cl ass G4Singl eton {
friend class AThreadLocal Si ngl et on<&4Si ngl et on>;
public:
&4Si ngl eton* Getlnstance() {
static GAThreadLocal Si ngl et on<G4Si ngl et on> t hel nst ance;
return thelnstance. | nstance();

2.14.4. Threading model utilities and functions

Geant4 parallelism is based on POSIX standards and in particular on the pthreads library. However al
functionalities have been wrapped around Geant4 specific names. This alows the inclusion of the WIN32
threading model. In the following, the main functionalities available in the global/management category are
discussed.

2.14.4.1. Types and functions related to the use of threads

G4Thread defines the type for threads (POSIX pthread_t). The types G4ThreadFunReturnType and
GA4ThreadFunArgType define respectively the return value and the argument type for a function executed in
athread. Use GATHREADCREATE and GATHREADJOIN macros to respecively create and join a thread.
G4Pid_t isthe type for the PID of athread.

Example:

#i ncl ude " &AThr eadi ng. hh"

/1 Define a thread-function using 4 types

GAThr eadFunRet ur nType nyfunc( GAThr eadFunArgType val) {
doubl e val ue = *(doubl e*)val ;
MESSAGE( "val ue i s: "<<val ue);
return /*(GAThr eadFunRet ur nType) */ NULL;

}

/| Exanpl e: spawn 10 threads that execute myfunc
int main(Cint,char**) {

MESSAGE( "Starting program");

int nthreads = 10;

GAThread* tid = new AThr ead[ nt hr eads] ;

doubl e *val ss = new doubl e[ nt hr eads] ;
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for (int idx =0 ; idx < nthreads ; ++idx ) {

val ss[idx] = (double)i dx;

GATHREADCREATE( &(tid[idx]) , myfunc, & val ss[idx]) );
}

for (int idx =0 ; idx < nthreads ; ++idx ) {
GATHREADJOI N( (tid[idx]) );

}
MESSAGE( " Program ended ");
return O;

2.14.4.2. Types and functions related to the use of mutexes and
conditions

G4M utex is the type for mutexes in Geant4 (POSIX pthread_mutex_t). The GAMUTEX_INITIALIZER and
GAMUTEXINIT macros are used to initialize a mutex. Use GAMUTEXLOCK and GAMUTEXUNLOCK
functions to lock/unlock a mutex. The G4AutoL ock class helps the locking/unlocking of a mutex and should be
always be used instead of GAM UTEXLOCK/UNLOCK.

Example:

#i ncl ude " &AThr eadi ng. hh"
#i ncl ude " 4Aut oLock. hh"

//Create a gl obal mnutex
GAMitex nutex = GAMUTEX_| NI TI ALI ZER;
/I Alternatively, call in the main function GAMJTEXI NI T( nut ex) ;

/I A shared resource (i.e. mani pul ated by all threads)
G4int aVal ue = 1;

GAThr eadFunRet ur nType nyfunc( GAThreadFunArgType ) {
/1 Explicit |ock/unlock
GAMUTEXLOCK( &mut ex ) ;
++aVal ue;
GAMUTEXUNLOCK( &mut ex ) ;
/1 The follow ng should be used instead of the previous because it guarantees automatic
//unl ock of nutex.
//When variable | goes out of scope, AMJTEXUNLOCK is automatically called
G4At uoLock | ( &mut ex) ;
--aVal ue;
/I Explicit |ock/unlock. Note that |ock/unlock is only tried if nutex is already |ocked/ unlock
I . lock();
I .1ock();//No probl em here
++aVal ue;
| . unl ock();
I . lock();
--aVal ue;
return /*( GAThr eadFunRet ur nType) */ NULL;
}

A complete example of the usage of these functionalities is discussed in the unit test source/global/management/
test/ThreadingTest.cc.

Conditions are aso available via the G4Condition type, the GACONDITION_INITIALIZER macro and the
two functions GACONDITIONWAIT and GACONDITIONBORADCAST. The use of conditions alows the
barrier mechanism (e.g. synchronization point for threads) to be implemented. A detailed example on the use of
conditions and how to implement correctly a barrier is discussed in G4AM TRunM anager code (at the end of file
source/run/src/GAMTRunManager .cc). In general there should be no need for kernel classes (with the exception
of run category) to use conditions since threads are considered independent and do not need to communicate
between them.

2.14.5. Additional material

In this chapter we discussed in detail what are probably the most critical aspects of multi-threading capabilitiesin
Geant4. Additional material can be found in online resources. The main entry point is the Geant4 multi-threading

43



Design and Function
of Geant4 Categories

task-force twiki page. The Application Devel opers Guide contains general information regarding multi-threading
that is aso relevant for Toolkit Developers.

A beginner's guide to multi-threading targeted to Geant4 developers has been presented during the 18th
Collaboration Meeting: agenda

For additional information consult this page and this page

Several contributions at the 18th Collaboration Meeting discuss multi-threading:

Plenary Session 3 - Geant4 version 10 (part 1): agenda

Hadronics issues related to MT: agenda

Developments for multi-threading: work-spaces: contribution

Status of the planned developments: coding guidelines, MT migration, g4tools migration, code review:
contribution

GAMT CP on MIC Architecture: contribution

Finally, afew articles and proceedings have been prepared:

X. Dong et a, Creating and Improving Multi-Threaded Geant4, Journal of Physics: Conference Series 396, no.
5, p. 052029.

X. Dong et al, Multithreaded Geant4: Semi-automatic Transformation into Scalable Thread-Parallel Software,
Euro-Par 2010 - Parallel Pro- cessing (2010), vol. 6272, pp. 287-303.

S. Ahn et al, Geant4-MT: bringing multi-threaded Geant4 into production, to be published in SNA& MC2013
proceeding

[Status of this chapter]

January 2014 - revised for spelling and grammar
December 2013 - First version. Adapted from Multi-threading task-force twiki web-pages



https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce
https://indico.cern.ch/getFile.py/access?contribId=3&sessionId=7&resId=0&materialId=slides&confId=250021
https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTAdvandedTopicsForApplicationDevelopers
https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTTipsAndTricks
http://congreso.us.es/geant42013/
https://indico.cern.ch/sessionDisplay.py?sessionId=7&confId=250021#20130924
https://indico.cern.ch/sessionDisplay.py?sessionId=22&confId=250021#20130926
https://indico.cern.ch/contributionDisplay.py?contribId=20&confId=250021
https://indico.cern.ch/contributionDisplay.py?contribId=128&confId=250021
https://indico.cern.ch/contributionDisplay.py?contribId=37&confId=250021

Chapter 3. Extending Toolkit Functionality

3.1. Geometry
3.1.1. What can be extended ?

Geant4 aready allows a user to describe any desired solid, and to useit in a detector description, in some cases,
however, the user may want or need to extend Geant4's geometry. One reason can be that some methods and types
in the geometry are general and the user can utilise specialised knowledge about his or her geometry to gain a
speedup. The most evident case where this can happen is when a particular type of solid is a key element for a
specific detector geometry and an investment in improving its runtime performance may be worthwhile.

To extend the functionality of the Geometry in thisway, atoolkit devel oper must write asmall number of methods
for the new solid. We will document below these methods and their specifications. Note that the implementation
details for some methods are not atrivial matter: these methods must provide the functionality of finding whether
apoint isinside a solid, finding the intersection of aline with it, and finding the distance to the solid along any
direction. However once the solid class has been created with all its specifications fulfilled, it can be used like any
Geant4 solid, asit implements the abstract interface of G4V Solid.

Other additions can a so potentially be achieved. For example, an advanced user could add a new way of creating
physical volumes. However, because each type of volume has a corresponding navigator hel per, thiswould require
to create a new Navigator as well. To do this the user would have to inherit from G4Navigator and modify the
new Navigator to handle this type of volumes. This can certainly be done, but will probably be made easier to
achievein the future versions of the Geant4 toolkit.

3.1.2. Adding a new type of Solid

Welist below the required methods for integrating anew type of solid in Geant4. Note that Geant4's specifications
for a solid pay significant attention to what happens at points that are within a small distance (tolerance,
kCar Tolerancein the code) of the surface. So special care must be taken to handle these cases in considering all
different possible scenarios, in order to respect the specifications and alow the solid to be used correctly by the
other components of the geometry module.

Creating a derived class of G4VSolid
The solid must inherit from G4V Solid or one of its derived classes and implement its virtual functions.

Mandatory member functions you must define are the following pure virtual of G4V Solid:

El nsi de I nsi de(const GAThreeVector & p)
G4doubl e Di st anceTol n(const (AThr eeVect or & p)
Gdoubl e Di st anceTol n(const (AThreeVector& p, const (AThreeVector & v)
GAThr eeVect or Sur f aceNor mal (const GAThr eeVect or & p)
GAdoubl e Di st anceToCQut (const GAThr eeVect or & p)
GAdoubl e Di stanceToCQut (const (AThreeVector& p, const (AThreeVector& v,
const (#Abool cal cNor n¥f al se,
G4bool *val i dNor n=0, GAThr eeVector *n)
G4bool Cal cul at eExt ent (const EAxi s pAxis,
const GAVoxel Li mits& pVoxel Limt,
const GAAffineTransform& pTransform
G4doubl e& pM n,
G4doubl e& pMax) const
GACeonet ryType Cet EntityType() const
std::ostream& Stream nfo(std::ostream& os) const

They must perform the following functions

El nsi de | nside(const (AThreeVect or & p)

This method must return:
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e kOutsideif the point at offset p is outside the shape boundaries plus Tolerance/2,
» kSurfaceif the point is <= Tolerance/2 from a surface, or
 Kkinside otherwise.

GAThr eeVect or Sur f aceNor mal (const GAThr eeVect or & p)

Return the outwards pointing unit normal of the shape for the surface closest to the point at offset p.

G4doubl e Di st anceTol n(const GAThr eeVect or & p)

Calculate distance to nearest surface of shape from an outside point p. The distance can be an underestimate.

GAdoubl e Di st anceTol n(const AThreeVector& p, const (AThreeVect or & v)

Return the distance along the normalised vector v to the shape, from the point at offset p. If thereisno intersection,
return kinfinity. Thefirst intersection resulting from “leaving' asurface/volumeisdiscarded. Hence, thisistolerant
of points on surface of shape.

GAdoubl e Di st anceToCQut (const GAThr eeVect or & p)

Calculate distance to nearest surface of shape from an inside point. The distance can be an underestimate.

G4doubl e Di st anceToCQut (const GAThreeVector& p, const GAThreeVectoré& v,
const (Abool cal cNor n¥f al se,
G4bool *val i dNor m=0, AThr eeVect or *n=0);

Return distance along the normalised vector v to the shape, from a point at an offset p inside or on the surface of
the shape. Intersections with surfaces, when the point is not greater than kCarTolerance/2 from a surface, must
be ignored.

If calcNorm istrue, then it must also set validNorm to either

* true, if the solid lies entirely behind or on the exiting surface. Then it must set n to the outwards normal vector
(the Magnitude of the vector is not defined).
« false, if the solid does not lie entirely behind or on the exiting surface.

If calcNorm isfalse, then validNorm and n are unused.

GAbool Cal cul at eExt ent (const EAxi s pAxis,
const (AVoxel Linmits& pVoxel Limt,
const GAAffineTransform& pTransform
GAdoubl e& pM n,
G4doubl e& pMax) const

Calculate the minimum and maximum extent of the solid, when under the specified transform, and within the
specified limits. If the solid is not intersected by the region, return false, else return true.

ACeonet ryType Get EntityType() const;

Provide identification of the class of an object (required for persistency and STEP interface).

std::ostream& Stream nfo(std::ostream& os) const
Should dump the contents of the solid to an output stream.

The method:
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GAVSol i d* C one() const

should be implemented for every solid to provide a way to clone themselves in a new object with same
specifications.

The method:

GAThr eeVect or Get Poi nt OnSur f ace() const

returns a random point located on the surface of the solid. Points returned should not necessarily be uniformly
distributed.

The method:

GAdoubl e Get Cubi cVol une()

should beimplemented for every solid in order to cache the computed value (and therefore reuse it for future cals
to the method) and to eventually implement a precise computation of the solid's volume. If the method will not
be overloaded, the default implementation from the base class will be used (estimation through a Monte Carlo
algorithm) and the computed value will not be stored.

The method:

GAdoubl e Get SurfaceArea()

should beimplemented for every solid in order to cache the computed value (and therefore reuse it for future calls
to the method) and to eventually implement a precise computation of the solid's surface area. If the method will
not be overloaded, the default implementation from the base class will be used (estimation through aMonte Carlo
algorithm) and the computed value will not be stored.

There are afew member functions to be defined for the purpose of visualisation. The first method is mandatory,
and the next four are not.

/1 Mandat ory
virtual void DescribeYoursel fTo (AVG aphi csScene& scene) const = 0;

/1 Not mandatory
virtual G4Vi sExtent GetExtent() const;
virtual G4Pol yhedron* CreatePol yhedron () const;

virtual GANURBS* Cr eat eNURBS () const;
virtual G4Pol yhedron* Get Pol yhedron () const;

What these methods should do and how they should be implemented is described here.

voi d Descri beYoursel f To (&G4VG aphi csScene& scene) const;

This method isrequired in order to identify the solid to the graphics scene. It is used for the purposes of ““double
dispatch”. All implementations should be similar to the one for G4Box:

voi d G4Box: : Descri beYoursel f To (G4VG aphi csScene& scene) const

scene. AddSol id (*this);
}

The method:
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GAVi sExt ent Get Extent () const;

provides extent (bounding box) as a possible hint to the graphics view. Y ou must create it by finding a box that
encloses your solid, and returning a VisExtent that is created from this. The G4VisExtent must presumably be
giventheminusx, plusx, minusy, plusy, minusz and plus z extents of this " box". For example acylinder can say

GAVi sExt ent ATubs: : Get Ext ent () const
/1 Define the sides of the box into which the GATubs instance would fit.

return G4Vi sextent (-fRMax, fRwax, -fRMax, fRwax, -fDz, fDz);
}

The method:

G4Pol yhedr on* Creat ePol yhedron () const;

is required by the visualisation system, in order to create a realistic rendering of your solid. To create a
G4Polyhedron for your solid, consult G4Polyhedron.

While the method:

G4Pol yhedr on* Get Pol yhedron () const;

isa “smart" access function that creates on requests a polyhedron and stores it for future access and should be
customised for every solid.

3.1.3. Modifying the Navigator

For the vast majority of use-cases, it is not indeed necessary (and definitely not advised) to extend or modify the
existing classesfor navigation in the geometry. A possible use-case for which thismay apply, isfor the description
of anew kind of physical volumeto beintegrated. We believe that our set of choicesfor creating physical volumes
isvaried enough for nearly all needs. Future extensions of the Geant4 toolkit will probably make easier exchanging
or extending the G4Navigator, by introducing an abstraction level simplifying the customisation. At thistime, a
simple abstraction level of the navigator is provided by allowing overloading of the relevant functionalities.

Extending the Navigator
The main responsibilities of the Navigator are:

* locate apoint in the tree of the geometrical volumes;
» compute the length a particle can travel from a point in a certain direction before encountering a volume
boundary.

The Navigator utilises one helper class for each type of physical volume that exists. You will have to reuse the
helper classes provided in the base Navigator or create new ones for the new type of physical volume.

To extend G4Navigator you will havethen toinherit from it and modify thesefunctionsin your ModifiedNavigator
to request the answers for your new physical volume type from the new helper class. The ModifiedNavigator
should del egate other cases to the Geant4's standard Navigator.

Replacing the Navigator
Replacing the Navigator is another possible operation. It is similar to extending the Navigator, in that any types
of physical volume that will be allowed must be handled by it. The same functionality is required as described

in the previous section.

However the amount of work is probably potentially larger, if support for all the current types of physical volumes
isrequired.
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The Navigator utilises one helper class for each type of physical volume that exists. These could also potentially
be replaced, allowing asimpler way to create a new navigation system.

3.2. Electromagnetic Fields
3.2.1. Creating a New Type of Field

Geant4 currently handles magnetic and electric fieldsand, in future rel eases, will handle combined electromagnetic
fields. Fields due to other forces, not yet included in Geant4, can be provided by describing the new field and
the force it exerts on a particle passing through it. For the time being, all fields must be time-independent. This
restriction may be lifted in the future.

In order to accommodate a new type of field, two classes must be created: afield type and a class that determines
the force. The Geant4 system must then be informed of the new field.

A new Field class

A new type of Field class may be created by inheriting from G4Field

class NewField : public G4Field

public:
void GetFieldValue( const double Point[3],
doubl e *pField )=0;
}

and deciding how many componentsyour field will have, and what each component represents. For example, three
components are required to describe avector field while only one component isrequired to describe ascalar field.

If youwant your field to be acombination of different fields, you must choose your convention for which field goes
first, which second etc. For example, to define an electromagnetic field we follow the convention that components
0,1 and 2 refer to the magnetic field and components 3, 4 and 5 refer to the electric field.

By leaving the GetFieldValue method pure virtual, you force those users who want to describe their field to create
aclass that implements it for their detector's instance of this field. So documenting what each component means
isrequired, to give them the necessary information.

For example someone can describe DetectorAbc's field by creating a class DetectorAbcField, that derives from
your NewField

cl ass DetectorAbcField : public NewField

public:
void MFiel dG adi ent:: CGet Fi el dVal ue( const double Point[3],
double *pField );

}
They then implement the function GetFieldVaue
void MFieldG adient:: CGetFiel dval ue( const double Point[3],
double *pField )
/] W expect pField to point to pField[9];
// This & the order of the conponents of pField is your own

/] convention

/'l We calculate the value of pField at Point ...

}
A new Equation of Motion for the new Field

Once you have created a new type of field, you must create an Equation of Motion for this Field. Thisisrequired
in order to obtain the force that a particle feels.

49



Extending Toolkit Functionality

To do this you must inherit from G4Mag_EqRhs and create your own equation of motion that understands your
field. Init you must implement the virtual function EvaluateRhsGivenB. Given the value of the field, thisfunction
calculates the value of the generalised force. Thisisthe only function that a subclass must define.

virtual void Eval uat eRhsG venB( const Adouble y[],
const GAdoubl e B[ 3],
GAdoubl e dydx[] ) const = O;

In particular, the derivative vector dydx is a vector with six components. The first three are the derivative of
the position with respect to the curve length. Thus they should set equal to the normalised velocity, which is
components 3, 4 and 5 of y.

(dydx[ O], dydx[1], dydx[2]) = (y[3], y[4]., y[5])

The next three components are the derivatives of the velocity vector with respect to the path length. So you should
write the "force" components for

dydx[ 3], dydx[4] and dydx[5]
for your field.

Get a G4FieldManager to use your field

In order to inform the Geant4 system that you want it to use your field asthe global field, you must do thefollowing
steps:

1. Create a Stepper of your choice:

your St epper = new G4d assi cal RK( your Equati onCf Motion );
/1 or if your field is not snooth eg
I new Al nplicitEul er( yourEquationOf Mtion );

2. Createachord finder that usesyour Field and Stepper. Y ou must aso give it aminimum step size, below which
it does not make sense to attempt to integrate:

your Chor dFi nder = new G4Chor dFi nder ( yourFi el d,
your M ni nunStep, // say 0.01*mm
your St epper );

3. Next create a G4FieldManager and give it that chord finder,

your Fi el dManager = new GAFi el dvanager () ;
your Fi el dvanager . Set Chor dFi nder (your Chor dFi nder) ;

4. Finaly wetell the Geometry that this FieldManager is responsible for creating afield for the detector.

GATr ansport ati onManager : : Get Tr anspor t at i onManager ()
-> Set Fi el dManager ( your Fi el dvanager );

Changes for non-electromagnetic fields

If the field you are interested in simulating is not electromagnetic, another minor modification may be required.
Thetransportation currently chooses whether to propagate aparticlein afield or rectilinearly based on whether the
particleis charged or not. If your field affects non-charged particles, you must inherit from the G4Transportation
and re-implement the part of GetAlongStepPhysical I nteractionl ength that decides whether the particlesisaffected
by your force.
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In particular the relevant section of code does the following:

/] Does the particle have an (EM field force exerting upon it?
/11
if( (particleCharge!=0.0) ){

fi el dExertsForce= this->Doesd obal Fi el dExi st ();
// Future: will/can al so check whether current volune's field is Zero or
/]l set by the user (in the logical volune) to be zero.

}

and you want it to ask whether it feels your force. If, for the sake of an example, you wanted to see the effects of
gravity on a heavy hypothetical particle, you could say

/Il Does the particle have ny field' s force exerted on it?
/11
if (particle->GetNane() == "VeryHeavyW MP") {
fi el dExertsForce= thi s->Doesd obal Fi el dExist(); // For gravity
}

After doing al these steps, you will be able to see the effects of your force on a particle's motion.

[Status of this chapter]

10.06.02 partially re-written by D.H. Wright
14.11.02 spell check by P. Arce

3.3. Particles

3.3.1. Properties of particles

The G4ParticleDefinition class containsthe propertieswhich characterize individual particles, such asname, mass,
charge, spin, and so on. Properties of particles are set during the initialization of each particle type. The default
values of these properties are described in each particle class. In the case of heavy nuclei properties may be given
by external files. Onceinitialized, particle properties cannot be changed except for those related to its decay; these
are life time, branching ratio of each decay mode and the ““stable" flag. Geant4 proivides a method to override
these properties by using external files.

Properties of nuclei

Individual classes are provided for light nuclei (i.e. deuteron, triton, He3, and Hed) with default values of their
properties. Other nuclel are dynamically created by requests from processes (and users). G4lonTable classhandles
the creation of such ions. Default properties of nuclei are determined with help of G4Nuclear Properties.

Users can register a G4lsotopeTable to the G4lonTable. G4l sotopeTable which describes the properties used to
create ions. Excitation energy, decay modes, and life times for relatively long-lived nuclei can be obtained by
using G4RlIsotopeTable and data files such as those pointed to by the GARADIOACTIVEDATA environment
variable. G4lsotopeMagneticMomentTable provides a table of nuclear magnetic moments using the data file
G4l sotopeMagneticMoment.table. The environment variable G4AIONMAGNETICMOMENT should be set to
point to thisfile.

Changing particle properties

Only in the “"Prelnit" phase can properties be modified with the help of the G4ParticlePropertyTable class.
Particle properties can be overridden with the method

(Abool SetParticl eProperty(const GAParticl ePropertyDat a& newProperty)
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by setting new valuesin G4ParticlePropertyData . In addition, the current particle property values can be extracted
totext filesby using G4TextPPReporter . On the other hand, G4TextPPRetriever can change particle properties
according to text files.

3.3.2. Adding New Particles

A new particle can be added by creating a new class for it. The new class should be derived from
G4ParticleDefinition. You can find an example under examples/extended/exaticphysicsymonopole. There, the
new class for the monopoleis defined as follows:

cl ass GAMonopol e : public AParticl eDefinition
{

private:
stati c G4AMonopol e* t heMonopol e;

G4Monopol e(

const GAString& aNane, GAdoubl e nmass,
G4doubl e wi dt h, GAdoubl e char ge,
4i nt i Spi n, G4i nt i Parity,
G4i nt i Conj ugati on, G4int il sospin,
G4i nt i | sospi n3, GAi nt gParity,
const GAString& pType, G4i nt | ept on,
4i nt baryon, G4i nt encodi ng,
G4bool st abl e, GAdoubl e lifetine,
G4DecayTabl e *decaytable );

public:

virtual ~G4Monopol e();
static G4Monopol e* Monopol eDefinition();
static G4Monopol e* Monopol e();

}

The static methods above must be defined and implemented so that the new particle instance will be created in the
ConstructParticles method of your physics list. New properties may be added if necessary (G4Monopole hasaa
property for magnetic charge). Values of properties need to be given in the static method as other particle classes.

GAMonopol e* GAMonopol e: : Monopol eDef i ni ti on(G4doubl e mass, G4i nt nCharge, G4int eCharge)

i f(!theMonopol e) {
t heMonopol e = new G4Monopol e(

"nmonopol e", nmass, 0. 0* eV, 0,
0, 0, 0,
0, 0, 0,
"boson", 0, 0, 0,
true, -1.0, 0);

return t heMbnopol e;

}

3.3.3. Nuclide properties from Evaluated Nuclear Structure
Data File

G4NuclideTable

G4NuclideTable was introduced in Geant4 V10 to provide properties of nuclide states. The excitation energy
and decay times of each state are listed in this table. The spin and dipole magnetic moment are also given for
some states. The source of the data in this table is ENSDF of August 2012. 24,359 states were extracted from
the source and ground states and excited states having half-lives longer than 1 nanosecond were implemented in
the source code of the class. The total number of hard-coded states, 6807, is sufficient for most use cases and so
G4NuclideTable uses these by default. The full set of 24,359 states is contained in a data file. G4NuclideTable
accessesthe datafile pointed to by the environment variable"G4ENSDFSTATEDATA". To get very fine position
and timeinformation about level transitions of nuclides, users may want to transport very short-lived excited states
in his simulation. An environment variable must be set by the user to activate such a simulation. To improve
performance, ground states and long-lived excited states are prepared at initialization time and loaded into the
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kernel. G4NuclideTable controlsthe half-life threshold of these preloaded states. The default value of the threshold
is 1 microsecond and users may modify this value. If users want to make the value shorter than 1 nanosecond,
then he must set the environment variable before.

Isomer levels

G4NuclideTable provides an integer that represents the isomer level of each state. Due to PDG code limitations,
only level numbersfrom 0to 9 areallowed. All ground states have alevel number of O, lowest energy stateisomers
have level number 1, next lowest have level number 2, and so on. This continues up to level 8. All excited states
above thiswill have level number 9. This numbering scheme is used only for the prel oaded states. In genera the
isomer level number for certain excited states depends on the half-life threshold for preloaded states. All excited
states dynamically generated within the event loop will have 9 asitsisomer level.

Adding states

Users are able to add states to the table with specific values of excitation energy, decay constant, spin and dipole
magnetic moment. This should be done at initiaization time and then user-defined states will be preloaded.
However they always have an isomer level of 9 and neglect the numbering of isomer levels of other states.

Currently G4RadioactiveDecay  and G4PhotoEvporation models share the state information with
G4NuclideTable. Other models are encouraged to follow these.

Status of this chapter

Nov. 2008 created by H. Kurashige
Dec. 2013 G4ANuclideTable added by T. Koi
Jan. 2014 spelling and grammar revision by D.H. Wright

3.4. Electromagnetic Physics

Electromagnetic (EM) processes of Geant4 following base interfaces:

* (AVEner gyLossProcess;
* (AVEnProcess;
e GAVMul ti pl eScattering.

Thesebase classes providing all management work of initialisation of process, creation and filling of physicstables,
generic run time actions. Concrete process classes are responsible for initialisation of parameters and defining of
set of models for the process. A list of example of EM processes:

» (APhot oel ectri cEffect;
* (AConpt onScatteri ng;

» AGammaConver si on;

» AGammaConver si on;

* ARayl ei ghScattering;
e (el oni sati on;

* (MeBrensstrahl ung;

e (4hl oni sati on;

» (AMul oni sati on;

e (4hl oni sati on;

* AMuBr ensst r ahl ung;

* AeMul tipl eScattering;
« GAMuMul ti pl eScatteri ng;

and others. In some specific cases these interfaces are not applicable and high level interface G4VPr ocess is
used.

Concrete physics models are implemented via EM model interfaces:

+ AVEnMbdel ;
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« (AVNschbdel .

In majority of use-cases when new EM physics needs to be created only new model class may be created
and existing EM process class may be reused. A new model may be added to the existing process using
AddEm\vbdel (i nt, GAVEmMvbdel *, G4ARegi on*) method.

[Status of this chapter]

27.06.05 under construction
Dec. 2006 Conversion from latex to Docbook verson by K. Amako
Dec. 2014 V. Ivanchenko added description

3.5. Hadronic Physics
3.5.1. Introduction

Optimal exploitation of hadronic final states played a key role in successes of all recent collider experiment in
HEP, and the ability to use hadronic final stateswill continue to be one of the decisive issues during the analysis
phase of the LHC experiments. Monte Carlo programs like Geant4 facilitate the use of hadronic final states, and
have been devel oped for many years.

We give an overview of the Object Oriented frameworks for hadronic generators in Geant4, and illustrate the
physics models underlying hadronic shower simulation on examples, including the three basic types of modeling;
data-driven, parametrisation-driven, and theory-driven modeling, and their possible realisations in the Object
Oriented component system of Geant4. We put particular focus on the level of extendibility that can and has been
achieved by our Russian dolls approach to Object Oriented design, and the role and importance of the frameworks
in a component system.

3.5.2. Principal Considerations

The purpose of this section is to explain the implementation frameworks used in and provided by Geant4
for hadronic shower simulation as in the 1.1 release of the program. The implementation frameworks follow
the Russian dolls approach to implementation framework design. A top-level, very abstracting implementation
framework provides the basic interface to the other Geant4 categories, and fulfils the most general use-case
for hadronic shower simulation. It is refined for more specific use-cases by implementing a hierarchy of
implementation frameworks, each level implementing the common logic of a particular use-case package in
a concrete implementation of the interface specification of one framework level above, this way refining the
granularity of abstraction and del eglation. This defines the Russian dolls architectural pattern. Abstract classes are
used as the delegation mechanism .

All framework functional requirements were obtained through use-case analysis. In the following we present for
each framework level the compressed use-cases, requirements, designs including the flexibility provided, and
illustrate the framework functionality with examples. All design patterns cited are to be read as defined in [
Gammal995].

3.5.3. Level 1 Framework - processes

There are two principal use-cases of the level 1 framework. A user will want to choose the processes used for his
particular simulation run, and a physicist will want to write code for processes of his own and use these together
with the rest of the system in a seamless manner.

Requirements

1. Provide a standard interface to be used by process implementations.
2. Provide registration mechanisms for processes.

1 The same can be achieved with template specialisations with slightly improved CPU performance but at the cost of significantly more
complex designs and, with present compilers, significantly reduced portability.
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Design and interfaces

Both requirements are implemented in a sub-set of the tracking-physics interface in Geant4}. The class diagram
isshown in Figure 3.1.

<<Purely Abstract>>
G4VProcess

‘F‘oslSIepGelPhysical InteractionLength()
SPostStepDolt()

AlongStepGetPhysicallnteractionLength()
@AlongStepDolt()
$AtRestGetPhysicallnteractionLength()
@AtRestDolt()

<<Abstract>>

G4VDiscreteProcess <<Abstract>>

G4VRestProcess

¥PostStepGetPhysicallnteractionLength()

¥PostStepDolt() #AtRestGetPhysicallnteractionLength()

®AtRestDolt()

<<Abstract>>
G4HadronicProcess

Socvirtual>> GetMicroscopicCrossSection()
Scvirtual>> PostStepDolt()
~F\eglslerMe(j
hooseHadronicInteraction()

$Gene ralPostStepDolt()
Socstatics> GetlsotopeProductioninfo()

RegisterlsotopeProductionModel()

<<static>> EnablelsotopeProductionGlobally()
$ccstatic>> Disablel sotopeProductionGlobally()
£ nablelsotopeCounting()
¥DisablelsotopeCounting()

Figure3.1. Level 1implementation framework of the hadronic category of GEANTA4.

All processes have acommon base-class G4VPr ocess, from which aset of specialised classesare derived. Three
of them are used as base classes for hadronic processesfor particles at rest ((AVRest Pr ocess), for interactions
in flight (AVDi scr et eProcess), and for processes like radioactive decay where the same implementation
can represent both these extreme cases (AVRest Di scr et e- Process).

Each of these classes declares two types of methods; one for calculating the time to interaction or the physical
interaction length, alowing tracking to request the information necessary to decide on the process responsible
for final state production, and one to compute the final state. These are pure virtual methods, and have to be
implemented in each individual derived class, as enforced by the compiler.

Framework functionality

The functionality provided is through the use of process base-class pointers in the tracking-physicsinterface, and
the GAPr ocess- Manager . All functionality is implemented in abstract, and registration of derived process
classeswiththe GAPr ocess- Manager of anindividual particlealowsfor arbitrary combination of both Geant4
provided processes, and user-implemented processes. This registration mechanism is a modification on a Chain
of Responsibility. It is outside the scope of the current paper, and its description is available from G4Manual.

3.5.4. Level 2 Framework - Cross Sections and Models

At thenext level of abstraction, only processesthat occur for particlesin flight are considered. For thesg, itiseasily
observed that the sources of cross sections and final state production are rarely the same. Also, different sources
will comewith different restrictions. The principal use-cases of theframework are addressing these commonalities.
A user might want to combine different cross sections and final state or isotope production models as provided
by Geant4, and a physicist might want to implement his own model for particular situation, and add cross-section
data sets that are relevant for his particular analysis to the system in a seamless manner.

Requirements

1. Flexible choice of inclusive scattering cross-sections.
2. Ability to use different data-sets for different parts of the simulation, depending on the conditions at the point
of interaction.
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. Ability to add user-defined data-sets in a seamless manner.

. Flexible, unconstrained choice of final state production models.

5. Ability to use different final state production codes for different parts of the simulation, depending on the
conditions at the point of interaction.

. Ability to add user-defined final state production modelsin a seamless manner.

. Flexible choice of isotope production models, to run in parasitic mode to any kind of transport models.

8. Ability to use different isotope production codes for different parts of the simulation, depending on the

conditions at the point of interaction.
9. Ability to add user-defined isotope production models in a seamless manner.

AW

~N o

Design and interfaces

The above requirements are implemented in three framework components, one for cross-sections, final state
production, and isotope production each. The class diagrams are shown in Figure 3.2 for the cross-section aspects,
Figure 3.3 for the final state production aspects, and figure Figure 3.4 for the isotope production aspects.

<<Abstract>>
G4HadronicProcess

Q<vittual>> GetMicroscopicCrossSection()
<virtuab>> PostStepDolt()
SRegisterMe()
hooseHadronicinteraction)
QGeneralPostStepDolt()
Q<static>> GetlsotopeProductioninfo()
:Reg isterlsotopeProductionModel()

@ D )
@EnablelsotopeCounting ()
®DisablelsotopeCounting()

<<Concrete>> ‘ <<Gongrete>> <<Concrete>> <<Concrete>>

G4HadronFissionProcess| G4HadronlnelasticProcess | G4HadronElasticProcess | G4HadronCaptureProcess

I I I

<<Congrete>>

G4CrossSectionDataStore

@AddDataSet()
QGetCrossSection()

<<Concrete>>
10..* ADataSet
<<Purely Abstract>>

G4VCrossSectionDataSet

BisApplicable()
VGetCrossSection() f <<Concrete>>

BDataSet

Figure3.2. Level 2implementation framewor k of the hadr onic category of Geant4; cross-
section aspect.

<<Abstract>>

G4HadronicProcess

Qccvirtual>> GetMicroscopicCrossSection()
Vvirtual>> PostStepDolt()
‘F\egislerMe()

hooseHadroniclnteraction()
‘GeneralPostStepDolt()
Vocstatics> GetlsotopeProductioninfo()
‘F{egisterlsotopeProductionModel()
P<cstatic>> EnablelsotopeProductionGlobally()
P<<static>> DisablelsotopeProductionGlobally()
’EnablelsolopeCounting()
‘DisablelsotopeCounting()

<<Concrete>>

0.1
G4EnergyRangeManager <<Abstract>>
1.G4Hadronicinteraction 0..x G4Element
%GetHadronicInteraction() "
‘ApplyYourseIf()
‘SetMinEnergy() 0..*
:SetMax Energy() o
DeActivateFor() G4aMaterial
<<Concrete>>

ConcreteModel

Figure 3.3. Leve 2 implementation framework of the hadronic category of Geant4; final
state production aspect.
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<<Abstract>>
G4HadronicProcess

®avirtual>> GetMicroscopicGrossSection()
Secvinuats> PostStepDolt()
SRegisterMe()
“@ChooseHadronicinteraction()
tGEnera\Pns(SlEpDol(()

‘‘‘‘‘‘

:HegislerlsulnpePmdu::(lunMndel()

\Globally()
. Di: roductionGlobally()
“®EnablelsotopeCounting()

“®DisablelsotopeCounting()

0.*

<<Concretes> -
<<Purely Abstract>>

GélsoParticleChange G4VlsotopeProduction

| ®Getisotope()

<<Concrete>>
G4NeutronlsotopeProduction

\ i
Figure 3.4. Leved 2 implementation framework of the hadronic category of Geant4;
isotope production aspect

The three parts are integrated in the G4Hadr oni ¢c- Process class, that serves as base-class for all hadronic
processes of particlesin flight.

Cross-sections

Each hadronic process is derived from GAHadr oni c- Pr ocess}, which holds a list of “"cross section data
sets'. The term ““data set" is representing an object that encapsulates methods and data for calculating total
cross sections for a given process in a certain range of vaidity. The implementations may take any form. It
can be a simple equation as well as sophisticated parameterisations, or evaluated data. All cross section data
set classes are derived from the abstract class AVCr ossSect i on- Dat aSet }, which declares methods that
allow the process inquire, about the applicability of an individual data-set through | sAppl i cabl e( const
ADynami cParticl e*, const GAEl enent *), and to delegate the calculation of the actual cross-section
value through Get Cr ossSect i on(const GADynani cParticl e*, const GAEl enent*).

Final state production

The(AHadr oni cl nt er act i on baseclassisprovided for final state generation. It declaresaminimal interface
of only one pure virtual method: G4VPar ti cl eChange* Appl yYoursel f (const G4Track &,
HANucl eus &) }. GAHadroni cProcess provides aregistry for fina state production models inheriting
from GAHadr oni c- | nt eracti on. Again, fina state production model is meant in very general terms. This
can be an implementation of a quark gluon string model [QGSM], a sampling code for ENDF/B data formats [
ENDFForm ], or a parametrisation describing only neutron elastic scattering off Silicon up to 300~MeV.

Isotope production

For isotope production, a base class (4VI sot ope- Producti on) is provided. It declares a method
Al soResult * Cetlsotope(const G4Track & const (ANucl eus &) that calculates and
returns the isotope production information. Any concrete isotope production model will inherit from this class,
and implement the method. Again, the modeling possibilities are not limited, and the implementation of concrete
production modelsis not restricted in any way. By convention, the Get | sot ope method returns NULL, if the
model is not applicable for the current projectile target combination.

Framework functionality:

Cross Sections

(AHadr oni cPr ocess providesregistering possibilitiesfor datasets. A default isprovided covering all possible
conditions to some approximation. The process stores and retrieves the data sets through a data store that acts like
aFILO stack (aChain of Responsibility with aFirst In Last Out decision strategy). Thisallowsthe user to map out
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the entire parameter space by overlaying cross section data sets to optimise the overall result. Examples are the
cross sectionsfor low energy neutron transport. |f these are registered last by the user, they will be used whenever
low energy neutrons are encountered. In all other conditions the system falls back on the default, or data sets with
earlier registration dates. The fact that the registration is done through abstract base classes with no side-effects
allows the user to implement and use his own cross sections. Examples are special reaction cross sections of KO-
nuclear interactions that might be used for #/# analysis at LHC to control the systematic error.

Final state production

The (AHadr oni cPr ocess class provides a registration service for classes deriving from (4Hadr oni c-

Interaction, and delegates final state production to the applicable model. GAHadr oni c-

I nt er act i onprovides the functionality needed to define and enforce the applicability of a particular model.
Models inheriting from (AHadr oni c- | nt er act i on can be restricted in applicability in projectile type and
energy, and can be activated/deactivated for individual materials and elements. Thisallowsauser to usefinal state
production models in arbitrary combinations, and to write his own models for final state production. The design
is a variant of a Chain of Responsibility. An example would be the likely CM S scenario - the combination of
low energy neutron transport with a quantum molecular dynamics [QMD], invariant phase space decay [CHIPS],
and fast parametrised models for calorimeter materials, with user defined modeling of interactions of spallation
nucleons with the most abundant tracker and cal orimeter materials.

Isotope production

The G4Hadr oni cPr ocess by default calculates the isotope production information from the final state given
by the transport model. In addition, it provides a registering mechanism for isotope production models that
run in parasitic mode to the transport models and inherit from (4VI sot ope- Pr oduct i on. The registering
mechanism behaves like a FILO stack, again based on Chain of Responsibility. The models will be asked for
isotope production information in inverse order of registration. The first model that returns a non-NULL value
will be applied. In addition, the G4Hadr oni c- Pr ocess provides the basic infrastructure for accessing and
steering of isotope-production information. It allows to enable and disable the calculation of isotope production
information globally, or for individual processes, and to retrieve the isotope production information through
the (4l soParticl eChange * GetlsotopeProductionlnfo()} method at the end of each step.
The G4Hadr oni cPr ocess is afinite state machine that will ensure the Get | sot ope- Pr oduct i onl nf o
returns a non-zero value only at the first call after isotope production occurred. An example of the use of this
functionality is the study of activation of a Germanium detector in a high precision, low background experiment.

3.5.5. Level 3 Framework - Theoretical Models

<eAbstract>

<Concratas> G4Hadronicinteraction

[' <<Concretes. ] G4TheoFSGenerator| Suepvousery
SethiinEnergy()
G4PartonTransportModel upolyYousaif) setMaxEnergy() z
oz Activaterarl) <<Puraly Absiract>>
T

& G4VPreCompoundModel

<<Concrete=>

G4PythiaAhInterface

<<Puraly Abstract>>

~.G4VHighEnergyGenerator

1
1

$scatter()
SGee

etWoundedNucleus()

<<Abstracts>

| G4NhModel

<Pursly Avsiract
G4VIntraNuclearTransportModel

SppiyYoursali)

<<Concratas>
hbelrano. ropagate() G4VExcitationHandler
G4VPartonStringModel

Sareaip)

G4PythiaNhinterface

G4HadronKineticModel | G4QMDModel | G4HadronicCascade
[ || i

Figure 3.5. Leve 3 implementation framework of the hadronic category of Geant4;
theor etical model aspect.

Geant4 provides at present one implementation framework for theory driven models. The main use-case is that of
a user wishing to use theoretical models in general, and to use various intra-nuclear transport or pre-compound
models together with models simulating the initial interactions at very high energies.

Requirements

1. Allow to use or adapt any string-parton or parton transport [VNI],
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. Allow to adapt event generators, ex. [PY THIA7], state production in shower simulation.
. Allow for combination of the above with any intra-nuclear transport (INT).

. Allow stand-alone use of intra-nuclear transport.

. Allow for combination of the above with any pre-compound model.

. Allow stand-alone use of any pre-compound model.

. Allow for use of any evaporation code.

. Allow for seamless integration of user defined components for any of the above.

O~NO U WDN

Design and interfaces
To provide the above flexibility, the following abstract base classes have been implemented:

e GAVH ghEner gyGener at or

e (AVI nt ranucl ear Tr anspor t Model
* (AVPr eConpoundModel

* (AVExcitationHandl er

In addition, theclass G4 TheoFS- Gener at or isprovided to orchestrate interactions between these classes. The
class diagram is shown in Figure 3.5.

GAVHI ghEner gy- Gener at or serves as base class for parton transport or parton string models, and for
Adaptersto event generators. This class declares two methods, Scat t er , and Get WbundedNucl eus.

The base class for INT inherits from GAHadr oni c- | nt er acti on, making any concrete implementation
usable as a stand-alone model. In doing so, it re-declares the Appl yYour sel f interface of G4Hadr oni c-
I nt eracti on, andaddsasecondinterface, Pr opagat e, for further propagation after high energy interactions.
Pr opagat e takes as arguments a three-dimensional model of a wounded nucleus, and a set of secondaries with
energies and positions.

The base class for pre-equilibrium decay models, AVPr e- ConpoundMbdel , inherits from G4AHadr oni c-
I nt eracti on, again making any concrete implementation usable as stand-alone model. It adds a pure virtual
DeExci t e method for further evolution of the system when intra-nuclear transport assumptions break down.
DeExci t e takesa GAFr agnent , the Geant4 representation of an excited nucleus, as argument.

The base class for evaporation phases, G4VExcitati on-Handl er, declares an abstract method,
Br eakl t UP() , for compound decay.

Framework functionality

The AATheoFSGener at or class inherits from GAHadr oni c- | nt er act i on, and hence can be registered
as a model for final state production with a hadronic process. It allows a concrete implementation
of GAVI ntranucl ear - Transport Model and GAVH ghEner gy- Gener at or to be registered, and
delegatesinitial interactions, and intra-nuclear transport of the corresponding secondariesto the respective classes.
Thedesignisacomplex variant of a Strategy. The most spectacular application of this pattern isthe use of parton-
string models for string excitation, quark molecular dynamics for correlated string decay, and quantum molecul ar
dynamics for transport, a combination which promises to result in a coherent description of quark gluon plasma
in high energy nucleus-nucleus interactions.

The class GAVI ntranucl ear Tr ansport Model provides registering mechanisms for concrete
implementations of G4VPr eConpound- Mbdel , and provides concrete intra-nuclear transports with the
possibility of delegating pre-compound decay to these models.

AVPr eConmpoundMbdel provides a registering mechanism for compound decay through the
(AVExci t ati on- Handl er interface, and provides concreteimplementationswith the possibility of delegating
the decay of a compound nucleus.

The concrete scenario of G4TheoFS- Gener at or using a dual parton model and a classical cascade, which
in turn uses an exciton pre-compound model that delegates to an evaporation phase, would be the following:
ATheoFS- Gener at or receives the conditions of the interaction; a primary particle and a nucleus. It asks the
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dual parton model to perform the initial scatterings, and return the final state, along with the by then damaged
nucleus. The nucleus records all information on the damage sustained. G4TheoFS- Gener at or forwards all
information to the classical cascade, that propagates the particlesin the already damaged nucleus, keeping track of
interactions, further damageto the nucleus, etc.. Once the cascade assumptions break down, the cascade will collect
the information of the current state of the hadronic system, like excitation energy and number of excited particles,
and interpret it as a pre-compound system. It delegates the decay of this to the exciton model. The exciton model
will take the information provided, and calculate transitions and emissions, until the number of excitons in the
system equal sthe mean number of excitons expected in equilibrium for the current excitation energy. Thenit hands
over to the evaporation phase. The evaporation phase decaysthe residual nucleus, and the Chain of Command rolls
back to GATheoFS- Gener at or , accumulating the information produced in the various levels of delegation.

3.5.6. Level 4 Frameworks - String Parton Models and
Intra-Nuclear Cascade

<<Abstract>>
G4VPartonStringModel

$Scatter()
<<Purely Abstract>> &G
tWoundedNucl N -
G4VStringFragmentation ni() oundediuslesD: | e G4ExcitedString
@FragmentString() |1 1 | Phevirtual>> GelStrings()
—r P¥CorrectHadronMomenta()
Q‘SelTh\sPom(ev()
<<Concrete>> o
G4PythiaFragmentationinterface 1 Stoncees
| \ <<Concrete>> G4QuarkGluonStringModel
GA4FTFModel ﬁelSIrmgsO
<<Concrete>> 4y "S"" 0 ) M; buiphyd \O
itudi 1 etStringsi reateDiffractiveString|
G4LongitudinalStringDecay Wnll() CreateHardString()
EDExciteParticipants() reateSoftString()
EPBuildStrings()
£¥String()
@GaussianPt()
&¥ChooseX()

Figure 3.6. Level 4 implementation framework of the hadronic category of Geant4,
parton string aspect.

<<Purely Abstract>>

G4VintraNuclearTransportModel

SApplyYourself() G4VKineticNucleon
“Propagate() ®Decay()
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R ®GetPosition()
G4V3DNucleus
Sinit()
s R :gelCharge{)
<<ionorales. etMassNumber()
G4HadronKineticModel GetMass() ‘G4Nu.c\eon
%SetTimeStep() $GetOuterRadius() SetParticleType()
G4VPan\cIeScal}erer L SnT el oond SGotNuclearRadius(l___ :SetPamc\eTyDe()
$GetTimeTolnteraction() ‘ heckPauliPrinciple() ~——> %GetNuclearRadius|( Hit()
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UpdateKineticTrack() $DoLorentzBoost()
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‘DaLoremzComraclwon()
| / $DpoTranslation()
G4ParticleScatterer v FstartLoop()
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s @ mirrorNucleons()
‘Transport()
¥GetExcitationEnergy()
init()

A}
G4Fancy3DNucleus

Figure3.7. Level 4implementation framewor k of the hadronic category of Geant4; intra-
nuclear transport aspect.

The use-cases of thislevel are related to commonalities and detailed choicesin string-parton models and cascade
models. They are use-cases of an expert user wishing to alter details of amodel, or atheoretical physicist, wishing
to study details of a particular model.

Requirements

1. Allow to select string decay algorithm

2. Allow to select string excitation.

3. Allow the selection of concrete implementations of three-dimensional models of the nucleus

4. Allow the selection of concrete implementations of final state and cross sectionsin intra-nuclear scattering.
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Design and interfaces

To fulfil the requirements on string models, two abstract classes are provided, the G4VPar t on- St ri nghbdel

and the GAVString-Fragnentation. The base class for parton string models, G4VPart on-

St ri ngModel , declarestheGet St ri ngs() purevirtual method. G4VSt ri ng- Fr agnent at i on, the pure
abstract base class for string fragmentation, declares the interface for string fragmentation.

To fulfill the requirements on intra-nuclear transport, two abstract classes are provided, G4V3DNucl eus, and
(AVScat t er er . Atthispoint intime, the usage of these intra-nuclear transport related classes by concrete codes
isnot enforced by designs, asthe details of the cascade loop are still model dependent, and more experience hasto
be gathered to achieve standardisation. It iswithin the responsibility of the implementers of concrete intra-nuclear
transport codes to use the abstract interfaces as defined in these classes.

The class diagram is shown in Figure 3.6 for the string parton model aspects, and in Figure 3.7 for the intra-
nuclear transport.

Framework functionality

Again variants of Strategy, Bridge and Chain of Responsibility are used. G4AVPart on- St ri nghbdel
implements the initialisation of athree-dimensional model of a nucleus, and the logic of scattering. It delegates
secondary production to string fragmentation through a G4VSt r i ng- Fr agment at i on pointer. It provides a
registering service for the concrete string fragmentation, and delegates the string excitation to derived classes.
Selection of string excitation is through selection of derived class. Selection of string fragmentation is through
registration.

3.5.7. Level 5 Framework - String De-excitation}

G4ExcitedString
{GetPosition()
etPosition()

Purely Abstracts: ietPartonList()
ol Aoslranto ietdMomentumi()

G4VStringFragmentation  _ _ _ _ - ®insertParton()
WragmenlSlring() ’TransformToCenl&rOlMass{)
{AlignAlongZ()

/ ﬁsExc\ted()
‘ ‘GetHadron(]

<<Concrete>>
G4ExcitedStringDecay

<<Purely Abstract>>
G4VFragmentationFunction
¥GetlLightConeZ()

<<Concrete>>
G4LundStringFragmentation
@GetngthuneZ() ‘

<=Concretes> |
G4QGSMFragmentation <<Concretess
l&GElUQMCW‘EZ() I G4FeynmanFragmentation
|gﬁeleghICuneZO

Figure3.8. Level 5implementation framewor k of the hadronic category of Geant4; string
fragmentation aspect.

The use-case of this level isthat of a user or theoretical physicist wishing to understand the systematic effects
involved in combining variousfragmentation functionswith individual typesof string fragmentation. Notethat this
framework level is meeting the current state of the art, making extensions and changes of interfacesin subsequent
releases likely.

Requirements

1. Allow the selection of fragmentation function.

Design and interfaces

A base class for fragmentation functions, G4VFr agnment at i on- Functi on}, is provided. It declares the
Get Li ght ConeZ() interface.
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Framework functionality

The design is a basic Strategy. The class diagram is shown in Figure 3.8. At this point in time, the usage of
the AVFr agnent at i on- Funct i on is not enforced by design, but made available from the G4VSt r i ng-

Fragment at i on to an implementer of a concrete string decay. G4VSt r i ng- Fr agnent at i on provides a
registering mechanism for the concrete fragmentation function. It delegates the calculation of z; of the hadron to
split of the string to the concrete implementation. Standardisation in this areais expected.

3.5.8. Creating Your Own Hadronic Process

For some applications Geant4 might not provide the most appropriate physics implementantion or, in fact, any
physics implementation at all. In such cases, it is up to the user to develop the necessary processes, models and
cross sections and integrate them into his version of the Geant4 toolkit. The user's process, model or cross section
may then be used in aphysicslist to replace some of those aready provided by the toolkit. Thismodularity requires
that user classes be derived from a set of base classes which have been provided to aid integration with the toolkit
and to spare the user from consideration of many details not related to the physics at hand.

Processes communicate with Geant4 tracking, telling it where or when an interaction is supposed to occur, and
what is supposed to happen at that point. A hadronic process may be implemented directly, or through the
use af aframework of classes that modularize physics functionality, make available several utilities and reduce
unneccesary code duplication. In the latter, recommended, approach the user must in general develop as many as
three classes: aprocess, a cross section and amodel. Instances of the cross section and model classes must then be
assigned to the process. In practice it is usually necessary to develop only amodel class or a cross section class,
since a number of processes are already provided by Geant4. Before writing any code, users should check that
Geant4 has not already povided the necessary models, cross sections or processes.

3.5.8.1. Developing a new hadronic model

A hadronic model is repsonsible for the generation of a set of final state four-vectors, given an initial projectile
and target. New models should derive from the G4Hadroniclnteraction base class and at least two methods in
this class must be implemented:

virtual G4HadFi nal St at e*
Appl yYour sel f (const GAHadProj ectile& aProjectile, GANucl eus& target Nucl eus)

which isresponsible for generating the final state of the interaction including the specification of all particle types
and four-momenta, and

virtual (Abool |sApplicabl e(const (AHadProjectil e& aProjectile, GANucl eus& target Nucl eus)

whichisresponsible for checking that the incident particle type and energy, and the Z and A of the target nucleus,
can be adequately handled by the model. G4Hadroniclnteraction provides a number of utilities to aid in the
implementation of these methods.

When implementing ApplyYourself(), the Get() methods of the G4HadProjectile and G4Nucleus classes provide
all theinitial stateinformation necessary for the generation of thefinal state. For G4HadProjectile, GetDefinition()
provides the particle type, and GetdMomentum() provides the total energy and momentum. For G4Nucleus,
GetZ asint(), GetN_asint() and GetA asInt() provide Z, N and A, while AtomicMass() provides the mass.
Additional utility methods are available for both GAHadProjectile and G4Nucleus .

Coordinate systems

The inputs to the model assume that the incident particle (G4HadProjectile) travels along the z axis and interacts
with the target (G4Nucleus) which is at rest in the lab frame. Before invoking the ApplyYourself() method, the
process rotates the direction of the projectile to be along the z axis and then performs the inverse rotation on the
final state particles produced by the model.

The model must perform two additional transformations; into the CM frame, and back out of it after the interaction
iscomplete.
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Writing the ApplyYourself() method
It is thus the model developer's responsibility to:

* boost the projectile and target into the CM frame using the necessary L orentz transformations,
 perform al calculations required to generate the final state set of particles,

» boost the final state particles back to the lab frame with the inverse transformation, and

send the final state particles to the process by filling GAHadFinal State and setting its status.

Step 4) isaccomplished by using the various Get() and Set() methods provided by the class GAHadFinal Sate. The
developer must also decide whether the original projectile survives the interaction, disappears or is suspended.
Thisisdonewith the SetStatusChange() method. If the projectile survives, the changein its energy and momentum
must be set with the provided methods and it must be flagged as "isAlive". If the particle disappears it must be
flagged as "stopAndKill".

Geant4 provides alarge number of Lorentz transformation tools which may be used to complete steps 1) and 3).

How step 2) is accomplished is entirely up to the developer. This could be as simple as a look-up table which
assigns a final state to an initial state, or as complex as a theoretical high energy generator. Typically, the user
will have to provide methods of sampling final state multiplicities, energies and angles using random number
generators provided by Geant4. For example, the cosine of the polar angle of an isotropic angular distribution
could be sampled as follows:

GAdoubl e cosTheta = 2. *G4Uni f or nRandon() - 1.;

The developer must also see to it that the model conserves energy and momentum. Currently the hadronic
framework checks that final states do not exceed reasonably small limits of non-conservation.

Using the hadronic framework

For complex modelsit isrecommended that the user become familiar with the Geant4 hadronic framework. Thisis
covered in detail in the chapter on Extended Functionality in this manual. The framework uses the object-oriented
principles of abstraction and re-use to provide a number of services to the developer. The part of the framework
used will depend on the type of model. For example, high energy models can take advantage of already-devel oped
string excitation and decay functions and medium energy models can use the intra-nuclear propagation base class
and the nuclear de-excitation handler.

Writing the IsApplicable() method
The is a straightforward, but important, method. Most models are quite specific in their range of use and the

developer must codify this. It is recommended that this method test for ranges of projectile energy, particle type
and target atomic humber and weight, and return fal se when these ranges are exceeded.

3.5.8.2. Developing a new cross section set
New cross section sets should derive from G4VCrossSectionDataSet . This class serves as a container of cross

section data and provides a number of access methods that must be implemented by the developer. The essential
methods are:

Adoubl e Get El enent CrossSecti on(const (ADynani cParticle*, Gdint Z)

which retrieves e ement-based cross sections,

GAdoubl e GetlsoCrossSecti on(const GADynamicParticle*, Giint Z, Aint A)

which retrieves isotope-based cross sections,

G4bool | sEl ement Appl i cabl e(const GADynami cParticle*, 4int 2)
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which sets the Z range of the element-based data set,

Abool |slsoApplicabl e(const G4Dynani cParticle*, 4int, G4dint A

which setsthe Z and A range of the isotope-based data set, and

Set M nKi nEner gy( G4doubl e)
Set MaxKi nEner gy ( G4doubl e)
Get M nKi nEner gy()

and Get MaxKi nEner gy()

for defining the applicable energy range of the data set.

3.5.8.3. Developing a new hadronic process

As mentioned above, it is preferable to add new physics in terms of amodel, and assign the model to an existing
process, rather than develop a new, specific process. Under certain circumstances though, a directly implemented
process may be necessary. In that case it must derive from G4HadronicProcess and three methods of that class
must be implemented:

virtual GAVParticl eChange* Post StepDolt(const ATrack& const GAStep&) ,
virtual Abool |sApplicable(const HAParticleDefinition& , and
G4doubl e CGet MeanFr eePat h(const GATrack& aTrack, GAdoubl e, GAForceCondition*).

PostSepDolt() is responsible for generating the final state of an interaction given the track and
step information. It must update the state of the track, flagging it as "Alive", "StopButAlive",
"StopAndKill", "Kill TrackAndSecondaries’, "Suspend”, or "PostponeToNextEvent". It is roughly analagous to
the ApplyYourself() method in models.

IsApplicable() serves the same purpose in processes as it does in models.

GetMeanFreePath() gets the cross section as afunction of particle type, energy, and target material, and converts
it to amean free path, which isin turn passed on to the tracking. This method can be quite simple:

GAdoubl e particle = aTrack. Get Dynam cParticle();
G4doubl e material = aTrack. Get Material ();
return factor/theCrossSecti onDat aSt ore- >Get CrossSecti on(particle, material);

provided an appropriate cross section data set is already available in the data store.

The above discussion refers to in-flight processes. At-rest hadronic processes do not currently derive from
G4HadronicProcess, but from G4VRestProcess or G4VRestDiscreteProcess. As such they do not employ the
full hadronic framework and must be implemented directly without models. The methods to be implemented are
similar to thosein the in-flight case:

virtual GAVParticl eChange* At RestDolt(const GATrack& const AStep& , and
G4bool |sApplicabl e(const GAParticl eDefinition& .

3.6. Generic Event Biasing
3.6.1. Introduction

This section presents the generic biasing classes which have been introduced since release 10.0. Theses classes
are meant to virtually allow any type of process-level based biasing.

In 10.0 and 10.1, only Post St ep biasing actions are possible, which allows:

 Physics process biasing of:
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 occurencelaw, iebiasing acting onthe process Post St epGet Physi cal | nt eracti onLength(...)
level;
« fina state production, ie biasing acting on the process Post St epDol t (.. .)
* Biasing of non-physicstype:
« Where by that we mean biasing actions which act on particles, but are not modifying a physics process
behavior
« Splitting and killing are the important example of such cases

3.6.2. Design of Generic Biasing

We have decided to split the actual biasing actions (change probability occurence of a process, change its final
state generation, split, kill, etc...) from the decisions about these actions to be taken. The reason for this is that
several biasing actions are often needed to build one biasing technique, these actions having to be selected along
some specific logic of the technique.

For example, atechnique like the "force collision" of MCNP involves a splitting, a force interaction of one copy
in the volume and aforce free flight (under zero weight) of the other copy in the volume.

The classes which provides the interfaces for these biasing actions and decisions are respectively:

e (4AVBIi asi ngOper ati on
» (4VBi asi ngOper at or

A third class, G4Bi asi ngPr ocessl nt er f ace provides the interface between these classes and the stepping.

3.6.2.1. The AVBI asi ngQper at i on Interface Class
(AVBi asi ngQOper at i on defines two types of methods:

» methods for physics-based biasing:

e virtual const (AVBi asi ngl nt eracti onLaw*
Provi deCccur enceBi asi ngl nt eracti onLaw( const
(ABi asi ngProcesslinterface* /* callingProcess */, 4ForceCondition& /*
pr oposeForceCondition */ ) = 0;

« whichisdiscussed in more details below (Section 3.6.3)

e virtual AVParti cl eChange* Appl yFi nal St at eBi asi ng( const
(ABi asi ngProcesslnterface* /* callingProcess */, const G4Track* /* track
*/, const AStep* /* step */, G4bool & /* forceBi asedFinal State */) = 0;

« whichis meant for final state biasing.

« thebiasing operation gets called (by the G4Bi asi ngPr ocessl nterface cal li ngProcess)and
has to return a biased particle change. This one should take care of providing the proper weight values
for the biasing applied.

» methods for non-physics biasing:

e virtual Gi4doubl e DistanceToAppl yOperation( const GATrack* /* track */,
Adoubl e /* previousStepSi ze */, GAForceCondition* /* condition */) = 0;

« which returns the distance at which the operation must be applied, and returns a so the force condition
for this.

 the returned values (distance, force condition) are returned to the stepping manager by the the
(ABi asi ngProcessl nterface cal |l i ngProcess to make the biasing opetation to compete for
[imiting the step.

e virtual AVParticl eChange* GCenerateBi asi ngFi nal State( const ATrack* /*
track */, const (AStep* /* step */) = 0;

« called if the operation has limited the step.

« must return the final state generated by the operation.

3.6.2.2. The AVBI asi ngQper at or Interface Class

The GAVBi asi ngQper at or classis meant to define the interface to pilot biasing operations. It selects biasing
operations or sequences of biasing operations to build up the logic of a specific biasing technique. It is messaged
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by each G4Bi asi ngProcessl nterface cal |l i ngProcess instance, which passtheir "identity" through
their own pointer values. The operator has hence all the necessary information for taking decisions.

Inaddition, since 10.1, the ABi asi ngPr ocessl nterface cal | i ngPr ocess instancesdo "anticipated”
calls to their underneath wrapped physics process (if any) : the first of the G4Bi asi ngPr ocessl nt er f ace
cal I i ngProcess instance, trigger calls to al Post St epGet Physi cal I nteracti onLength(...)
methods of biased processes. In thisway, all process cross-sections have been updated before the first call to the
biasing operator. This one has hence all ready-to-use physicsinformation thefirst it is messaged in the step by the
first &ABi asi ngProcessl nterface cal |l i ngProcess instance.

The GAVBIi asi hgOper at or class defines the following interface:

e virtual (AVBi asi ngOper ati on*  ProposeNonPhysi csBi asi ngOperation( const
ATrack* track, const (ABi asi ngProcessinterface* callingProcess ) = 0;
e This method is called by each (ABi asi ngPr ocessl nt er f ace instance which does not hold/wrap a
physics process.
e The AVBIi asi ngOper at i on returned will have its Di st anceToAppl yOperation(...) and
Cener at eBi asi ngFi nal St at e(...) methods called at proper times (post step GPIL and post step
Dolt times, respectively) by the G4Bi asi ngPr ocessl nterface cal | i ngProcess.

e virtual AVBi asi ngQper at i on* Pr oposeCQccur enceBi asi ngOper at i on( const
ATrack* track, const (ABi asi ngProcessinterface* callingProcess ) = 0;
e The AVBi asi ngOper ati on returned will have its

Provi deCccur enceBi asi ngl nteracti onLaw(...) caledto get the biased interaction law to be
used.

« Thismethod iscalled at the Post St epGet Physi cal | nt eracti onLength(...) level.

e virtual (AVBi asi ngOper ati on*  ProposeFi nal St at eBi asi ngOperation( const

ATrack* track, const (ABi asi ngProcessinterface* callingProcess ) = 0;

* The GAVBi asi ngOper at i on returned will haveits Appl yFi nal St at eBi asi ng(...) caledto
generated the physics-based biased final state.

e Thismethod iscalled at the Post St epDol t (... ) level.

3.6.3. Physics Process Occurence Biasing

The occurence biasing is the biasing which affects the probability for a physics process to occur. For now, we
discuss only the case of neutral particles, ie, having no continuous energy loss along a step. The case of
charged particlesis expected to be treated in later releases.

The process occurence is driven by the exponential law, which parameter in Geant4 is the process mean free path
A, which is also the inverse of the cross-section 5 The (analog or natural) probability density function (pdf) of
interactionsis given by Pa(#t —ga'&XP(-ga#), where # is the distance at which the interaction occurs, and where we
haverelabelled ; as ja In Geant4, volumes are made of a single material, meaning that ;5 does not depend on #:
at some position, starting point of a step, the track "sees' the same cross-section at all positions # in the volume.

The occurence biasing consists in substituting pa(#) by some arbitrary biased interaction law py(#).

3.6.3.1. Formalism for occurence biasing
More details about the formalism will be provided in the physics reference manual biasing related part (to come).

An arbitrary interaction law pp(#) can be recasted in term of an "effective” cross-section 4p(#), which depends
on#in general, as

* pp(#) = 0b(#)-exp(—k,b(s)s), where the integration runs over [0,#],

» where gi(#) is given by 1(#) = po(#) / P o(#)

» where Py p(#) is the probability for non-interaction along segment [0,#] and is given by Py p(#) = 1-#pp(S)ds
= exp(-IGb(s)ds) where the integration runs over [0,4].

which is the formalism that corresponds to non-constant cross-sections.
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When applying this formaism to the analog pdf py(#), we simply have 5u(#) = ga and P p(#) = exp(-ga#), as
this must.

In contrast with the analog case, the "effective" cross-section may depend on #, even in avolume made of single
material. An example of thisisthe forced interaction: if it is decided that the interaction of a process, with analog
cross-section 5, Will be forced and will happen somewhere on the segment [O,L], then we have

 Forced interaction over segment [O,L] case:
* Po(#) = gaXP(-ga)/(1-exp(-gal ) |

* Pup#=1- (1'exp('o'a#))/(1'exp('o'a|—)) )
* ob(#) = gal (1-exp(-ga(L-#)) -

In the occurence biasing, two weights have to be taken into account:

» When the track travels from O to # without interaction, it has a different probability to do so in the biased and
analog schemes, meaning that a weight for non-interaction has to be applied, this weight being:
* Wi = Pnia#) / Paip(#) -
If several processes are biased, each with a dedicated law, then, as the total probability for non-interaction is
the product of individual probabilities, the total non-interaction weight is simply the product of the individual
weights. This non-interaction weight has hence to be applied for al biased processes.

» If thetrack then makes an interaction in the next segment d# the anal og process would have aprobability ;-d# to
do so, whilethis probability is 5(#)d# for the biased process. A weight for interaction has henceto applied andis
* W= o'a/ o‘b(#) )
where the analog and biased cross-sections are for the process which is taking place.

3.6.3.2. Implementation of Occurence Biasing

Previous section shows that weights for non-interaction probability and effective cross-section are needed to
compute the related non-interaction and interaction weights. The class G4VBi asi ngl nt er act i onLawisthe
interface for implementing "interaction laws", it defines the pure virtual methods

e virtual 4doubl e Conput eNonl nteracti onProbabilityAt(Adoubl e | ength) const
= 0;

» virtual Adoubl e Conmput eEf f ecti veCrossSecti onAt (Adoubl e | engt h) const = 0;

that are used in these weights calculations. It defines also the pure virtual method:

* virtual G4doubl e Sanpl el nteracti onLength() = 0;

In the case of the occurence biasing, the dedicated vi rtual
const GAVBi asi ngQper ati on: : Provi deQccur enceBi asi ngl nt eracti onLaw( const
(ABi asi ngProcessl nterface* cal I i ngProcess, GAFor ceCondi ti on&
pr oposeFor ceCondi ti on ) = 0; is meant to return the biased law. The

(ABi asi ngPr ocessl nt er f ace will not change the state of the law. It will collect the sampled interaction
length (that the biasing operation must have asked to law to sample) and will used the non-interaction probability
method initsAl ongSt epDol t (. .. ) tocomputetheweight for non-interaction, these weight being multiplied
among biased processes, and it will use the effective cross-section of process"i", if process"i" winstheinteraction
length race, initsPost St epDol t (.. .) tocompute the weight for interaction.

To compute these weights, the G4Bi asi ngPr ocessl nt er f ace holds a private interaction law, to which it
sets the analog process cross-section that it collects at the beginning of the step.

As occurence biasing and final state biasing are independent operations, the weight correction for interaction due

to the occurence biasing is applied on top of the final state generated by the process (this final state being biased
or not).

3.7. Visualisation

This Chapter isintended to be read after Chapter Section 2.12 on Visualisation object oriented design in Part 11.
Many of the concepts used here are defined there, and it strongly recommended that awriter of anew visualisation
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driver or trgjectory drawer reads Chapter Section 2.12 first. The class structure described there is summarised in
Figure 3.9.

G4VVismanager G4VGraphicsScene

Graphics Interface

’ G4VisManager | | G4VGraphicsSystem ’ G4VSceneHandler | | G4VViewer
‘ G4VisExecutive | | GAXXX ‘ ‘ G4XXXSceneHandler | | G4XXXViewer|
Geant4 Visualisation System ’ G4saene‘ | G4viewParameters

Figure 3.9. Geant Visualisation System Class Diagram

3.7.1. Creating a new graphics driver

To create anew graphics driver for Geant4, it is necessary to implement a new set of three classes derived from
the three base classes, AVG aphi csSyst em (AVSceneHandl er and AWV ewer .

3.7.1.1. A useful place to start

A skeleton set of classes is included in the code distribution in the visualisation category under subdirectory
vi sual i sati on/ XXX (but they are not default-registered graphicswstems2

There are several sets of classes, described in more detail below. A recommended approach is to copy the files
that best match your graphics system to a new subdirectory with a name that suits your graphics system .

Then

1. Change the name of the files (change the code -- XXX or XXXFi | e, etc., as chosen -- to something that suits

your graphics system).

Change XXX similarly in al files.

Change XXX similarly innane : = GAXXXin GNUnrakefi | e.

. Add your new subdirectory to SUBDI RS and SUBLI BSinvi sual i sati on/ GNUrekefil e.

. Look at the code and use it to build your visualisation driver. You might also find it useful to look at
ASCI | Tr ee (and VTr ee) as an example of a minimal graphics driver . Look at Fukui Render er asan
example of adriver which implements AddSol i d methods for some solids. Look at OQpenGL as an example
of adriver which implements a graphical database (display lists) and the machinery to decide when to rebuild.
(OpenGL is complicated by the proliferation of combinations of the use or not of display listsfor three window
systems, X-windows, X with motif (interactive), Microsoft Windows (Win32), atotal of six combinations, and
much use is made of inheritance to avoid code duplication.)

6. If it requires external libraries, introduce two new environment variables4VI S_BUI LD XXX DRI VERand

AVl S_USE_ XXX (where XXX is your choice as above) and make the modifications to:
» source/visualization/ managenment/i ncl ude/ (4Vi sExecuti ve.icc
» config/ G4VI S_BU LD. gnk

e config/ &AVI S _USE. gnk

oA wN

3.7.1.1.1. Graphics driver templates in the XXX sub-category

Y ou may use the following templates to help you get started writing a graphics driver . (The word ““template” is
used in the ordinary sense of the word; they are not C++ templates.)

o AXXX, GAXXXSceneHandl er, GAXXXVi ewer Templates for the simplest possible graphics driver .
These would be suitablefor an ““immediate” driver, i.e., one which renders each object immediately to a screen.

2 To do thissimply instantiate and register, for example: vi sManager - >Regi st er Gr aphi csSyst em(new &AXXX) before
vi sManager->Initialise().
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Of coursg, if the view needs re-drawing, as, for example, after a change of viewpoint, the viewer requests a
re-issue of drawn objects.

o AXXXFil e, GAXXXFil eSceneHandl er, GAXXXFi | eVi ewer Templatesfor afile-writing graphics
driver. The particular features are: delayed opening of the file on receipt of the first item; rewinding file on
ClearView (to simulate the clearing of views and prevent the duplication of material in the file); closing of the
file on ShowView, which may also trigger the launch of abrowser. There are various degrees of sophistication
in, for example, the alocation of filenames -- see Fukui Render er or HepRepFi | e.

These templates also show the use of a specific AddSol i d function whereby the specific parameters, for
example, the dimensions of a G&4Box, can be accessed.

o AXXXStored, AXXXStoredSceneHandl er, AXXXSt oredVi ewer Templates for a graphics
driver with a store/database. The advantage of a store is that the view can be refreshed, for example, from
a different viewpoint, without a need to recompute. It is up to the viewer to decide when a re-computation
is necessary. They also show how to distinguish between permanent and transient objects -- see also Section
Section 3.7.1.6.

o AXXXSG (AXXXSGSceneHandl er, GAXXXSGVi ewer Templates for a sophisticated graphics driver
with ascene graph. The scene graph, following Open Inventor parlance, isatree of objectsthat dictatesthe order
in which the objects are rendered. It obviously lends itself to the rendering of the Geant4 geometry hierarchy.
For example, the Open Inventor driver draws only the top level volumes unless madeinvisible by picking. Thus
the user can unwrap a branch of the geometry level by level. This has performance benefits and gives the user
significant and useful control over the view. These classes show how to make ascene graph of drawn volumes,
i.e., the set of volumes that have not been culled. (Normally, volumes marked invisible are culled, i.e., not
drawn. Also, the user may wish to limit the number of drawn volumes for performance reasons.) The drivers
also have to process non-geometry items and distinguish between transient and permanent objects as above.

3.7.1.2. Important Command Actions

To help understand how the Geant4 Visualization System works, here are a few important function invocation
sequencesthat follow user commands. For an explanation of the commands themsel ves, see command guidance or
the Control section of the Application Devel opers Guide. For afuller explanation of the functions, see appropriate
base class head files or Software Reference Manual.

e /vis/viewer/clear

vi ewer - >Cl ear Vi ew() ; /Il Clears buffer or rewinds file.

vi ewer - >Fi ni shViewm(); // Swaps buffer (double buffer systens).
e /vis/viewer/flush

/vis/viewer/refresh

/vi s/ vi ewer/ updat e

e /vis/viewer/rebuild

vi ewner - >Set NeedKer nel Vi sit (true);

e /vis/viewer/refresh

If theview is ““auto-refresh”, thiscommand isalso invoked after / vi s/ vi ewer / cr eat e,/ vi s/ vi ewer /
r ebui | d or achange of view parameters (/ vi s/ vi ewer/ set/ ..., etc.).

vi ewer - >Set Vi ew( ) ; /] Sets canmera position, etc.
viewer->ClearViewm); // Cears buffer or rewinds file.
Vi ewer - >Dr awvi ew( ) ; // Draws to screen or wites to

Il filelsocket.

» /vis/viewer/update

vu
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Vi ewer - >Showvi ew( ) ; /1 Activates interactive wi ndows or
/1 closes file and/or triggers
/| post-processing.

» /vis/scene/notifyHandl ers

For each viewer of the current scene, the equivalent of

/vis/viewer/refresh

If “flush" is specified on the command line, the equivalent of

/vi s/ vi ewer/ updat e

/vi s/ scene/ noti f yHandl| er s isasoinvoked after achange of scene (/ vi s/ scene/ add/ ..., etc.).

3.7.1.3. What happens in Dr awi ew?

This depends on the viewer. Those with their own graphical database, for example, OpenGL'sdisplay listsor Open
Inventor's scene graph, do not need to re-traverse the scene unless there has been a significant change of view
parameters. For example, amere change of viewpoint requiresonly achange of model-view matrix whilst achange
of rendering mode from wireframe to surface might require arebuild of the graphical database. A rebuild of the
run-duration (persistent) objectsinthesceneiscaled a™ kernel visit"; theviewer prints "~ Traversing scenedata...”.

Note that end-of-event (transient) objects are only rebuilt at the end of an event or run, under control of the
visualisation manager. Smart scene handlers keep them in separate display lists so that they can be rebuilt
separately from the run-duration objects - see Section 3.7.1.6.

* Integrated viewers with no graphical database For example,
GAOCpenCL] nmedi at eXVi ewer : : Drawi ew() .

NeedKernel Visit(); // Always need to visit G4 kernel.
ProcessVi ew() ;
Fi ni shview);

» Integrated viewer swith graphical database For example, GA0penGLSt or edXVi ewer : : Dr awvi ew( ) .

Kernel Vi sitDecision(); // Private function containing...
if significant change of view paraneters...
NeedKer nel Visit();
ProcessVi ew() ;
Fi ni shView();

» File-writing viewer s For example, GADAVWNFI LEVi ewer : : Dr awVi ew( ) .

NeedKer nel Visit();
ProcessVi ew() ;

Note that viewers needing to invoke Fi ni shVi ewmust doitin Dr awVi ew.

3.7.1.4. What happens in ProcessVi ew?

Pr ocessVi ewisinherited from GAVWi ewer :

voi d GAWi ewer: : ProcessVi ew() {
// If ClearStore has been requested, e.g., if the scene has changed,
/] of if the concrete viewer has decided that it necessary to visit



Extending Toolkit Functionality

I/ the kernel, perhaps because the view paraneters have changed
/] drastically (this should be done in the concrete viewer's
/1 Drawview). ..
if (fNeedKernelVisit) {
f SceneHandl er . ProcessScene(*t hi s);
f NeedKernel Visit = fal se;
}
}

3.7.1.5. What happens in ProcessScene?

ProcessScene is inherited from G4VSceneHandl er} . It causes a traversal of the run-duration models in the
scene. For driverswith graphical databases, it causesarebuild (Cl ear St or e). Then for the run-duration models:

f ReadyFor Transi ents = fal se;
Begi nhWbdel i ng() ;
for each run-duration nodel...
pModel -> Descri beYoursel f To(*this);
EndMbdel i ng() ;
f ReadyFor Transi ents = true;

(A second pass is made on request -- see (AVSceneHandl er:: ProcessScene.) The use of

f ReadyFor Tr ansi ent s isdescribed in Section 3.7.1.6.

What happens then depends on the type of model:

« AAxesModel G4AxesModel :: Descri beYoursel fTo smply cals sceneHandler. AddPrimitive

methods directly.

sceneHandl er. Begi nPrimtives();
sceneHandl er. AddPrim tive(x_axis); [/ etc.
sceneHandl er. EndPrimitives();

Most other models are like this, except for the following...

» (APhysi cal Vol umeModel The geometry is descended recursively, culling policy is enacted, and for each

accepted (and possibly, clipped) solid:

sceneHandl er . PreAddSol i d(t heAT, *pVisAttri bs);

pSol - >Descri beYour sel f To( sceneHandl er) ;

/] For exanple, if pSol points to a ABox. ..

| -->ABox: : Descri beYour sel f To( AAVG aphi csScene& scene) {
scene. AddSol i d(*t hi s);

}
sceneHandl er . Post AddSol i d() ;

The scene handler may implement the virtual function { AddSolid(const G4Box& )}, or inherit:

voi d GAVSceneHand! er:: AddSol i d(const (ABox& box) {
Request Primtives(box);

}

Request Pri ni ti ves convertsthe solid into primitives (G4Pol yhedr on) and invokes AddPr i i ti ve:

Begi nPrimtives(*fpQbj ect Transf ormati on);
pPol yhedron = sol i d. Get Pol yhedron();
AddPri nitive(*pPol yhedron);

— EndPrimtives();

The resulting default sequence for aAAPhysi cal Vol uneMddel isshownin Figure 3.10.
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Dr awvi ew( ) ;
| -->ProcessView();
| -->ProcessScene();
- - >Begi nMbdel i ng();
-->pModel -> DescribeYoursel f To(*this);
| -->sceneHandl er. PreAddSol i d(t heAT, *pVisAttribs);
-->pSol - >Descri beYour sel f To(sceneHandl er) ;
| -->sceneHandl er . AddSol i d(*t hi s);
| -->RequestPrinmitives(solid);
| -->BeginPrimtives (*fpQbjectTransfornation);
| - ->pPol yhedron = solid. Get Pol yhedron();
| -->AddPrinitive(*pPol yhedron);
|-->EndPrimtives();
- - >sceneHandl er . Post AddSol i d();

|
|
|
|
|
|
|
|
|
|
|
| ndModel i ng();

I
|
I
|
I
|
I
|
-->F

Figure 3.10. The default sequencefor a &4Physi cal Vol uneModel }

Note the sequence of calls at the core:

sceneHandl er . PreAddSol i d(t heAT, *pVisAttri bs);
pSol - >Descr i beYour sel f To(sceneHandl er) ;
| - - >sceneHandl er. AddSol i d(*t hi s);
| -->RequestPrimtives(solid);
|-->BeginPrimtives (*fpObjectTransformation);
| - ->pPol yhedron = solid. Get Pol yhedron();
| -->AddPri mtive(*pPol yhedron);
| -->EndPrimtives();
sceneHandl er . Post AddSol i d() ;

isreduced to

sceneHandl er . PreAddSol i d(t heAT, *pVisAttri bs);
pSol - >Descri beYour sel f To(sceneHandl er) ;

| - - >sceneHandl er. AddSol i d(*t hi s);

sceneHandl| er. Post AddSol i d();

if the scene handler implementsitsown AddSol i d. Moreover, the sequence

Begi nPrimtives (*fpQbjectTransfornation);
AddPri nitive(*pPol yhedron);
EndPrimtives();

can be invoked without aprior Pr eAddSol i d, etc. Theflag f Pr ocessi ngSol i d will befalse for the last
case. The possibility of any or all of these three scenarios occurring, for both permanent and transient objects,
affects the implementation of a scene handler if there is any attempt to build a graphical database. This is
reflected in the templates XXXSt or ed and XXXSGdescribed in Section 3.7.1.1.1. Transients are discussed in

Section 3.7.1.6.

(ATr aj ect ori eshMbdel At end of event, the trajectory container is unpacked and, for each tragjectory,
sceneHand! er . AddConpound called. The scene handler may implement this virtual function or inherit:

voi d G4VSceneHandl er: : AddConpound (const GAVTrajectory& traj) {
traj.Drawlraj ectory(((GATraj ectorieshdel *)fpMdel )->Cet Drawi nghbde()) ;
}

Similarly, the user may implement Dr awTr aj ect ory or inherit:

voi d AVTrajectory::Drawlraj ectory(&int i node) const {
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pWi sManager - >Di spat chToModel (*thi s, i_node);
}
}

Thence, the Dr aw method of the current trgjectory model isinvoked (see Section 3.7.2 for details on trajectory
models), whichin turn, invokes Dr aw methods of the visualisation manager. The resulting default sequence for
aGATr aj ect ori esModel isshownin Figure 3.11.

Drawvi ew() ;
| -->ProcessView);
| -->ProcessScene();
| - - >Begi nMbdel i ng();
| -->pMbdel -> DescribeYoursel f To(*this);
| | - - >AddConpound(traj ectory);
| |-->trajectory. DrawTrajectory(...);
| | -->Di spat chToModel (...);
| | -->nodel ->Draw(...);
| | -->CGAVi sManager::Draw(...);
| | -->Begi nPrimtives(objectTransform;
| |-->AddPrimtive(...);
| |-->EndPrimtives();
| - - >EndModel i ng() ;

Figure 3.11. The default sequencefor a APhysi cal Vol uneModel }

3.7.1.6. Dealing with transient objects

Any visualisable object not defined in the run-duration part of a scene is treated as ““transient”. This includes
trajectories, hits or anything drawn by the user through the G4VWi sManager user-leve interface (unless as
part of a run-duration model implementation). A flag, f ReadyFor Tr ansi ent s}, is maintained by the scene
handler. In fact, its normal stateist r ue, and only temporarily, during handling of the run-duration part of the
scene, isit settof al se -- see description of ProcessScene, Section 3.7.1.5.

If the driver supports a graphical database, it is smart to distinguish transient and permanent objects. In this
case, every Add method of the scene handler must be transient-aware. In some cases, it is enough to open a
graphical data base component in Begi nPri mi ti ves,fill itin AddPri m ti ve and closeit appropriately in
EndPri m tives. In others, initialisation is done in Begi nMbdel i ng and consolidation in EndModel i ng
--see AOpenCLSt or edSceneHandl er . If any AddSol i d method isimplemented, then the graphical data
base component should be opened in Pr e AddSol i d, protecting against double opening, for example,

voi d GAXXXSt or edSceneHandl er:: Begi nPrimtives
(const CGATransfor nBD& obj ect Tr ansf or mati on) {
G4VSceneHandl er: : Begi nPrim tives(object Transformation);
/1 |If thread of control has already passed through PreAddSolid,
/] avoid opening a graphical data base conponent again.
if (!fProcessingSolid) {

for other solids.

Thereason for thisdistinction is that at end of run the user typically wants to display trajectories on aview of the
detector, then, at the end of the next event s , erase the old and see new trajectories. The visualisation manager
messages the scene handler with Cl ear Tr ansi ent St or e just before drawing the trajectories to achieve this.

If the driver does not have a graphical database or does not distinguish between transient and persistent objects,
it must emulate Cl ear Tr ansi ent St or e. Typicaly, it must erase everything, including the detector, and re-
draw the detector and other run-duration objects, ready for the transients to be added. File-writing drivers must
rewind the output file. Typically:

voi d GAHepRepFi | eSceneHandl er:: Cl ear Transi ent Store() {

3 Thereisan option to accumul ate trajectories across events and runs -- see commands/ vi s/ scene/ endOf Event Acti on and/ vi s/
scene/ endOf RunAct i on.
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GAVSceneHandl er: : C ear Transi ent Store() ;
// This is typically called after an update and before drawi ng hits
/1 of the next event. To sinmulate the clearing of "transients"
/1 (hits, etc.) the detector is redrawn...
if (fpViewer) {
fpViewer -> SetView);
fpViewer -> CearView);
fpViewer -> Drawview);

}
}

C ear Vi ewrewinds the output file and Dr awVi ew re-draws the detector, etc. (For smart drivers, Dr awVi ew
is smart enough to know not to redraw the detector, etc., unless the view parameters have changed significantly
-- see Section 3.7.1.3)

3.7.1.7. More about scene models

Scene models conform to the G4AVbdel abstract interface. Available models are listed and described there in
varying detail. Section 3.7.1.5 describes their use in some common command actions.

In the design of anew model, care should be taken to handle the possibility that the G4AMbdel i ngPar anet er s
pointer is zero. Currently the only use of the modeling parameters is to communicate the culling policy. Most
models, therefore, have no need for modeling parameters.

3.7.2. Enhanced Trajectory Drawing

3.7.2.1. Creating a new trajectory model

New trajectory models must inherit from G4V TragjectoryModel and implement these pure virtual functions:

virtual void Drawconst AVIrajectory& G4int i_node = 0,
const (4bool & visible = true) const = 0;
virtual void Print(std::ostream& ostr) const = O;

To use the new model directly in compiled code, simply register it with the G4VisManager, eg:
GAVi sManager * vi sManager = new (AVi sExecuti ve;
vi sManager->Initialise();
/] Create custom nodel
MyCust onilr aj ect or yModel * nyModel =
new MyCust onilr aj ect or yMbdel (" cust ont');

/] Configure it if necessary then register with G4Vi sManager

vi sManager - >Regi st er Nbdel (myModel ) :
3.7.2.2. Adding interactive functionality
Additional classes need to be written if the new model isto be created and configured interactively:
* Messenger classes

Messengers to configure the model should inherit from G4V Model Command. The concrete trajectory model
type should be used for the template parameter, eg:

cl ass GAMyCust omvbdel Commrand

. public GAVMbdel Command<GATr aj ect or yDr awByParti cl el D> {

A number of general use templated commands are available in G4Model CommandsT.hh.
» Factory class
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A factory class responsible for the model and associated messenger creation must also be written. The factory
should inherit from G4V M odel Factory. The abstract model type should be used for the template parameter, eg:

cl ass GATr aj ect or yDr awBy Char geFact ory
. public AVMbdel Fact or y<G4VTr aj ect or yMobdel > {

The model and associated messengers should be constructed in the Create method. Optionally, a context object
can also be created, with its own associated messengers. For example:

Model AndMessenger s
GATr aj ect oryDrawByParti cl el DFactory: :

Create(const GAString& pl acenent, const (AString& nane)
{

/1 Create default context and nodel
G4Vi sTraj Cont ext* context = new G4Vi sTraj Cont ext ("defaul t");
GATr aj ectoryDrawByParticl el D* nodel =

new GATr aj ect oryDrawByParti cl el D(nane, context);

/| Create nessengers for default context configuration
AddCont ext Msgr s(cont ext, nessengers, placenent+"/"+nane);

/] Create nessengers for drawer
nmessenger s. push_back( new
GAMbdel CndSet St ri ngCol our <GATr aj ect or yDr awByParti cl el D>
(rmodel , pl acenent));
nmessenger s. push_back( new
GAModel CndSet Def aul t Col our <GATr aj ect or yDr awByParti cl el D>
(rmodel , pl acenent));
nmessenger s. push_back( new
GAMbdel CndVer bose<GATr aj ect or yDr awByParti cl el D>
(model , pl acenent));

return Mddel AndMessenger s(nodel , nessengers);

The new factory must then be registered with the visualisation manager. This should be done by overriding
the G4VisManager::RegisterModelFactory method in a subclass. See, for example, the G4VisManager
implementation:

AVi sExecuti ve: : Regi st er Model Factori es()
{

Regi st er Mbdel Fact ory(new GATr aj ect or yDrawByPar ti cl el DFactory());
}

3.7.3. Trajectory Filtering

3.7.3.1. Creating a new trajectory filter model

New trajectory filters must inherit at least from G4VFilter. The models supplied with the Geant4 distribution
inherit from G4SmartFilter, which implements some speciaisations on top of G4V Filter. The models implement
these pure virtual functions:

/] Eval uate nethod inplenented in subcl ass
virtual (4bool Eval uate(const T& = O;

/1 Print subclass configuration
virtual void Print(std::ostream& ostr) const = 0;

To use the new filter model directly in compiled code, simply register it with the G4VisManager, eg:
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GAVi sManager * vi sManager = new (AVi sExecuti ve;
vi sManager->Initialise();

/] Create custom nodel
MyCust onilr aj ect or yFi | t er Mbdel * nmyModel =
new MyCust onilr aj ect oryFi | t er Model (" cust ont') ;
/] Configure it if necessary then register with G4Vi sManager

VI éManager->Regi st er Mbdel ( myMbdel ) ;
3.7.3.2. Adding interactive functionality

Additional classes need to bewrittenif the new model isto be created and configured interactively. The mechanism
isexactly the same asthat used to create enchanced trajectory drawing models and associated messengers. Seethe
filter factoriesin G4TrajectoryFilterFactories for example implementations.

3.7.4. Other Resources

The following sections contain various information for extending other class functionalities of Geant4
visualisation:

» User's Guide for Application Developers, Chapter 8 - Visualization
» User's Guide for Toolkit Developers, Object-oriented Analysis and Design of Geant4 Classes, Section 2.12.

[Status of this chapter]

03.12.05 “"Enhanced Trajectory Drawing" added by Jane Tinsley.

03.12.05 " Creating a new visualisation driver" (from Part 11) by John Allison.

09.01.06 " Creating a new visualisation driver" considerably expanded by John Allison.
20.06.06 Some sections improved or added from draft vis paper. John Allison.

Dec. 2006 Conversion from latex to Docbook verson by K. Amako
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